1
|
Flintham L, Field J. The evolution of morphological castes under decoupled control. J Evol Biol 2024; 37:947-959. [PMID: 38963804 DOI: 10.1093/jeb/voae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/30/2024] [Accepted: 07/03/2024] [Indexed: 07/06/2024]
Abstract
Eusociality, where units that previously reproduced independently function as one entity, is of major interest in evolutionary biology. Obligate eusociality is characterized by morphologically differentiated castes and reduced conflict. We explore conditions under which morphological castes may arise in the Hymenoptera and factors constraining their evolution. Control over offspring morphology and behaviour seems likely to be decoupled. Provisioners (queens and workers) can influence offspring morphology directly through the nutrition they provide, while adult offspring control their own behaviour. Provisioners may, however, influence worker behaviour indirectly if offspring modify their behaviour in response to their morphology. If manipulation underlies helping, we should not see helping evolve before specialized worker morphology, yet empirical observations suggest that behavioural castes precede morphological castes. We use evolutionary invasion analyses to show how the evolution of a morphologically differentiated worker caste depends on the prior presence of a behavioural caste: specialist worker morphology will be mismatched with behaviour unless some offspring already choose to work. A mother's certainty about her offspring's behaviour is also critical-less certainty results in greater mismatch. We show how baseline worker productivity can affect the likelihood of a morphological trait being favoured by natural selection. We then show how under a decoupled control scenario, morphologically differentiated castes should be less and less likely to be lost as they become more specialized. We also suggest that for eusociality to be evolutionarily irreversible, workers must be unable to functionally replace reproductives and reproductives must be unable to reproduce without help from workers.
Collapse
Affiliation(s)
- Lewis Flintham
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
- Division of Biosciences, University College London, London, United Kingdom
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Jeremy Field
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
2
|
Scharf ME, Lee CY. Insecticide resistance in social insects: assumptions, realities, and possibilities. CURRENT OPINION IN INSECT SCIENCE 2024; 62:101161. [PMID: 38237732 DOI: 10.1016/j.cois.2024.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Insecticide resistance is an evolved ability to survive insecticide exposure. Compared with nonsocial insects, eusocial insects have lower numbers of documented cases of resistance. Eusocial insects include beneficial and pest species that can be incidentally or purposely targeted with insecticides. The central goal of this review is to explore factors that either limit resistance or the ability to detect it in eusocial insects. We surveyed the literature and found that resistance has been documented in bees, but in other pest groups such as ants and termites, the evidence is more sparse. We suggest the path forward for better understanding eusocial resistance should include more tractable experimental models, comprehensive geographic sampling, and targeted testing of the impacts of social, symbiont, genetic, and ecological factors.
Collapse
|
3
|
Chak STC, Harris SE, Hultgren KM, Duffy JE, Rubenstein DR. Demographic inference provides insights into the extirpation and ecological dominance of eusocial snapping shrimps. J Hered 2022; 113:552-562. [PMID: 35921239 DOI: 10.1093/jhered/esac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
Although eusocial animals often achieve ecological dominance in the ecosystems where they occur, many populations are unstable, resulting in local extinction. Both patterns may be linked to the characteristic demography of eusocial species-high reproductive skew and reproductive division of labor support stable effective population sizes that make eusocial groups more competitive in some species, but also lower effective population sizes that increase susceptibility to population collapse in others. Here, we examine the relationship between demography and social organization in Synalpheus snapping shrimps, a group in which eusociality has evolved recently and repeatedly. We show using coalescent demographic modelling that eusocial species have had lower but more stable effective population sizes across 100,000 generations. Our results are consistent with the idea that stable population sizes may enable competitive dominance in eusocial shrimps, but they also suggest that recent population declines are likely caused by eusocial shrimps' heightened sensitivity to environmental changes, perhaps as a result of their low effective population sizes and localized dispersal. Thus, although the unique life histories and demography of eusocial shrimps have likely contributed to their persistence and ecological dominance over evolutionary timescales, these social traits may also make them vulnerable to contemporary environmental change.
