1
|
Rossi M, Hausmann AE, Alcami P, Moest M, Roussou R, Van Belleghem SM, Wright DS, Kuo CY, Lozano-Urrego D, Maulana A, Melo-Flórez L, Rueda-Muñoz G, McMahon S, Linares M, Osman C, McMillan WO, Pardo-Diaz C, Salazar C, Merrill RM. Adaptive introgression of a visual preference gene. Science 2024; 383:1368-1373. [PMID: 38513020 PMCID: PMC7616200 DOI: 10.1126/science.adj9201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024]
Abstract
Visual preferences are important drivers of mate choice and sexual selection, but little is known of how they evolve at the genetic level. In this study, we took advantage of the diversity of bright warning patterns displayed by Heliconius butterflies, which are also used during mate choice. Combining behavioral, population genomic, and expression analyses, we show that two Heliconius species have evolved the same preferences for red patterns by exchanging genetic material through hybridization. Neural expression of regucalcin1 correlates with visual preference across populations, and disruption of regucalcin1 with CRISPR-Cas9 impairs courtship toward conspecific females, providing a direct link between gene and behavior. Our results support a role for hybridization during behavioral evolution and show how visually guided behaviors contributing to adaptation and speciation are encoded within the genome.
Collapse
Affiliation(s)
- Matteo Rossi
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | | | - Pepe Alcami
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | - Markus Moest
- Department of Ecology and Research Department for Limnology, Mondsee; University of Innsbruck, Innsbruck, Austria
| | - Rodaria Roussou
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | | | | | - Chi-Yun Kuo
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Smithsonian Tropical Research Institute; Gamboa, Panama
| | - Daniela Lozano-Urrego
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Arif Maulana
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | - Lina Melo-Flórez
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Geraldine Rueda-Muñoz
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Saoirse McMahon
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | - Mauricio Linares
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Christof Osman
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | | | | | - Camilo Salazar
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Richard M. Merrill
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Smithsonian Tropical Research Institute; Gamboa, Panama
| |
Collapse
|
2
|
Hemingson CR, Cowman PF, Bellwood DR. Analysing biological colour patterns from digital images: An introduction to the current toolbox. Ecol Evol 2024; 14:e11045. [PMID: 38500859 PMCID: PMC10945235 DOI: 10.1002/ece3.11045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/20/2024] Open
Abstract
Understanding the numerous roles that colouration serves in the natural world has remained a central focus in many evolutionary and ecological studies. However, to accurately characterise and then compare colours or patterns among individuals or species has been historically challenging. In recent years, there have been a myriad of new resources developed that allow researchers to characterise biological colours and patterns, specifically from digital imagery. However, each resource has its own strengths and weaknesses, answers a specific question and requires a detailed understanding of how it functions to be used properly. These nuances can make navigating this emerging field rather difficult. Herein, we evaluate several new techniques for analysing biological colouration, with a specific focus on digital images. First, we introduce fundamental background knowledge about light and perception to be considered when designing and implementing a study of colouration. We then show how numerous modifications can be made to images to ensure consistent formatting prior to analysis. After, we describe many of the new image analysis approaches and their respective functions, highlighting the type of research questions that they can address. We demonstrate how these various techniques can be brought together to examine novel research questions and test specific hypotheses. Finally, we outline potential future directions in colour pattern studies. Our goal is to provide a starting point and pathway for researchers wanting to study biological colour patterns from digital imagery.
Collapse
Affiliation(s)
- Christopher R. Hemingson
- The Research Hub for Coral Reef Ecosystem FunctionsJames Cook UniversityTownsvilleQueenslandAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Peter F. Cowman
- Biodiversity and Geosciences Program, Queensland Museum TropicsTownsvilleQueenslandAustralia
| | - David R. Bellwood
- The Research Hub for Coral Reef Ecosystem FunctionsJames Cook UniversityTownsvilleQueenslandAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
3
|
Harmáčková L, Remeš V. The Evolution of Local Co-occurrence in Birds in Relation to Latitude, Degree of Sympatry, and Range Symmetry. Am Nat 2024; 203:432-443. [PMID: 38358810 DOI: 10.1086/728687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
AbstractRecent speciation rates and the degree of range-wide sympatry are usually higher farther from the equator. Is there also a higher degree of secondary syntopy (coexistence in local assemblages in sympatry) at higher latitudes and, subsequently, an increase in local species richness? We studied the evolution of syntopy in passerine birds using worldwide species distribution data. We chose recently diverged species pairs from subclades not older than 5 or 7 million years, range-wide degree of sympatry not lower than 5% or 25%, and three definitions of the breeding season. We related their syntopy to latitude, the degree of sympatry (breeding range overlap), range symmetry, and the age of split. Syntopy was positively related to latitude, but it did not differ between tropical and temperate regions, instead increasing from the Southern to the Northern Hemisphere. Syntopy was also higher in species pairs with a higher degree of sympatry and more symmetric ranges, but it did not predict local species richness. Following speciation, species in the Northern Hemisphere presumably achieve positive local co-occurrence faster than elsewhere, which could facilitate their higher speciation rates. However, this does not seem to be linked to local species richness, which is probably governed by other processes.
