1
|
Boughman JW, Brand JA, Brooks RC, Bonduriansky R, Wong BBM. Sexual selection and speciation in the Anthropocene. Trends Ecol Evol 2024; 39:654-665. [PMID: 38503640 DOI: 10.1016/j.tree.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Anthropogenic change threatens global biodiversity by causing severe ecological disturbance and extinction. Here, we consider the effects of anthropogenic change on one process that generates biodiversity. Sexual selection (a potent evolutionary force and driver of speciation) is highly sensitive to the environment and, thus, vulnerable to anthropogenic ecological change. Anthropogenic alterations to sexual display and mate preference can make it harder to distinguish between conspecific and heterospecific mates or can weaken divergence via sexual selection, leading to higher rates of hybridization and biodiversity loss. Occasionally, anthropogenically altered sexual selection can abet diversification, but this appears less likely than biodiversity loss. In our rapidly changing world, a full understanding of sexual selection and speciation requires a global change perspective.
Collapse
Affiliation(s)
- Janette W Boughman
- Department of Integrative Biology & Evolution, Ecology and Behavior Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Västerbotten, SE-907 36, Sweden
| | - Robert C Brooks
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
2
|
Ziegelbecker A, Sefc KM. Family resemblance in color-patch size is not affected by stress experience in a cichlid fish. Ecol Evol 2024; 14:e70009. [PMID: 39035042 PMCID: PMC11260441 DOI: 10.1002/ece3.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
Animal body coloration is often linked to social dominance and mating success. This is because it can carry information on an animal's body condition and competitive ability by reflecting the genetic quality of individuals or by responding to their current or past living conditions. The present study investigates genetic and environmental effects on a conspicuous color pattern of the cichlid fish Tropheus sp. black "Ikola," in which the size of a carotenoid-based yellow area on the body co-varies with social dominance. To examine environmental plasticity of the color pattern, we tested for effects of early-life stress, induced by reduced feeding of juveniles prior to color pattern formation, as well as effects of a stress treatment administered to fully colored adult fish. None of the stress treatments affected the color pattern as quantified by the width of the yellow bar. However, offspring bar width was correlated to parental values in mid-parent-mid-offspring regression analyses, and animal models estimated significant additive genetic effects on bar width, indicating heritability of the trait. Depending on the random effects structure of the animal models (i.e., whether including or excluding maternal and brood effects), narrow-sense heritability estimates for bar width ranged between 0.2 and 0.8, with the strongest statistical support for the highest estimate. In each of the alternative models, a large proportion of the total variance in bar width was explained by the included random effects, suggesting that bar width is strongly determined by genetic factors or shared maternal and brood environments, with limited scope for environmental influences later in life.
Collapse
|
3
|
Morbiato E, Cattelan S, Pilastro A, Grapputo A. Sperm production is negatively associated with muscle and sperm telomere length in a species subjected to strong sperm competition. Mol Ecol 2023; 32:5812-5822. [PMID: 37792396 DOI: 10.1111/mec.17158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
Life-history theory suggests that ageing is one of the costs of reproduction. Accordingly, a higher reproductive allocation is expected to increase the deterioration of both the somatic and the germinal lines through enhanced telomere attrition. In most species, males' reproductive allocation mainly regards traits that increase mating and fertilization success, that is sexually selected traits. In this study, we tested the hypothesis that a higher investment in sexually selected traits is associated with a reduced relative telomere length (RTL) in the guppy (Poecilia reticulata), an ectotherm species characterized by strong pre- and postcopulatory sexual selection. We first measured telomere length in both the soma and the sperm over guppies' lifespan to see whether there was any variation in telomere length associated with age. Second, we investigated whether a greater investment in pre- and postcopulatory sexually selected traits is linked to shorter telomere length in both the somatic and the sperm germinal lines, and in young and old males. We found that telomeres lengthened with age in the somatic tissue, but there was no age-dependent variation in telomere length in the sperm cells. Telomere length in guppies was significantly and negatively correlated with sperm production in both tissues and life stages considered in this study. Our findings indicate that telomere length in male guppies is strongly associated with their reproductive investment (sperm production), suggesting that a trade-off between reproduction and maintenance is occurring at each stage of males' life in this species.
