1
|
Zhao J, Wang ZW, Shen G, Hu D, Zhong Y, Ye C, Wang JJ. Regulation of melanization in aphids by parasitoid wasp venom proteins enhances mummification. PEST MANAGEMENT SCIENCE 2024. [PMID: 39494788 DOI: 10.1002/ps.8503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/14/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Interactions between parasitic insects and their hosts demonstrate the complexity of evolutionary processes. Specifically, the parasitoid wasp Aphidius ervi manipulates its host, the pea aphid Acyrthosiphon pisum, through strategic venom injection to enhance mummification. This study explores how this venom affects the aphid's immune system, particularly targeting the activity of the phenoloxidase (PO) enzyme. RESULTS Following the injection of venom from A. ervi, significant changes were observed in the expression of immune-related genes in A. pisum, especially notable expression changes of ApPPOs and a reduction of PO activity. Multi-omics sequencing identified 74 potential venom proteins in the venom gland of A. ervi, including serine protease homolog 1 (AeSPH1) and serine protease inhibitor (AeSPN1), hypothesized to regulate PO activity. The injection of recombinant protein AeSPH1 and AeSPN1 into the A. pisum hemocoel selectively reduced the expression of ApPPO1, without affecting ApPPO2, and effectively suppressed melanization. Moreover, RNAi targeting AeSPH1 significantly reduced the mummification rate in A. pisum population parasitized by A. ervi. CONCLUSION Our findings clarify the complex biochemical mechanisms underlying host-wasp interactions and highlight potential avenues for developing targeted biological control strategies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Zheng-Wu Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Die Hu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Yi Zhong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Chao Ye
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Hoang KL, Read TD, King KC. Defense Heterogeneity in Host Populations Gives Rise to Pathogen Diversity. Am Nat 2024; 204:370-380. [PMID: 39326061 DOI: 10.1086/731996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
AbstractHost organisms can harbor microbial symbionts that defend them from pathogen infection in addition to the resistance encoded by the host genome. Here, we investigated how variation in defenses, generated from host genetic background and symbiont presence, affects the emergence of pathogen genetic diversity across evolutionary time. We passaged the opportunistic pathogen Pseudomonas aeruginosa through populations of the nematode Caenorhabditis elegans varying in genetic-based defenses and prevalence of a protective symbiont. After 14 passages, we assessed the amount of genetic variation accumulated in evolved pathogen lineages. We found that diversity begets diversity. An overall greater level of pathogen whole-genome and per-gene genetic diversity was measured in pathogens evolved in mixed host populations compared with those evolved in host populations composed of one type of defense. Our findings directly demonstrate that symbiont-generated heterogeneity in host defense can be a significant contributor to pathogen genetic variation.
Collapse
|
3
|
Scott TJ, Queller DC, Strassmann JE. Complex third-party effects in the Dictyostelium-Paraburkholderia symbiosis: prey bacteria that are eaten, carried or left behind. Proc Biol Sci 2024; 291:20241111. [PMID: 39016123 PMCID: PMC11253208 DOI: 10.1098/rspb.2024.1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024] Open
Abstract
Symbiotic interactions may change depending on third parties like predators or prey. Third-party interactions with prey bacteria are central to the symbiosis between Dictyostelium discoideum social amoeba hosts and Paraburkholderia bacterial symbionts. Symbiosis with inedible Paraburkholderia allows host D. discoideum to carry prey bacteria through the dispersal stage where hosts aggregate and develop into fruiting bodies that disperse spores. Carrying prey bacteria benefits hosts when prey are scarce but harms hosts when prey bacteria are plentiful, possibly because hosts leave some prey bacteria behind while carrying. Thus, understanding benefits and costs in this symbiosis requires measuring how many prey bacteria are eaten, carried and left behind by infected hosts. We found that Paraburkholderia infection makes hosts leave behind both symbionts and prey bacteria. However, the number of prey bacteria left uneaten was too small to explain why infected hosts produced fewer spores than uninfected hosts. Turning to carried bacteria, we found that hosts carry prey bacteria more often after developing in prey-poor environments than in prey-rich ones. This suggests that carriage is actively modified to ensure hosts have prey in the harshest conditions. Our results show that multi-faceted interactions with third parties shape the evolution of symbioses in complex ways.