Collapse
Affiliation(s)
- Solomon T C Chak
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA.,Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, USA.,Department of Biological Sciences, SUNY College at Old Westbury, Old Westbury, NY, USA
| | - Stephen E Harris
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA.,Biology Department, SUNY Purchase College, Purchase, NY, USA
| | | | - J Emmett Duffy
- Tennenbaum Marine Observatories Network, Smithsonian Institution, Edgewater, MD, USA
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Price TN, Field J. Sisters doing it for themselves: extensive reproductive plasticity in workers of a primitively eusocial bee. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Plasticity is a key trait when an individual’s role in the social environment, and hence its optimum phenotype, fluctuates unpredictably. Plasticity is especially important in primitively eusocial insects where small colony sizes and little morphological caste differentiation mean that individuals may find themselves switching from non-reproductive to reproductive roles. To understand the scope of this plasticity, workers of the primitively eusocial sweat bee Lasioglossum malachurum were experimentally promoted to the reproductive role (worker-queens) and their performance compared with foundress-queens. We focussed on how their developmental trajectory as workers influenced three key traits: group productivity, monopolisation of reproduction, and social control of foraging nest-mates. No significant difference was found between the number of offspring produced by worker-queens and foundress-queens. Genotyping of larvae showed that worker-queens monopolised reproduction in their nests to the same extent as foundress queens. However, non-reproductives foraged less and produced a smaller total offspring biomass when the reproductive was a promoted worker: offspring of worker-queens were all males, which are the cheaper sex to produce. Greater investment in each offspring as the number of foragers increased suggests a limit to both worker-queen and foundress-queen offspring production when a greater quantity of pollen arrives at the nest. The data presented here suggest a remarkable level of plasticity and represent one of the first quantitative studies of worker reproductive plasticity in a non-model primitively eusocial species.
Significance statement
The ability of workers to take on a reproductive role and produce offspring is expected to relate strongly to the size of their colony. Workers in species with smaller colony sizes should have greater reproductive potential to insure against the death of the queen. We quantified the reproductive plasticity of workers in small colonies of sweat bees by removing the queen and allowing the workers to control the reproductive output of the nest. A single worker then took on the reproductive role and hence prevented her fellow workers from producing offspring of their own. These worker-queens produced as many offspring as control queens, demonstrating remarkable worker plasticity in a primitively eusocial species.
Collapse
|
5
|
Jeanne RL, Loope KJ, Bouwma AM, Nordheim EV, Smith ML. Five decades of misunderstanding in the social Hymenoptera: a review and meta-analysis of Michener's paradox. Biol Rev Camb Philos Soc 2022; 97:1559-1611. [PMID: 35338566 PMCID: PMC9546470 DOI: 10.1111/brv.12854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022]
Abstract
In a much-cited 1964 paper entitled "Reproductive efficiency in relation to colony size in hymenopterous societies," Charles Michener investigated the correlation between a colony's size and its reproductive efficiency - the ability of its adult females to produce reproductives, measured as per-capita output. Based on his analysis of published data from destructively sampled colonies in 18 species, he reported that in most of these species efficiency decreased with increasing colony size. His conclusion that efficiency is higher in smaller groups has since gained widespread acceptance. But it created a seeming paradox: how can natural selection maintain social behaviour when a female apparently enjoys her highest per-capita output by working alone? Here we treat Michener's pattern as a hypothesis and perform the first large-scale test of its prediction across the eusocial Hymenoptera. Because data on actual output of reproductives were not available for most species, Michener used various proxies, such as nest size, numbers of brood, or amounts of stored food. We show that for each of Michener's data sets the reported decline in per-capita productivity can be explained by factors other than decreasing efficiency, calling into question his conclusion that declining efficiency is the cause of the pattern. The most prominent cause of bias is the failure of the proxy to capture all forms of output in which the colony invests during the course of its ontogeny. Other biasing factors include seasonal effects and a variety of methodological flaws in the data sets he used. We then summarize the results of 215 data sets drawn from post-1964 studies of 80 species in 33 genera that better control for these factors. Of these, 163 data sets are included in two meta-analyses that statistically synthesize the available data on the relationship between colony size and efficiency, accounting for variable sample sizes and non-independence among the data sets. The overall effect, and those for most taxonomic subgroups, indicates no loss of efficiency with increasing colony size. Two exceptional taxa, the halictid bees and independent-founding paper wasps, show negative trends consistent with the Michener hypothesis in some species. We conclude that in most species, particularly those with large colony sizes, the hypothesis of decreasing efficiency with increasing colony size is not supported. Finally, we explore potential mechanisms through which the level of efficiency can decrease, be maintained, or even increase, as colonies increase in size.