Collapse
|
4
|
Coulmance F, Akkaynak D, Le Poul Y, Höppner MP, McMillan WO, Puebla O. Phenotypic and genomic dissection of colour pattern variation in a reef fish radiation. Mol Ecol 2024; 33:e17047. [PMID: 37337919 DOI: 10.1111/mec.17047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Coral reefs rank among the most diverse species assemblages on Earth. A particularly striking aspect of coral reef communities is the variety of colour patterns displayed by reef fishes. Colour pattern is known to play a central role in the ecology and evolution of reef fishes through, for example, signalling or camouflage. Nevertheless, colour pattern is a complex trait in reef fishes-actually a collection of traits-that is difficult to analyse in a quantitative and standardized way. This is the challenge that we address in this study using the hamlets (Hypoplectrus spp., Serranidae) as a model system. Our approach involves a custom underwater camera system to take orientation- and size-standardized photographs in situ, colour correction, alignment of the fish images with a combination of landmarks and Bézier curves, and principal component analysis on the colour value of each pixel of each aligned fish. This approach identifies the major colour pattern elements that contribute to phenotypic variation in the group. Furthermore, we complement the image analysis with whole-genome sequencing to run a multivariate genome-wide association study for colour pattern variation. This second layer of analysis reveals sharp association peaks along the hamlet genome for each colour pattern element and allows to characterize the phenotypic effect of the single nucleotide polymorphisms that are most strongly associated with colour pattern variation at each association peak. Our results suggest that the diversity of colour patterns displayed by the hamlets is generated by a modular genomic and phenotypic architecture.
Collapse
Affiliation(s)
- Floriane Coulmance
- Leibniz Center for Tropical Marine Research, Bremen, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Oldenburg, Germany
- Smithsonian Tropical Research Institute (STRI), Panama, Republic of Panama
| | - Derya Akkaynak
- Hatter Department of Marine Technologies, University of Haifa, Haifa, Israel
- Interuniversity Institute of Marine Sciences, Eilat, Israel
| | - Yann Le Poul
- Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marc P Höppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - W Owen McMillan
- Smithsonian Tropical Research Institute (STRI), Panama, Republic of Panama
| | - Oscar Puebla
- Leibniz Center for Tropical Marine Research, Bremen, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Oldenburg, Germany
- Smithsonian Tropical Research Institute (STRI), Panama, Republic of Panama
| |
Collapse
|
5
|
Frédérich B. Diving into the diversity of colour patterns in reef fishes. Mol Ecol 2024; 33:e17281. [PMID: 38247292 DOI: 10.1111/mec.17281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Colours and associated patterns are probably some of the most obvious phenotypic traits in animals and reef teleost fishes are often cited as a textbook example for illustrating this type of diversity. Even if it is well established that colour patterns play a central role in the ecology and evolution of reef fishes, we still lack the necessary toolkits to fully grasp the mechanisms driving the diversification of this obvious phenotypic trait. On the one hand, genotyping power seems now limitless thanks to current DNA sequencing technologies. Today, entire genomes of fishes can be easily produced for large sets of species. On the other hand, the description of colour patterns and the quantification of their variation across reef fishes might be highly challenging. In a cover manuscript in this issue of Molecular Ecology, Coulmance et al. (2023) introduced an innovative approach for extracting and quantifying the major colour pattern elements present in the hamlets (Hypoplectrus spp., Serranidae), a recent reef fish radiation from the Caribbean. Then, they intelligently used the quantified colour pattern variation as a phenotypic trait for a genome-wide association study (GWAS). Interestingly, using a method that required no a priori knowledge, they were able to recover well-established marks (e.g., vertical bars) and to highlight less expected colour pattern elements (e.g., dark to light gradient on ventral part as well as caudal and anal fins), which show strong association peaks on linkage group (LG) 12 and 04. Beyond the demonstration of the potential of their new quantitative analysis of colour pattern variation in reef fishes combined with GWAS, their findings offer new perspectives on our understanding of the intrinsic and extrinsic factors generating this outstanding diversity of the fish world.