Collapse
Affiliation(s)
- Trey J. Scott
- Department of Biology, Washington University, St. Louis, MO63130, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138, USA
| | - David C. Queller
- Department of Biology, Washington University, St. Louis, MO63130, USA
| | | |
Collapse
|
4
|
Hudson CM, Stalder D, Vorburger C. Clines of resistance to parasitoids: the multifarious effects of temperature on defensive symbioses in insects. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101208. [PMID: 38821141 DOI: 10.1016/j.cois.2024.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Insects are frequently infected with heritable bacterial endosymbionts. Some of them confer resistance to parasitoids. Such defensive symbionts are sensitive to variation in temperature. Drawing predominantly from the literature on aphids and flies, we show that temperature can affect the reliability of maternal transmission and the strength of protection provided by defensive symbionts. Costs of infection with defensive symbionts can also be temperature-dependent and may even turn into benefits under extreme temperatures, for example, when defensive symbionts increase heat tolerance. Alone or in combination, these mechanisms can drive temperature-associated (latitudinal) clines of infection prevalence with defensive symbionts. This has important consequences for host-parasitoid coevolution, as the relative importance of host-encoded vs. symbiont-provided defenses will shift along such clines.
Collapse
Affiliation(s)
- Cameron M Hudson
- Aquatic Ecology, Eawag, Überlandstrasse 133, P.O. Box 611, 8600 Dübendorf, Switzerland
| | - Dominic Stalder
- Aquatic Ecology, Eawag, Überlandstrasse 133, P.O. Box 611, 8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Christoph Vorburger
- Aquatic Ecology, Eawag, Überlandstrasse 133, P.O. Box 611, 8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland.
| |
Collapse
|
5
|
Hafer‐Hahmann N, Vorburger C. Parasitoid species diversity has no effect on protective symbiont diversity in experimental host-parasitoid populations. Ecol Evol 2024; 14:e11090. [PMID: 38455147 PMCID: PMC10918731 DOI: 10.1002/ece3.11090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
How does diversity in nature come about? One factor contributing to this diversity are species interactions; diversity on one trophic level can shape diversity on lower or higher trophic levels. For example, parasite diversity enhances host immune diversity. Insect protective symbionts mediate host resistance and are, therefore, also engaged in reciprocal selection with their host's parasites. Here, we applied experimental evolution in a well-known symbiont-aphid-parasitoid system to study whether parasitoid diversity contributes to maintaining symbiont genetic diversity. We used caged populations of black bean aphids (Aphis fabae), containing uninfected individuals and individuals infected with different strains of the bacterial endosymbiont Hamiltonella defensa, which protects aphids against parasitoids. Over multiple generations, these populations were exposed to three different species of parasitoid wasps (Aphidius colemani, Binodoxys acalephae or Lysiphlebus fabarum), simultaneous or sequential mixtures of these species or no wasps. Surprisingly, we observed little selection for H. defensa in most treatments, even when it clearly provided protection against a fatal parasitoid infection. This seemed to be caused by high induced costs of resistance: aphids surviving parasitoid attacks suffered an extreme reduction in fitness. In marked contrast to previous studies looking at the effect of different genotypes of a single parasitoid species, we found little evidence for a diversifying effect of multiple parasitoid species on symbiont diversity in hosts.