Collapse
Affiliation(s)
- Robert L Jeanne
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI, 53706, U.S.A
| | - Kevin J Loope
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University (Virginia Tech), Cheatham Hall, 310 W. Campus Drive, Blacksburg, VA, 24060, U.S.A
| | - Andrew M Bouwma
- Department of Integrative Biology, Oregon State University, Cordley Hall, 3029, 2701 SW Campus Way, Corvallis, OR, 97331, U.S.A
| | - Erik V Nordheim
- Department of Statistics, University of Wisconsin, 1300 University Avenue, Madison, WI, 53706, U.S.A
| | - Michael L Smith
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, U.S.A
| |
Collapse
|
6
|
Silva JD. The Extension of Foundress Lifespan and the Evolution of Eusociality in the Hymenoptera. Am Nat 2021; 199:E140-E155. [DOI: 10.1086/718594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Abstract
Although indirect selection through relatives (kin selection) can explain the evolution of effectively sterile offspring that act as helpers at the nest (eusociality) in the ants, bees, and stinging wasps (aculeate Hymenoptera), the genetic, ecological, and life history conditions that favor transitions to eusociality are poorly understood. In this study, ancestral state reconstruction on recently published phylogenies was used to identify the independent transitions to eusociality in each of the taxonomic families that exhibit eusociality. Semisociality, in which a single nest co-foundress monopolizes reproduction, often precedes eusociality outside the vespid wasps. Such a route to eusociality, which is consistent with groups consisting of a mother and her daughters (subsocial) at some stage and ancestral monogamy, is favored by the haplodiploid genetic sex determination of the Hymenoptera (diploid females and haploid males) and thus may explain why eusociality is common in the Hymenoptera. Ancestral states were also reconstructed for life history characters that have been implicated in the origins of eusociality. A loss of larval diapause during unfavorable seasons or conditions precedes, or coincides with, all but one transition to eusociality. This pattern is confirmed using phylogenetic tests of associations between state transition rates for sweat bees and apid bees. A loss of larval diapause may simply reflect the subsocial route to eusociality since subsociality is defined as females interacting with their adult daughters. A loss of larval diapause and a gain of subsociality may be associated with an extended breeding season that permits the production of at least two broods, which is necessary for helpers to evolve. Adult diapause may also lower the selective barrier to a first-brood daughter becoming a helper. Obligate eusociality meets the definition of a major evolutionary transition, and such transitions have occurred five times in the Hymenoptera.
Collapse
|
8
|
Weyna A, Romiguier J, Mullon C. Hybridization enables the fixation of selfish queen genotypes in eusocial colonies. Evol Lett 2021; 5:582-594. [PMID: 34917398 PMCID: PMC8645202 DOI: 10.1002/evl3.253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/09/2021] [Indexed: 01/25/2023] Open
Abstract
A eusocial colony typically consists of two main castes: queens that reproduce and sterile workers that help them. This division of labor, however, is vulnerable to genetic elements that favor the development of their carriers into queens. Several factors, such as intracolonial relatedness, can modulate the spread of such caste-biasing genotypes. Here we investigate the effects of a notable yet understudied ecological setting: where larvae produced by hybridization develop into sterile workers. Using mathematical modeling, we show that the coevolution of hybridization with caste determination readily triggers an evolutionary arms race between nonhybrid larvae that increasingly develop into queens, and queens that increasingly hybridize to produce workers. Even where hybridization reduces worker function and colony fitness, this race can lead to the loss of developmental plasticity and to genetically hard-wired caste determination. Overall, our results may help understand the repeated evolution toward remarkable reproductive systems (e.g., social hybridogenesis) observed in several ant species.
Collapse
Affiliation(s)
- Arthur Weyna
- Institut des Sciences de l'Evolution (UMR 5554)University of Montpellier, CNRSMontpellier34000France
| | - Jonathan Romiguier
- Institut des Sciences de l'Evolution (UMR 5554)University of Montpellier, CNRSMontpellier34000France
| | - Charles Mullon
- Department of Ecology and EvolutionUniversity of LausanneLausanne1015Switzerland
| |
Collapse
|
9
|
Yaguchi H, Kobayashi I, Maekawa K, Nalepa CA. Extra-pair paternity in the wood-feeding cockroach Cryptocercus punctulatus Scudder: Social but not genetic monogamy. Mol Ecol 2021; 30:6743-6758. [PMID: 34543485 DOI: 10.1111/mec.16185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
Subsocial Cryptocercus cockroaches are the sister group to termites and considered to be socially monogamous. Because genetic monogamy is a suggested requirement for evolution of cooperative breeding/eusociality, particularly in hymenopterans, clarification of the mating biology of Cryptocercus would help illuminate evolutionary trends in eusocial insects. To investigate possible extra-pair paternity in C. punctulatus, microsatellite markers were used to analyse offspring parentage, the stored sperm in females and results of experimental manipulation of sperm competition. Extra-pair paternity was common in field-collected families, but a lack of maternal alleles in several nymphs suggests sampling error or adoption. Isolating prereproductive pairs and assaying subsequently produced nymphs confirmed that nymphs lacked alleles from the pair male in 40% of families, with extra-pair male(s) siring 27%-77% of nymphs. Sperm of extra-pair males was detected in the spermatheca of 51% of paired prereproductive females. Mate switching and surgical manipulation of male mating ability indicated a tendency towards last male sperm precedence. Overall, the results demonstrate that about half of young females are serially monogamous during their maturational year, but bond, overwinter and produce their only set of offspring in company of the last mated male (=pair male). Repeated mating by the pair male increases the number of nymphs sired, but because many females use stored sperm of previous copulatory partners to fertilize eggs, pair males extend parental care to unrelated nymphs. The results suggest that genetic monogamy either developed in the termite ancestor after splitting from the Cryptocercus lineage, or that genetic monogamy may not be a strict prerequisite for the evolution of termite eusociality.