Collapse
Affiliation(s)
- Bruno Frédérich
- Laboratory of Evolutionary Ecology, FOCUS, University of Liège, Liège, Belgium
| |
Collapse
|
6
|
Glass JR, Harrington RC, Cowman PF, Faircloth BC, Near TJ. Widespread sympatry in a species-rich clade of marine fishes (Carangoidei). Proc Biol Sci 2023; 290:20230657. [PMID: 37909084 PMCID: PMC10618865 DOI: 10.1098/rspb.2023.0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023] Open
Abstract
A universal paradigm describing patterns of speciation across the tree of life has been debated for decades. In marine organisms, inferring patterns of speciation using contemporary and historical patterns of biogeography is challenging due to the deficiency of species-level phylogenies and information on species' distributions, as well as conflicting relationships between species' dispersal, range size and co-occurrence. Most research on global patterns of marine fish speciation and biogeography has focused on coral reef or pelagic species. Carangoidei is an ecologically important clade of marine fishes that use coral reef and pelagic environments. We used sequence capture of 1314 ultraconserved elements (UCEs) from 154 taxa to generate a time-calibrated phylogeny of Carangoidei and its parent clade, Carangiformes. Age-range correlation analyses of the geographical distributions and divergence times of sister species pairs reveal widespread sympatry, with 73% of sister species pairs exhibiting sympatric geographical distributions, regardless of node age. Most species pairs coexist across large portions of their ranges. We also observe greater disparity in body length and maximum depth between sympatric relative to allopatric sister species. These and other ecological or behavioural attributes probably facilitate sympatry among the most closely related carangoids.
Collapse
Affiliation(s)
- Jessica R. Glass
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
- South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Richard C. Harrington
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Peter F. Cowman
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, Queensland 4810, Australia
| | - Brant C. Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Yale Peabody Museum of Natural History, Division of Vertebrate Zoology. New Haven, CT 06520, USA
| |
Collapse
|
7
|
Griffing AH, Keating SE, Pinto BJ, Nielsen SV, Gamble T. Clarifying a male color morph of Sphaerodactylus macrolepis Gnther, 1859 and resolving the taxonomic confusion on Saint Croix. Zootaxa 2023; 5343:273-280. [PMID: 38221376 DOI: 10.11646/zootaxa.5343.3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Indexed: 01/16/2024]
Abstract
Many species of sphaerodactyl gecko exhibit sexual dichromatism. In particular, dichromatism plays an important role in intersexual signaling for Sphaerodactylus. Furthermore, some species exhibit polymorphism in male color and pattern. Here, we describe a regional male color morph of Sphaerodactylus macrolepis from St. Croix. After generating both mitochondrial and nuclear phylogenies, we found that individuals with the St. Croix-specific yellow/orange head morph are part of the S. macrolepis clade. This distinct color morph likely contributed to the turbulent taxonomic history of the S. macrolepis species group. Given the documented diversity of the color patterns in this group and that sexual signals evolve rapidly, we suggest S. macrolepis is an excellent group to study the ecological and evolutionary consequences of dichromatism and polymorphism.
Collapse
Affiliation(s)
- Aaron H Griffing
- Department of Chemical & Biological Engineering; Princeton University; William Street; Princeton; New Jersey 08544; USA; Department of Molecular Biology; Princeton University; Washington Road; Princeton; New Jersey 08544; USA; Milwaukee Public Museum; 800 W. Wells Street; Milwaukee; Wisconsin 53233; USA.
| | - Shannon E Keating
- Molecular and Genomic Pathology Lab; University of Pittsburgh Medical Center; 200 Lothrop Street; Pittsburgh; Pennsylvania; USA.
| | - Brendan J Pinto
- Milwaukee Public Museum; 800 W. Wells Street; Milwaukee; Wisconsin 53233; USA; School of Life Sciences; Arizona State University; 427 E. Tyler Mall; Tempe; Arizona 85281; USA; Center for Evolution and Medicine; Arizona State University; 401 E. Tyler Mall; Tempe; Arizona 85287; USA.
| | - Stuart V Nielsen
- Department of Biological Sciences; Louisiana State University Shreveport; 1 University Place; Shreveport; Louisiana 71115; USA; Department of Biological Sciences; Marquette University; P.O. Box 1881; Milwaukee; Wisconsin 53233; USA.
| | - Tony Gamble
- Milwaukee Public Museum; 800 W. Wells Street; Milwaukee; Wisconsin 53233; USA.
| |
Collapse
|
8
|
Hodge JR, Price SA. Biotic Interactions and the Future of Fishes on Coral Reefs: The Importance of Trait-Based Approaches. Integr Comp Biol 2022; 62:1734-1747. [PMID: 36138511 DOI: 10.1093/icb/icac147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 01/05/2023] Open
Abstract
Biotic interactions govern the structure and function of coral reef ecosystems. As environmental conditions change, reef-associated fish populations can persist by tracking their preferred niche or adapting to new conditions. Biotic interactions will affect how these responses proceed and whether they are successful. Yet, our understanding of these effects is currently limited. Ecological and evolutionary theories make explicit predictions about the effects of biotic interactions, but many remain untested. Here, we argue that large-scale functional trait datasets enable us to investigate how biotic interactions have shaped the assembly of contemporary reef fish communities and the evolution of species within them, thus improving our ability to predict future changes. Importantly, the effects of biotic interactions on these processes have occurred simultaneously within dynamic environments. Functional traits provide a means to integrate the effects of both ecological and evolutionary processes, as well as a way to overcome some of the challenges of studying biotic interactions. Moreover, functional trait data can enhance predictive modeling of future reef fish distributions and evolvability. We hope that our vision for an integrative approach, focused on quantifying functionally relevant traits and how they mediate biotic interactions in different environmental contexts, will catalyze new research on the future of reef fishes in a changing environment.