Collapse
Affiliation(s)
- Elisa Morbiato
- Department of Biology, University of Padova, Padova, Italy
| | - Silvia Cattelan
- Department of Biology, University of Padova, Padova, Italy
- Fritz Lipmann Institute - Leibniz Institute on Aging, Jena, Germany
| | - Andrea Pilastro
- Department of Biology, University of Padova, Padova, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Alessandro Grapputo
- Department of Biology, University of Padova, Padova, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
4
|
Mahdjoub H, Khelifa R, Roy J, Sbilordo SH, Zeender V, Perdigón Ferreira J, Gourgoulianni N, Lüpold S. Interplay between male quality and male-female compatibility across episodes of sexual selection. SCIENCE ADVANCES 2023; 9:eadf5559. [PMID: 37774022 PMCID: PMC10541500 DOI: 10.1126/sciadv.adf5559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
The processes underlying mate choice profoundly influence the dynamics of sexual selection and the evolution of male sexual traits. Consistent preference for certain phenotypes may erode genetic variation in populations through directional selection, whereas divergent preferences (e.g., genetically compatible mates) provide one mechanism to maintain such variation. However, the relative contributions of these processes across episodes of selection remain unknown. Using Drosophila melanogaster, we followed the fate of male genotypes, previously scored for their overall reproductive value and their compatibility with different female genotypes, across pre- and postmating episodes of selection. When pairs of competitor males differed in their intrinsic quality and their compatibility with the female, both factors influenced outcomes from mating success to paternity but to a varying degree between stages. These results add further dimensions to our understanding of how the interactions between genotypes and forms of selection shape reproductive outcomes and ultimately reproductive trait evolution.
Collapse
Affiliation(s)
- Hayat Mahdjoub
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Biology Department, Concordia University, 7141 Sherbrooke St. W., Montreal QC H4B 1R6, Canada
| | - Rassim Khelifa
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Biology Department, Concordia University, 7141 Sherbrooke St. W., Montreal QC H4B 1R6, Canada
| | - Jeannine Roy
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sonja H. Sbilordo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Valérian Zeender
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jhoniel Perdigón Ferreira
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Natalia Gourgoulianni
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Carleial R, Pizzari T, Richardson DS, McDonald GC. Disentangling the causes of temporal variation in the opportunity for sexual selection. Nat Commun 2023; 14:1006. [PMID: 36813810 PMCID: PMC9947164 DOI: 10.1038/s41467-023-36536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
In principle, temporal fluctuations in the potential for sexual selection can be estimated as changes in intrasexual variance in reproductive success (i.e. the opportunity for selection). However, we know little about how opportunity measures vary over time, and the extent to which such dynamics are affected by stochasticity. We use published mating data from multiple species to investigate temporal variation in the opportunity for sexual selection. First, we show that the opportunity for precopulatory sexual selection typically declines over successive days in both sexes and shorter sampling periods lead to substantial overestimates. Second, by utilising randomised null models, we also find that these dynamics are largely explained by an accumulation of random matings, but that intrasexual competition may slow temporal declines. Third, using data from a red junglefowl (Gallus gallus) population, we show that declines in precopulatory measures over a breeding period were mirrored by declines in the opportunity for both postcopulatory and total sexual selection. Collectively, we show that variance-based metrics of selection change rapidly, are highly sensitive to sampling durations, and likely lead to substantial misinterpretation if used as indicators of sexual selection. However, simulations can begin to disentangle stochastic variation from biological mechanisms.
Collapse
Affiliation(s)
- Rômulo Carleial
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, OX1 3SZ, UK.