Collapse
Affiliation(s)
- Hajime Yaguchi
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan.,Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Itaru Kobayashi
- School of Science, University of Toyama, Toyama, Japan.,Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Maekawa
- Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| | - Christine A Nalepa
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
10
|
Kelemen EP, Rehan SM. Conservation insights from wild bee genetic studies: Geographic differences, susceptibility to inbreeding, and signs of local adaptation. Evol Appl 2021; 14:1485-1496. [PMID: 34178099 PMCID: PMC8210791 DOI: 10.1111/eva.13221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/19/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022] Open
Abstract
Conserving bees are critical both ecologically and economically. Genetic tools are valuable for monitoring these vital pollinators since tracking these small, fast-flying insects by traditional means is difficult. By surveying the current state of the literature, this review discusses how recent advances in landscape genetic and genomic research are elucidating how wild bees respond to anthropogenic threats. Current literature suggests that there may be geographic differences in the vulnerability of bee species to landscape changes. Populations of temperate bee species are becoming more isolated and more genetically depauperate as their landscape becomes more fragmented, but tropical bee species appear unaffected. These differences may be an artifact of historical differences in land-use, or it suggests that different management plans are needed for temperate and tropical bee species. Encouragingly, genetic studies on invasive bee species indicate that low levels of genetic diversity may not lead to rapid extinction in bees as once predicted. Additionally, next-generation sequencing has given researchers the power to identify potential genes under selection, which are likely critical to species' survival in their rapidly changing environment. While genetic studies provide insights into wild bee biology, more studies focusing on a greater phylogenetic and life-history breadth of species are needed. Therefore, caution should be taken when making broad conservation decisions based on the currently few species examined.
Collapse
|
11
|
Friedman DA, Johnson BR, Linksvayer TA. Distributed physiology and the molecular basis of social life in eusocial insects. Horm Behav 2020; 122:104757. [PMID: 32305342 DOI: 10.1016/j.yhbeh.2020.104757] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022]
Abstract
The traditional focus of physiological and functional genomic research is on molecular processes that play out within a single multicellular organism. In the colonial (eusocial) insects such as ants, bees, and termites, molecular and behavioral responses of interacting nestmates are tightly linked, and key physiological processes are regulated at the scale of the colony. Such colony-level physiological processes regulate nestmate physiology in a distributed fashion, through various social communication mechanisms. As a result of physiological decentralization over evolutionary time, organismal mechanisms, for example related to pheromone detection, hormone signaling, and neural signaling pathways, are deployed in novel contexts to influence nestmate and colony traits. Here we explore how functional genomic, physiological, and behavioral studies can benefit from considering the traits of eusocial insects in this light. We highlight functional genomic work exploring how nestmate-level and colony-level traits arise and are influenced by interactions among physiologically-specialized nestmates of various developmental stages. We also consider similarities and differences between nestmate-level (organismal) and colony-level (superorganismal) physiological processes, and make specific hypotheses regarding the physiology of eusocial taxa. Integrating theoretical models of distributed systems with empirical functional genomics approaches will be useful in addressing fundamental questions related to the evolution of eusociality and collective behavior in natural systems.
Collapse
Affiliation(s)
- D A Friedman
- University of California, Davis, Department of Entomology, Davis, CA 95616, United States of America.
| | - B R Johnson
- University of California, Davis, Department of Entomology, Davis, CA 95616, United States of America
| | - T A Linksvayer
- University of Pennsylvania, Department of Biology, Pennsylvania, PA 19104, United States of America
| |
Collapse
|