Collapse
Affiliation(s)
- Jennifer R Hodge
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Samantha A Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
9
|
The rise of biting during the Cenozoic fueled reef fish body shape diversification. Proc Natl Acad Sci U S A 2022; 119:e2119828119. [PMID: 35881791 PMCID: PMC9351382 DOI: 10.1073/pnas.2119828119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We demonstrate that the stunning trophic diversity of modern reef fishes is a relatively recent state driven by a dramatic transformation in representation of major feeding modes. Since the Early Cenozoic, when over 95% of teleost lineages were suction feeders, there has been a steady increase in direct biting feeding modes. A variety of novelties and jaw modifications permitted reef fishes to feed on substrate-bound prey using direct biting and grazing behaviors and opened this rich adaptive zone, which we show elevated rates of body shape evolution. Taken together, our results indicate that recent diversification of the feeding mechanism played a major role in ecologically and phenotypically shaping the modern fauna of reef fishes. Diversity of feeding mechanisms is a hallmark of reef fishes, but the history of this variation is not fully understood. Here, we explore the emergence and proliferation of a biting mode of feeding, which enables fishes to feed on attached benthic prey. We find that feeding modes other than suction, including biting, ram biting, and an intermediate group that uses both biting and suction, were nearly absent among the lineages of teleost fishes inhabiting reefs prior to the end-Cretaceous mass extinction, but benthic biting has rapidly increased in frequency since then, accounting for about 40% of reef species today. Further, we measured the impact of feeding mode on body shape diversification in reef fishes. We fit a model of multivariate character evolution to a dataset comprising three-dimensional body shape of 1,530 species of teleost reef fishes across 111 families. Dedicated biters have accumulated over half of the body shape variation that suction feeders have in just 18% of the evolutionary time by evolving body shape ∼1.7 times faster than suction feeders. As a possible response to the ecological and functional diversity of attached prey, biters have dynamically evolved both into shapes that resemble suction feeders as well as novel body forms characterized by lateral compression and small jaws. The ascendance of species that use biting mechanisms to feed on attached prey reshaped modern reef fish assemblages and has been a major contributor to their ecological and phenotypic diversification.
Collapse
|
10
|
Kenyon HL, Martin PR. Experimental test of selection against hybridization as a driver of avian signal divergence. J Evol Biol 2022; 35:1087-1098. [PMID: 35830488 DOI: 10.1111/jeb.14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022]
Abstract
Signal divergence may be pivotal in the generation and maintenance of new biodiversity by allowing closely related species to avoid some costs of co-occurrence. In birds, closely related, sympatric species are more divergent in their colour patterns than those that live apart, but the selective pressures driving this pattern remain unclear. Traditionally, signal divergence among sympatric species is thought to result from selection against hybridization, but broad evidence is lacking. Here, we conducted field experiments on naïve birds using spectrometer-matched, painted 3D-printed models to test whether selection against hybridization drives colour pattern divergence in the genus Poecile. To address selection for male colour pattern divergence without the influence of learning or the evolution of female discrimination in sympatry, we simulated secondary contact between Poecile species, and conducted mate choice experiments on naïve, allopatric females. We found that female black-capped chickadees (Poecile atricapillus) are equally likely to perform copulation solicitation displays to sympatric and allopatric heterospecific congeners when they are paired with conspecifics, but exhibit a strong preference for less divergent males when presented with paired heterospecific congeners. These results suggest that increased colour pattern divergence among sympatric species can reduce the likelihood of mixed mating in some contexts, and therefore should be favoured by selection against hybridization.