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK.
| | - Tommaso Pizzari
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, OX1 3SZ, UK
| | | | - Grant C McDonald
- Department of Ecology, University of Veterinary Medicine Budapest, Budapest, 1077, Hungary.
| |
Collapse
|
6
|
Perdigón Ferreira J, Rohner PT, Lüpold S. Strongly sexually dimorphic forelegs are not more condition-dependent than less dimorphic traits in Drosophila prolongata. Evol Ecol 2023; 37:493-508. [PMID: 37152714 PMCID: PMC10156779 DOI: 10.1007/s10682-022-10226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
AbstractDirectional sexual selection drives the evolution of traits that are most closely linked to reproductive success, giving rise to trait exaggeration and sexual dimorphism. Exaggerated structures are often costly and, therefore, thought to be expressed in a condition-dependent manner. Sexual selection theory thus predicts a direct link between directional sexual selection, sexual dimorphism, and sex-specific condition dependence. However, only a handful of studies investigate the relationship between sexual dimorphism and condition dependence. Using 21 genetic lines of Drosophila prolongata, we here compared the degree of sexual dimorphism and sex-specific condition dependence, measured as allometric slopes, in sexually selected and non-sexual traits. Our data revealed male-biased sexual dimorphism in all traits examined, most prominently in the sexually selected forelegs. However, there was no relationship between the degree of sex-specific condition dependence and sexual dimorphism across traits and genetic lines. Our results contradict theoretical predictions and highlight the importance of understanding the role of exaggerated traits in the context of both sexual and natural selection.
Collapse
Affiliation(s)
- Jhoniel Perdigón Ferreira
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Patrick T. Rohner
- Department of Biology, Indiana University, 915 East Third Street, 102 Myers Hall, Bloomington, IN 47405 USA
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
7
|
Marques P, Zandonà E, Amaral J, Selhorst Y, El-Sabaawi R, Mazzoni R, Castro L, Pilastro A. Using fish to understand how cities affect sexual selection before and after mating. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.928277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Urbanization transforms natural and agricultural areas into built landscapes. Such profound habitat alteration imposes strong pressure on phenotypic trait changes through processes related to natural and/or sexual selection. Evidence of how natural selection drives changes to traits in urban biota is increasing, but little is known about the role of sexual selection. In this study, we assessed the effect of urbanization on the expression and interaction of males' pre-mating traits (body size and color) and a post-mating trait (sperm load). We used a widespread invasive species, the guppy (Poecilia reticulata), which is a wellknown model for studying sexual selection, but have never been studied in urban systems for this purpose. We found that urbanization did not affect mean body size or condition, but it resulted in size-dependent reductions in the expression of orange and iridescent colors, as well as sperm load. The orange color was reduced in small urban guppies, while the iridescent colors were reduced in large urban guppies compared to non-urban guppies. The difference in sperm load was only found in large males, with lower sperm load in urban guppies. The relationship between orange color and sperm load was positive in urban guppies but negative in non-urban guppies, while the association between iridescent color and sperm load followed the opposite pattern. Our findings suggest that sexual selection on pre- and post-mating traits is weaker in urban than in non-urban systems and that interactions between such traits are context dependent. These responses can be related to the pollution and altered visual environment of urban systems and provide an opportunity to advance our understanding of the mechanisms determining adaptation in cities.
Collapse
|
8
|
Glavaschi A, Cattelan S, Devigili A, Pilastro A. Immediate predation risk alters the relationship between potential and realised selection on male traits in the Trinidad guppy Poecilia reticulata. Proc Biol Sci 2022; 289:20220641. [PMID: 36069009 PMCID: PMC9449472 DOI: 10.1098/rspb.2022.0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/12/2022] [Indexed: 11/12/2022] Open
Abstract
Imminent predation risk affects mating behaviours in prey individuals in a multitude of ways that can theoretically impact the strength of sexual selection, as well as its operation on traits. However, empirical studies of the effects of imminent predation risk on sexual selection dynamics are still scarce. Here we explore how perceived predation affects: (1) the relationship between the opportunity for selection and the actual strength of selection on male traits; and (2) which traits contribute to male fitness and the shape of selection on these traits. We simulate two consecutive reproductive episodes, under control conditions and perceived predation risk using experimental populations of Trinidad guppies. The opportunity for selection is higher under predation risk compared to the control condition, but realised selection on traits remains unaffected. Pre- and postcopulatory traits follow complex patterns of nonlinear selection in both conditions. Differences in selection gradients deviate from predictions based on evolutionary and non-lethal effects of predation, the most notable being strong disruptive selection on courtship rate under predation risk. Our results demonstrate that sexual selection is sensitive to imminent predation risk perception and reinforce the notion that both trait-based and variance-based metrics should be employed for an informative quantification.
