1
|
Yenkoyan K, Grigoryan A, Kutna V, Shorter S, O'Leary VB, Asadollahi R, Ovsepian SV. Cerebellar impairments in genetic models of autism spectrum disorders: A neurobiological perspective. Prog Neurobiol 2024; 242:102685. [PMID: 39515458 DOI: 10.1016/j.pneurobio.2024.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Functional and molecular alterations in the cerebellum are among the most widely recognised associates of autism spectrum disorders (ASD). As a critical computational hub of the brain, the cerebellum controls and coordinates a range of motor, affective and cognitive processes. Despite well-described circuits and integrative mechanisms, specific changes that underlie cerebellar impairments in ASD remain elusive. Studies in experimental animals have been critical in uncovering molecular pathology and neuro-behavioural correlates, providing a model for investigating complex disease conditions. Herein, we review commonalities and differences of the most extensively characterised genetic lines of ASD with reference to the cerebellum. We revisit structural, functional, and molecular alterations which may contribute to neurobehavioral phenotypes. The cross-model analysis of this study provides an integrated outlook on the role of cerebellar alterations in pathobiology of ASD that may benefit future translational research and development of therapies.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University after M. Heratsi, Yerevan 0025, Armenia.
| | - Artem Grigoryan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University after M. Heratsi, Yerevan 0025, Armenia
| | - Viera Kutna
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Prague 10000, Czech Republic
| | - Reza Asadollahi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom.
| |
Collapse
|
2
|
Tabassum S, Shorter S, Ovsepian SV. Analysis of the action mechanisms and targets of herbal anticonvulsants highlights opportunities for therapeutic engagement with refractory epilepsy. J Mol Med (Berl) 2024; 102:761-771. [PMID: 38653825 PMCID: PMC11106186 DOI: 10.1007/s00109-024-02445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Epilepsy is a neurological disorder characterized by spontaneous and recurring seizures. It poses significant therapeutic challenges due to diverse etiology, pathobiology, and pharmacotherapy-resistant variants. The anticonvulsive effects of herbal leads with biocompatibility and toxicity considerations have attracted much interest, inspiring mechanistic analysis with the view of their use for engagement of new targets and combination with antiseizure pharmacotherapies. This article presents a comprehensive overview of the key molecular players and putative action mechanisms of the most common antiepileptic herbals demonstrated in tissue culture and preclinical models. From the review of the literature, it emerges that their effects are mediated via five distinct mechanisms: (1) reduction of membrane excitability through inhibition of cation channels, (2) improvement of mitochondrial functions with antioxidant effects, (3) enhancement in synaptic transmission mediated by GABAA receptors, (4) improvement of immune response with anti-inflammatory action, and (5) suppression of protein synthesis and metabolism. While some of the primary targets and action mechanisms of herbal anticonvulsants (1, 3) are shared with antiseizure pharmacotherapies, herbal leads also engage with distinct mechanisms (2, 4, and 5), suggesting new drug targets and opportunities for their integration with antiseizure medications. Addressing outstanding questions through research and in silico modeling should facilitate the future use of herbals as auxiliary therapy in epilepsy and guide the development of treatment of pharmacoresistant seizures through rigorous trials and regulatory approval.
Collapse
Affiliation(s)
- Sobia Tabassum
- Department of Biological Sciences, Faculty of Sciences, International Islamic University, Islamabad, Pakistan
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK.
- Faculty of Medicine, Tbilisi State University, Tbilisi, 0177, Republic of Georgia.