Collapse
Affiliation(s)
- Haley L Kenyon
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Paul R Martin
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
11
|
Muruga P, Bellwood DR, Mihalitsis M. Forensic odontology: Assessing bite wounds to determine the role of teeth in piscivorous fishes. Integr Org Biol 2022; 4:obac011. [PMID: 35505796 PMCID: PMC9053946 DOI: 10.1093/iob/obac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Teeth facilitate the acquisition and processing of food in most vertebrates. However, relatively little is known about the functions of the diverse tooth morphologies observed in fishes. Piscivorous fishes (fish-eating fish) are crucial in shaping community structure and rely on their oral teeth to capture and/or process prey. However, how teeth are utilized in capturing and/or processing prey remains unclear. Most studies have determined the function of teeth by assessing morphological traits. The behavior during feeding, however, is seldom quantified. Here, we describe the function of teeth within piscivorous fishes by considering how morphological and behavioral traits interact during prey capture and processing. This was achieved through aquarium-based performance experiments, where prey fish were fed to 12 species of piscivorous fishes. Building on techniques in forensic odontology, we incorporate a novel approach to quantify and categorize bite damage on prey fish that were extracted from the piscivore’s stomachs immediately after being ingested. We then assess the significance of morphological and behavioral traits in determining the extent and severity of damage inflicted on prey fish. Results show that engulfing piscivores capture their prey whole and head-first. Grabbing piscivores capture prey tail-first using their teeth, process them using multiple headshakes and bites, before spitting them out, and then re-capturing prey head-first for ingestion. Prey from engulfers sustained minimal damage, whereas prey from grabbers sustained significant damage to the epaxial musculature. Within grabbers, headshakes were significantly associated with more severe damage categories. Headshaking behavior damages the locomotive muscles of prey, presumably to prevent escape. Compared to non-pharyngognaths, pharyngognath piscivores inflict significantly greater damage to prey. Overall, when present, oral jaw teeth appear to be crucial for both prey capture and processing (immobilization) in piscivorous fishes.
Collapse
Affiliation(s)
- Pooventhran Muruga
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, QLD 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, QLD 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Michalis Mihalitsis
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, QLD 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
12
|
Valvo JJ, Aponte JD, Daniel MJ, Dwinell K, Rodd H, Houle D, Hughes KA. Using Delaunay triangulation to sample whole-specimen color from digital images. Ecol Evol 2021; 11:12468-12484. [PMID: 34594513 PMCID: PMC8462138 DOI: 10.1002/ece3.7992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022] Open
Abstract
Color variation is one of the most obvious examples of variation in nature, but biologically meaningful quantification and interpretation of variation in color and complex patterns are challenging. Many current methods for assessing variation in color patterns classify color patterns using categorical measures and provide aggregate measures that ignore spatial pattern, or both, losing potentially important aspects of color pattern.Here, we present Colormesh, a novel method for analyzing complex color patterns that offers unique capabilities. Our approach is based on unsupervised color quantification combined with geometric morphometrics to identify regions of putative spatial homology across samples, from histology sections to whole organisms. Colormesh quantifies color at individual sampling points across the whole sample.We demonstrate the utility of Colormesh using digital images of Trinidadian guppies (Poecilia reticulata), for which the evolution of color has been frequently studied. Guppies have repeatedly evolved in response to ecological differences between up- and downstream locations in Trinidadian rivers, resulting in extensive parallel evolution of many phenotypes. Previous studies have, for example, compared the area and quantity of discrete color (e.g., area of orange, number of black spots) between these up- and downstream locations neglecting spatial placement of these areas. Using the Colormesh pipeline, we show that patterns of whole-animal color variation do not match expectations suggested by previous work.Colormesh can be deployed to address a much wider range of questions about color pattern variation than previous approaches. Colormesh is thus especially suited for analyses that seek to identify the biologically important aspects of color pattern when there are multiple competing hypotheses or even no a priori hypotheses at all.
Collapse
Affiliation(s)
- Jennifer J. Valvo
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Jose David Aponte
- Department of Cell Biology and AnatomyUniversity of CalgaryCalgaryABCanada
| | - Mitch J. Daniel
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Kenna Dwinell
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Helen Rodd
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - David Houle
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Kimberly A. Hughes
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
13
|
Kenyon HL, Martin PR. Experimental tests of selection against heterospecific aggression as a driver of avian colour pattern divergence. J Evol Biol 2021; 34:1110-1124. [PMID: 33949033 DOI: 10.1111/jeb.13798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
Signal divergence is thought to reduce the costs of co-occurrence for closely related species and may thereby be important in the generation and maintenance of new biodiversity. In birds, closely related, sympatric species are more divergent in their colour patterns than those that live apart, but the selective pressures driving sympatric divergence in colour pattern are not well-understood. Here, we conducted field experiments on naïve birds using spectrometer-matched, painted, 3D-printed models to test whether selection against heterospecific aggression might drive colour pattern divergence in the genus Poecile. We found that territorial male black-capped chickadees (P. atricapillus) are equally likely to attack sympatric and allopatric congeners, and wintering flocks are equally likely to visit feeders occupied by sympatric and allopatric congeners, despite sympatric congeners being more divergent in colour pattern. These results suggest that either the concerted evolution of additional traits (e.g. discrimination), or interactions in sympatry that promote learning, is required if colour pattern divergence among sympatric species is to reduce heterospecific aggression. Alternatively, colour pattern divergence among sympatric species may be caused by other selective pressures, such as selection against hybridization or habitat partitioning and secondary signal adaptation.