Collapse
Affiliation(s)
- Alexandra Glavaschi
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Silvia Cattelan
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstraße 11, 07745 Jena, Germany
| | - Alessandro Devigili
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Andrea Pilastro
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
9
|
Fernlund Isaksson E, Reuland C, Kahrl AF, Devigili A, Fitzpatrick JL. Resource-dependent investment in male sexual traits in a viviparous fish. Behav Ecol 2022; 33:954-966. [PMID: 36382231 PMCID: PMC9639585 DOI: 10.1093/beheco/arac060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/12/2022] [Accepted: 05/25/2022] [Indexed: 09/01/2023] Open
Abstract
Exaggerated and conspicuous sexually selected traits are often costly to produce and maintain. Costly traits are expected to show resource-dependent expression, since limited resources prevent animals from investing maximally in multiple traits simultaneously. However, there may be critical periods during an individual's life where the expression of traits is altered if resources are limited. Moreover, costly sexual traits may arise from sexual selection acting both before (pre-copulatory) and after mating (post-copulatory). Gaining a robust understanding of resource-dependent trait expression therefore requires an approach that examines both episodes of sexual selection after resource limitation during different times in an individual's life. Yet few studies have taken such an approach. Here, we examine how resource restriction influences a set of pre- and post-copulatory traits in male pygmy halfbeaks (Dermogenys collettei), which invest in sexual ornaments and routinely engage in male-male contests and sperm competition. Critically, we examined responses in males when resources were restricted during development and after reaching sexual maturity. Both pre- and post-copulatory traits are resource-dependent in male halfbeaks. Body size, beak size, courtship behavior, and testes size were reduced by diet restriction, while, unexpectedly, the restricted-diet group had a larger area of red color on the beak and fins after diet treatment. These patterns were generally consistent when resources were restricted during development and after reaching sexual maturity. The study reinforces the role of resource acquisition in maintaining variation among sexual traits.
Collapse
Affiliation(s)
- Erika Fernlund Isaksson
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| | - Charel Reuland
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| | - Ariel F Kahrl
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| | - Alessandro Devigili
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35131 Padova, Italy
| | - John L Fitzpatrick
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| |
Collapse
|
10
|
Sepil I, Perry JC, Dore A, Chapman T, Wigby S. Experimental evolution under varying sex ratio and nutrient availability modulates male mating success in Drosophila melanogaster. Biol Lett 2022; 18:20210652. [PMID: 35642384 PMCID: PMC9156920 DOI: 10.1098/rsbl.2021.0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biased population sex ratios can alter optimal male mating strategies, and allocation to reproductive traits depends on nutrient availability. However, there is little information on how nutrition interacts with sex ratio to influence the evolution of pre-copulatory and post-copulatory traits separately. To address this omission, we test how male mating success and reproductive investment evolve under varying sex ratios and adult diet in Drosophila melanogaster, using experimental evolution. We found that sex ratio and nutrient availability interacted to determine male pre-copulatory performance. Males from female-biased populations were slow to mate when they evolved under protein restriction. By contrast, we found direct and non-interacting effects of sex ratio and nutrient availability on post-copulatory success. Males that evolved under protein restriction were relatively poor at suppressing female remating. Males that evolved under equal sex ratios fathered more offspring and were better at supressing female remating, relative to males from male-biased or female-biased populations. These results support the idea that sex ratios and nutrition interact to determine the evolution of pre-copulatory mating traits, but independently influence the evolution of post-copulatory traits.