| |
Collapse
|
3
|
Pokorná M, Kútna V, Ovsepian SV, Matěj R, Černá M, O’Leary VB. Biomolecules to Biomarkers? U87MG Marker Evaluation on the Path towards Glioblastoma Multiforme Pathogenesis. Pharmaceutics 2024; 16:123. [PMID: 38258133 PMCID: PMC10818292 DOI: 10.3390/pharmaceutics16010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The heterogeneity of the glioma subtype glioblastoma multiforme (GBM) challenges effective neuropathological treatment. The reliance on in vitro studies and xenografted animal models to simulate human GBM has proven ineffective. Currently, a dearth of knowledge exists regarding the applicability of cell line biomolecules to the realm of GBM pathogenesis. Our study's objectives were to address this preclinical issue and assess prominin-1, ICAM-1, PARTICLE and GAS5 as potential GBM diagnostic targets. The methodologies included haemoxylin and eosin staining, immunofluorescence, in situ hybridization and quantitative PCR. The findings identified that morphology correlates with malignancy in GBM patient pathology. Immunofluorescence confocal microscopy revealed prominin-1 in pseudo-palisades adjacent to necrotic foci in both animal and human GBM. Evidence is presented for an ICAM-1 association with degenerating vasculature. Significantly elevated nuclear PARTICLE expression from in situ hybridization and quantitative PCR reflected its role as a tumor activator. GAS5 identified within necrotic GBM validated this potential prognostic biomolecule with extended survival. Here we present evidence for the stem cell marker prominin-1 and the chemotherapeutic target ICAM-1 in a glioma animal model and GBM pathology sections from patients that elicited alternative responses to adjuvant chemotherapy. This foremost study introduces the long non-coding RNA PARTICLE into the context of human GBM pathogenesis while substantiating the role of GAS5 as a tumor suppressor. The validation of GBM biomarkers from cellular models contributes to the advancement towards superior detection, therapeutic responders and the ultimate attainment of promising prognoses for this currently incurable brain cancer.
Collapse
Affiliation(s)
- Markéta Pokorná
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.P.); (M.Č.)
| | - Viera Kútna
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 25067 Klecany, Czech Republic;
| | - Saak V. Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent ME4 4TB, UK;
| | - Radoslav Matěj
- Department of Pathology, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic;
- Department of Pathology, University Hospital Královské Vinohrady, Šrobárova 50, Vinohrady, 10000 Prague, Czech Republic
| | - Marie Černá
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.P.); (M.Č.)
| | - Valerie Bríd O’Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.P.); (M.Č.)
| |
Collapse
|
4
|
Wang X, Zhao Z, Guo J, Mei D, Duan Y, Zhang Y, Gou L. GABA B1 receptor knockdown in prefrontal cortex induces behavioral aberrations associated with autism spectrum disorder in mice. Brain Res Bull 2023; 202:110755. [PMID: 37678443 DOI: 10.1016/j.brainresbull.2023.110755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Autism spectrum disorder (ASD) is a set of heterogeneous neurodevelopmental disorders, characterized by social interaction deficit, stereotyped or repetitive behaviors. Apart from these core symptoms, a great number of individuals with ASD exhibit higher levels of anxiety and memory deficits. Previous studies demonstrate pronounced decrease of γ-aminobutyric acid B1 receptor (GABAB1R) protein level of frontal lobe in both ASD patients and animal models. The aim of the present study was to determine the role of GABAB1R in ASD-related behavioral aberrations. Herein, the protein and mRNA levels of GABAB1R in the prefrontal cortex (PFC) of sodium valproic acid (VPA)-induced mouse ASD model were determined by Western blot and qRT-PCR analysis, respectively. Moreover, the behavioral abnormalities in naive mice with GABAB1R knockdown mediated by recombinant adeno-associated virus (rAAV) were assessed in a comprehensive test battery consisted of social interaction, marble burying, self-grooming, open-field, Y-maze and novel object recognition tests. Furthermore, the action potential changes induced by GABAB1R deficiency were examined in neurons within the PFC of mouse. The results show that the mRNA and protein levels of GABAB1R in the PFC of prenatal VPA-induced mouse ASD model were decreased. Concomitantly, naive mice with GABAB1R knockdown exhibited ASD-like behaviors, such as impaired social interaction and communication, elevated stereotypes, anxiety and memory deficits. Patch-clamp recordings also revealed that GABAB1R knockdown provoked enhanced neuronal excitability by increasing action potential discharge frequencies. Overall, these findings support a notion that GABAB1R deficiency might contribute to ASD-like phenotypes, with the pathogenesis most likely resulting from enhanced neuronal excitability. SUBHEADINGS: GABAB1 Knockdown Induces Behavioral Aberrations with ASD.
Collapse
Affiliation(s)
- Xiaona Wang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China.
| | - Zhengqin Zhao
- Department of Nuclear Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jisheng Guo
- School of Basic Medical Sciences, Yantai Campus of Binzhou Medical University, Yantai City, Shandong, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yongtao Duan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China
| | - Yaodong Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China.
| | - Lingshan Gou
- Peninsula Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China.
| |
Collapse
|