Collapse
Affiliation(s)
- Haley L Kenyon
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Paul R Martin
- Department of Biology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
14
|
Miller EC, Mesnick SL, Wiens JJ. Sexual Dichromatism Is Decoupled from Diversification over Deep Time in Fishes. Am Nat 2021; 198:232-252. [PMID: 34260865 DOI: 10.1086/715114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSexually selected traits have long been thought to drive diversification, but support for this hypothesis has been persistently controversial. In fishes, sexually dimorphic coloration is associated with assortative mating and speciation among closely related species, as shown in classic studies. However, it is unclear whether these results can generalize to explain diversity patterns across ray-finned fishes, which contain the majority of vertebrate species and 96% of fishes. Here, we use phylogenetic approaches to test for an association between sexual dichromatism and diversification rates (speciation minus extinction) in ray-finned fishes. We assembled dichromatism data for 10,898 species, a data set of unprecedented size. We found no difference in diversification rates between monochromatic and dichromatic species when including all ray-finned fishes. However, at lower phylogenetic scales (within orders and families), some intermediate-sized clades did show an effect of dichromatism on diversification. Surprisingly, dichromatism could significantly increase or decrease diversification rates. Moreover, we found no effect in many of the clades initially used to link dichromatism to speciation in fishes (e.g., cichlids) or an effect only at shallow scales (within subclades). Overall, we show how the effects of dichromatism on diversification are highly variable in direction and restricted to certain clades and phylogenetic scales.
Collapse
|
15
|
Hemingson CR, Siqueira AC, Cowman PF, Bellwood DR. Drivers of eyespot evolution in coral reef fishes. Evolution 2021; 75:903-914. [PMID: 33600608 DOI: 10.1111/evo.14197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 11/29/2022]
Abstract
Evolution via natural selection has continually shaped the coloration of numerous organisms. One coloration of particular importance is the eyespot: a phylogenetically widespread, conspicuous marking that has been shown to effectively reduce predation, often through its resemblance to the eye. Although widely studied, most research has been experimental in nature. We approach eyespots using a comparative phylogenetic framework that is global in scope. Herein, we identify the potential drivers of eyespot evolution in coral reef fishes; essentially the rules that govern their appearance in this group of organisms. We surveyed 2664 reef fish species (42% of all described reef fish species) and found that eyespots are present in approximately one in every 10 species. Most eyespots occur in closely related species and have been present in some families for over 50 million years. Focusing on damselfishes (family: Pomacentridae) as a study group, we reveal that eyespots are rare in planktivorous species, which is likely driven by the predation risk associated with their feeding location. Using a heatmapping technique, we also show that the location of eyespots is fundamentally different in active fishes that swim above the benthos vs. cryptobenthic fishes that rest on the benthos. These location differences may reflect different functions of eyespots among reef fish species.
Collapse
Affiliation(s)
- Christopher R Hemingson
- College of Science and Engineering, James Cook University, Townsville, Australia.,Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Alexandre C Siqueira
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Peter F Cowman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - David R Bellwood
- College of Science and Engineering, James Cook University, Townsville, Australia.,Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| |
Collapse
|
16
|
Bainbridge HE, Brien MN, Morochz C, Salazar PA, Rastas P, Nadeau NJ. Limited genetic parallels underlie convergent evolution of quantitative pattern variation in mimetic butterflies. J Evol Biol 2020; 33:1516-1529. [DOI: 10.1111/jeb.13704] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/05/2020] [Accepted: 09/04/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Hannah E. Bainbridge
- Department of Animal and Plant Sciences The University of Sheffield Sheffield UK
| | - Melanie N. Brien
- Department of Animal and Plant Sciences The University of Sheffield Sheffield UK
| | - Carlos Morochz
- Biology & Research Department Mashpi Lodge Mashpi Ecuador
| | - Patricio A. Salazar
- Department of Animal and Plant Sciences The University of Sheffield Sheffield UK
| | - Pasi Rastas
- Institute of Biotechnology University of Helsinki Helsinki Finland
| | - Nicola J. Nadeau
- Department of Animal and Plant Sciences The University of Sheffield Sheffield UK
| |
Collapse
|
17
|
Hemingson CR, Cowman PF, Bellwood DR. Body size determines eyespot size and presence in coral reef fishes. Ecol Evol 2020; 10:8144-8152. [PMID: 32788967 PMCID: PMC7417216 DOI: 10.1002/ece3.6509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 11/12/2022] Open
Abstract
Numerous organisms display conspicuous eyespots. These eye-like patterns have been shown to effectively reduce predation by either deflecting strikes away from nonvital organs or by intimidating potential predators. While investigated extensively in terrestrial systems, determining what factors shape eyespot form in colorful coral reef fishes remains less well known. Using a broadscale approach we ask: How does the size of the eyespot relate to the actual eye, and at what size during ontogeny are eyespots acquired or lost? We utilized publicly available images to generate a dataset of 167 eyespot-bearing reef fish species. We measured multiple features relating to the size of the fish, its eye, and the size of its eyespot. In reef fishes, the area of the eyespot closely matches that of the real eye; however, the eyespots "pupil" is nearly four times larger than the real pupil. Eyespots appear at about 20 mm standard length. However, there is a marked decrease in the presence of eyespots in fishes above 48 mm standard length; a size which is tightly correlated with significant decreases in documented mortality rates. Above 75-85 mm, the cost of eyespots appears to outweigh their benefit. Our results identify a "size window" for eyespots in coral reef fishes, which suggests that eyespot use is strictly body size-dependent within this group.