Collapse
Affiliation(s)
- Irem Sepil
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Jennifer C Perry
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Alice Dore
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Stuart Wigby
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.,Department of Evolution, Ecology, and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
11
|
Friesen CR, Uhrig EJ, Mason RT. Dehydrated males are less likely to dive into the mating pool. Behav Ecol 2021. [DOI: 10.1093/beheco/arab151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Abstract
The hydration state of animals vying for reproductive success may have implications for the tempo and mode of sexual selection, which may be salient in populations that experience increasing environmental fluctuations in water availability. Using red-sided garter snakes as a model system, we tested the effect of water supplementation on courtship, mating behavior, and copulatory plug (CP) production during a drought year. Over 3 days of mating trials, water-supplemented males (WET males, n = 45) outperformed a control group that was not supplemented with water (DRY males, n = 45). Over 70% of WET males mated but just 33% of DRY males did so. As a group, WET males mated 79 times versus 28 times by DRY males. On the last day of mating trials, over 70% of WET males were still courting, with 19 of them mating, whereas less than 25% of DRY males were courting and only one mated. CP deposition accounted for 4–6% of the mass lost by mating males, but hydration did not affect CP mass or water content. These findings suggest that, in years of low water availability, the number of courting males and the intensity of their courtship declines, thereby affecting sexual selection and conflict, at least within that year.
Collapse
Affiliation(s)
- Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Building 35, Northfields Avenue, Wollongong, NSW 2522, Australia
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
- School of Life and Environmental Sciences, Bldg F22, Life Earth and Environmental Sciences (LEES) Building, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Emily J Uhrig
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
- Center for Research on Sustainable Forests, University of Maine, 5755 Nutting Hall, Room 263, Orono, ME 04469, USA
| | - Robert T Mason
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| |
Collapse
|
12
|
Herdegen-Radwan M, Cattelan S, Buda J, Raubic J, Radwan J. What do orange spots reveal about male (and female) guppies? A test using correlated responses to selection. Evolution 2021; 75:3037-3055. [PMID: 34658022 PMCID: PMC9299167 DOI: 10.1111/evo.14384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
Female preferences for male ornamental traits can arise from indirect benefits, such as increased attractiveness or better viability of progeny, but empirical evidence for such benefits is inconsistent. Artificial selection offers a powerful way to investigate indirect effects of male ornaments. Here, we selected for the area of orange spots on male guppies, a trait subject to female preferences in our population, in replicated up‐ and down‐selected lines. We found a significant direct response to selection, and a correlated response in female preferences, with females from down‐selected lines showing less interest in more orange males. Nevertheless, up‐selected males sired more offspring in direct competition with low‐selected males, irrespective of female origin. We did not find a significantly correlated response to selection among any other fitness correlates we measured. Our results imply that female preferences for orange spots can lead to increased reproductive success of their sons, with no effect on general viability of progeny. Furthermore, although we demonstrate that female preferences may evolve via linkage disequilibrium with the preferred trait, the potential for runaway selection by positive feedback may be constrained by the lack of corresponding linkage with male reproductive competitiveness.
Collapse
Affiliation(s)
- Magdalena Herdegen-Radwan
- Department of Behavioural Ecology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| | - Silvia Cattelan
- Department of Biology, University of Padova, Padova, 35121, Italy
| | - Jakub Buda
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| | - Jarosław Raubic
- Population Ecology Group, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, 61-614, Poland
| |
Collapse
|
13
|
Janicke T, Chapuis E, Meconcelli S, Bonel N, Delahaie B, David P. Environmental effects on the genetic architecture of fitness components in a simultaneous hermaphrodite. J Anim Ecol 2021; 91:124-137. [PMID: 34652857 DOI: 10.1111/1365-2656.13607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/04/2021] [Indexed: 12/01/2022]
Abstract
Understanding how environmental change affects genetic variances and covariances of reproductive traits is key to formulate firm predictions on evolutionary responses. This is particularly true for sex-specific variance in reproductive success, which has been argued to affect how populations can adapt to environmental change. Our current knowledge on the impact of environmental stress on sex-specific genetic architecture of fitness components is still limited and restricted to separate-sexed organisms. However, hermaphroditism is widespread across animals and may entail interesting peculiarities with respect to genetic constraints imposed on the evolution of male and female reproduction. We explored how food restriction affects the genetic variance-covariance (G) matrix of body size and reproductive success of the simultaneously hermaphroditic freshwater snail Physa acuta. Our results provide strong evidence that the imposed environmental stress elevated the opportunity for selection in both sex functions. However, the G-matrix remained largely stable across the tested food treatments. Importantly, our results provide no support for cross-sex genetic correlations suggesting no strong evolutionary coupling of male and female reproductive traits. We discuss potential implications for the adaptation to changing environments and highlight the need for more quantitative genetic studies on male and female fitness components in simultaneous hermaphrodites.
Collapse
Affiliation(s)
- Tim Janicke
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.,Applied Zoology, Technical University Dresden, Dresden, Germany
| | - Elodie Chapuis
- MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Stefania Meconcelli
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.,Department of Life Sciences and Systems Biology, Università di Torino, Torino, Italy
| | - Nicolas Bonel
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.,Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Bahía Blanca, Argentina
| | - Boris Delahaie
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Patrice David
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| |
Collapse
|
14
|
Glavaschi A, Cattelan S, Grapputo A, Pilastro A. Imminent risk of predation reduces the relative strength of postcopulatory sexual selection in the guppy. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200076. [PMID: 33070734 DOI: 10.1098/rstb.2020.0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fifty years of research on sperm competition has led to a very good understanding of the interspecific variation in sperm production traits. The reasons why this variation is often very large within populations have been less investigated. We suggest that the interaction between fluctuating environmental conditions and polyandry is a key phenomenon explaining such variation. We focus here on imminent predation risk (IPR). IPR impacts significantly several aspects of prey behaviour and reproduction, and it is expected to influence the operation of sexual selection before and after mating. We estimated the effect of IPR on the male opportunity for pre- and postcopulatory sexual selection in guppies (Poecilia reticulata), a livebearing fish where females prefer colourful males and mate multiply. We used a repeated-measures design, in which males were allowed to mate with different females either under IPR or in a predator-free condition. We found that IPR increased the total opportunity for sexual selection and reduced the relative contribution of postcopulatory sexual selection to male reproductive success. IPR is inherently variable and our results suggest that interspecific reproductive interference by predators may contribute towards maintaining the variation in sperm production within populations. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Alexandra Glavaschi
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Silvia Cattelan
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Alessandro Grapputo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Andrea Pilastro
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
15
|
Trade-offs of strategic sperm adjustments and their consequences under phenotype–environment mismatches in guppies. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Cattelan S, Vidotto M, Devigili A, Pilastro A, Grapputo A. Differential gene regulation in selected lines for high and low sperm production in male guppies. Mol Reprod Dev 2020; 87:430-441. [PMID: 32100427 DOI: 10.1002/mrd.23332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
In species where females mate with more than one male during the same reproductive event, males typically increase the number of sperm produced to boost their fertilization share. Sperm is not limitless, however, and theory predicts that their production will come at the cost of other fitness-related traits, such as body growth or immunocompetence, although these evolutionary trade-offs are notoriously difficult to highlight. To this end, we combined artificial selection for sperm production with a transcriptome analysis using Poecilia reticulata, a fish characterized by intense sperm competition in which the number of sperm transferred during mating is the most important predictor of fertilization success, yet sperm production is highly variable among males. We compared the brain and testes transcriptome in male guppies of lines artificially selected for high and low sperm production by identifying pivotal differentially expressed gene sets that may regulate spermatogenesis and immune function in this species. Despite the small differences in single genes' expression, gene set enrichment analysis showed coordinated gene expression differences associated with several pathways differentially regulated in the two selection lines. High sperm production males showed an upregulation of pathways related to immunosuppression and development of spermatozoa indicating a possible immunological cost of sperm production.
Collapse
|