Collapse
Affiliation(s)
- Christopher R. Hemingson
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
- Research Hub for Coral Reef Ecosystem FunctionJames Cook UniversityTownsvilleQldAustralia
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQldAustralia
| | - Peter F. Cowman
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQldAustralia
| | - David R. Bellwood
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
- Research Hub for Coral Reef Ecosystem FunctionJames Cook UniversityTownsvilleQldAustralia
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQldAustralia
| |
Collapse
|
18
|
Merwin JT, Seeholzer GF, Smith BT. Macroevolutionary bursts and constraints generate a rainbow in a clade of tropical birds. BMC Evol Biol 2020; 20:32. [PMID: 32093609 PMCID: PMC7041239 DOI: 10.1186/s12862-020-1577-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bird plumage exhibits a diversity of colors that serve functional roles ranging from signaling to camouflage and thermoregulation. However, birds must maintain a balance between evolving colorful signals to attract mates, minimizing conspicuousness to predators, and optimizing adaptation to climate conditions. Examining plumage color macroevolution provides a framework for understanding this dynamic interplay over phylogenetic scales. Plumage evolution due to a single overarching process, such as selection, may generate the same macroevolutionary pattern of color variation across all body regions. In contrast, independent processes may partition plumage and produce region-specific patterns. To test these alternative scenarios, we collected color data from museum specimens of an ornate clade of birds, the Australasian lorikeets, using visible-light and UV-light photography, and comparative methods. We predicted that the diversification of homologous feather regions, i.e., patches, known to be involved in sexual signaling (e.g., face) would be less constrained than patches on the back and wings, where new color states may come at the cost of crypsis. Because environmental adaptation may drive evolution towards or away from color states, we tested whether climate more strongly covaried with plumage regions under greater or weaker macroevolutionary constraint. RESULTS We found that alternative macroevolutionary models and varying rates best describe color evolution, a pattern consistent with our prediction that different plumage regions evolved in response to independent processes. Modeling plumage regions independently, in functional groups, and all together showed that patches with similar macroevolutionary models clustered together into distinct regions (e.g., head, wing, belly), which suggests that plumage does not evolve as a single trait in this group. Wing patches, which were conserved on a macroevolutionary scale, covaried with climate more strongly than plumage regions (e.g., head), which diversified in a burst. CONCLUSIONS Overall, our results support the hypothesis that the extraordinary color diversity in the lorikeets was generated by a mosaic of evolutionary processes acting on plumage region subsets. Partitioning of plumage regions in different parts of the body provides a mechanism that allows birds to evolve bright colors for signaling and remain hidden from predators or adapt to local climatic conditions.
Collapse
Affiliation(s)
- Jon T Merwin
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, 10027, USA.
| | - Glenn F Seeholzer
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| |
Collapse
|
19
|
Liang Y, Gerwin J, Meyer A, Kratochwil CF. Developmental and Cellular Basis of Vertical Bar Color Patterns in the East African Cichlid Fish Haplochromis latifasciatus. Front Cell Dev Biol 2020; 8:62. [PMID: 32117987 PMCID: PMC7026194 DOI: 10.3389/fcell.2020.00062] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
The East African adaptive radiations of cichlid fishes are renowned for their diversity in coloration. Yet, the developmental basis of pigment pattern formation remains largely unknown. One of the most common melanic patterns in cichlid fishes are vertical bar patterns. Here we describe the ontogeny of this conspicuous pattern in the Lake Kyoga species Haplochromis latifasciatus. Beginning with the larval stages we tracked the formation of this stereotypic color pattern and discovered that its macroscopic appearance is largely explained by an increase in melanophore density and accumulation of melanin during the first 3 weeks post-fertilization. The embryonal analysis is complemented with cytological quantifications of pigment cells in adult scales and the dermis beneath the scales. In adults, melanic bars are characterized by a two to threefold higher density of melanophores than in the intervening yellow interbars. We found no strong support for differences in other pigment cell types such as xanthophores. Quantitative PCRs for twelve known pigmentation genes showed that expression of melanin synthesis genes tyr and tyrp1a is increased five to sixfold in melanic bars, while xanthophore and iridophore marker genes are not differentially expressed. In summary, we provide novel insights on how vertical bars, one of the most widespread vertebrate color patterns, are formed through dynamic control of melanophore density, melanin synthesis and melanosome dispersal.
Collapse
Affiliation(s)
- Yipeng Liang
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jan Gerwin
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claudius F Kratochwil
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
20
|
Alfaro ME, Karan EA, Schwartz ST, Shultz AJ. The Evolution of Color Pattern in Butterflyfishes (Chaetodontidae). Integr Comp Biol 2019; 59:604-615. [DOI: 10.1093/icb/icz119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Coral reef fishes constitute one of the most diverse assemblages of vertebrates on the planet. Color patterns are known to serve a number of functions including intra- and inter-specific signaling, camouflage, mimicry, and defense. However, the relative importance of these and other factors in shaping color pattern evolution is poorly understood. Here we conduct a comparative phylogenetic analysis of color pattern evolution in the butterflyfishes (Chaetodontidae). Using recently developed tools for quantifying color pattern geometry as well as machine learning approaches, we investigate the tempo of evolution of color pattern elements and test whether ecological variables relating to defense, depth, and social behavior predict color pattern evolution. Butterflyfishes exhibit high diversity in measures of chromatic conspicuousness and the degrees of fine versus gross scale color patterning. Surprisingly, most diversity in color pattern was not predicted by any of the measures of ecology in our study, although we did find a significant but weak relationship between the level of fine scale patterning and some aspects of defensive morphology. We find that the tempo of color pattern diversification in butterflyfishes has increased toward the present and suggest that rapid evolution, presumably in response to evolutionary pressures surrounding speciation and lineage divergence, has effectively decoupled color pattern geometry from some aspects of ecology. Machine learning classification of color pattern appears to rely on a set of features that are weakly correlated with current color pattern geometry descriptors, but that may be better suited for the detection of discrete components of color pattern. A key challenge for future studies lies in determining whether rapid evolution has generally decoupled color patterns from ecology, or whether convergence in function produces convergence in color pattern at phylogenetic scales.
Collapse
Affiliation(s)
- Michael E Alfaro
- Department of Ecology and Evolutionary Biology, Terasaki 2149, University of California, Los Angeles, CA 90095, USA
| | - Elizabeth A Karan
- Department of Ecology and Evolutionary Biology, Terasaki 2149, University of California, Los Angeles, CA 90095, USA
| | - Shawn T Schwartz
- Department of Ecology and Evolutionary Biology, Terasaki 2149, University of California, Los Angeles, CA 90095, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| |
Collapse
|
21
|
Prognathodes geminus, a new species of butterflyfish (Teleostei, Chaetodontidae) from Palau. Zookeys 2019; 835:125-137. [PMID: 31043851 PMCID: PMC6477842 DOI: 10.3897/zookeys.835.32562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/05/2019] [Indexed: 11/23/2022] Open
Abstract
A new species of the butterflyfish genus Prognathodes (Chaetodontidae) is described from two specimens collected at a depth of 116 m off Ngemelis Island, Palau. Prognathodesgeminussp. n. is similar to P.basabei Pyle & Kosaki, 2016 from the Hawaiian archipelago, and P.guezei (Maugé & Bauchot, 1976) from the western Indian Ocean, but differs from these species in the number of soft dorsal-fin rays, size of head, body width, and body depth. There are also subtle differences in life color, and substantial differences in the mtDNA cytochrome oxidase I sequence (d ≈ 0.08). Although genetic comparisons with P.guezei are unavailable, it is expected that the genetic divergence between P.guezei and P.geminus will be even greater than that between P.geminus and P.basabei. It is named for the strikingly similar color pattern it shares with P.basabei.
Collapse
|
22
|
Weller HI, Westneat MW. Quantitative color profiling of digital images with earth mover's distance using the R package colordistance. PeerJ 2019; 7:e6398. [PMID: 30775177 PMCID: PMC6371918 DOI: 10.7717/peerj.6398] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022] Open
Abstract
Biological color may be adaptive or incidental, seasonal or permanent, species- or population-specific, or modified for breeding, defense or camouflage. Although color is a hugely informative aspect of biology, quantitative color comparisons are notoriously difficult. Color comparison is limited by categorization methods, with available tools requiring either subjective classifications, or expensive equipment, software, and expertise. We present an R package for processing images of organisms (or other objects) in order to quantify color profiles, gather color trait data, and compare color palettes on the basis of color similarity and amount. The package treats image pixels as 3D coordinates in a "color space," producing a multidimensional color histogram for each image. Pairwise distances between histograms are computed using earth mover's distance, a technique borrowed from computer vision, that compares histograms using transportation costs. Users choose a color space, parameters for generating color histograms, and a pairwise comparison method to produce a color distance matrix for a set of images. The package is intended as a more rigorous alternative to subjective, manual digital image analyses, not as a replacement for more advanced techniques that rely on detailed spectrophotometry methods unavailable to many users. Here, we outline the basic functions of colordistance, provide guidelines for the available color spaces and quantification methods, and compare this toolkit with other available methods. The tools presented for quantitative color analysis may be applied to a broad range of questions in biology and other disciplines.
Collapse
Affiliation(s)
- Hannah I. Weller
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Mark W. Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|