Collapse
Affiliation(s)
- Nina Hafer‐Hahmann
- EAWAG, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Christoph Vorburger
- EAWAG, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative Biology, ETH ZürichZürichSwitzerland
| |
Collapse
|
6
|
Li B, Duan Y, Du Z, Wang X, Liu S, Feng Z, Tian L, Song F, Yang H, Cai W, Lin Z, Li H. Natural selection and genetic diversity maintenance in a parasitic wasp during continuous biological control application. Nat Commun 2024; 15:1379. [PMID: 38355730 PMCID: PMC10866907 DOI: 10.1038/s41467-024-45631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Aphidius gifuensis is a parasitoid wasp and primary endoparasitoid enemy of the peach potato aphid, Myzus persicae. Artificially reared, captive wasps of this species have been extensively and effectively used to control populations of aphids and limit crop loss. However, the consequences of large-scale releasing of captive A. gifuensis, such as genetic erosion and reduced fitness in wild populations of this species, remains unclear. Here, we sequence the genomes of 542 A. gifuensis individuals collected across China, including 265 wild and 277 human-intervened samples. Population genetic analyses on wild individuals recovered Yunnan populations as the ancestral group with the most complex genetic structure. We also find genetic signature of environmental adaptation during the dispersal of wild populations from Yunnan to other regions. While comparative genomic analyses of captive wasps revealed a decrease in genetic diversity during long-term rearing, population genomic analyses revealed signatures of natural selection by several biotic (host plants) or abiotic (climate) factors, which support maintenance of the gene pool of wild populations in spite of the introduction of captive wasps. Therefore, the impact of large-scale release is reduced. Our study suggests that A. gifuensis is a good system for exploring the genetic and evolutionary effects of mass rearing and release on species commonly used as biocontrol agents.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhenyong Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xuan Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shanlin Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zengbei Feng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | | | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhonglong Lin
- Yunnan Tobacco Company of China National Tobacco Corporation, Kunming, 650011, China.
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Zytynska SE, Sturm S, Hawes C, Weisser WW, Karley A. Floral presence and flower identity alter cereal aphid endosymbiont communities on adjacent crops. J Appl Ecol 2023; 60:1409-1423. [PMID: 38601947 PMCID: PMC11005096 DOI: 10.1111/1365-2664.14426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/18/2023] [Indexed: 04/12/2024]
Abstract
Floral plantings adjacent to crops fields can recruit populations of natural enemies by providing flower nectar and non-crop prey to increase natural pest regulation. Observed variation in success rates might be due to changes in the unseen community of endosymbionts hosted by many herbivorous insects, of which some can confer resistance to natural enemies, for example, parasitoid wasps. Reduced insect control may occur if highly protective symbiont combinations increase in frequency via selection effects, and this is expected to be stronger in lower diversity systems.We used a large-scale field trial to analyse the bacterial endosymbiont communities hosted by cereal aphids Sitobion avenae collected along transects into strip plots of barley plants managed by either conventional or integrated (including floral field margins and reduced inputs) methods. In addition, we conducted an outdoor pot experiment to analyse endosymbionts in S. avenae aphids collected on barley plants that were either grown alone or alongside one of three flowering plants, across three time points.In the field, aphids hosted up to four symbionts. The abundance of aphids and parasitoid wasps was reduced towards the middle of all fields while aphid symbiont species richness and diversity decreased into the field in conventional, but not integrated, field-strips. The proportion of aphids hosting different symbiont combinations varied across cropping systems, with distances into the fields, and were correlated with parasitoid wasp abundances.In the pot experiment, aphids hosted up to six symbionts. Flower presence increased natural enemy abundance and diversity, and decreased aphid abundance. The proportion of aphids hosting different symbiont combinations varied across the flower treatment and time, and were correlated with varying abundances of the different specialist parasitoid wasp species recruited by different flowers. Synthesis and applications. Floral plantings and flower identity had community-wide impacts on the combinations of bacterial endosymbionts hosted by herbivorous insects, which correlated with natural enemy diversity and abundance. We recommend that integrated management practices incorporate floral resources within field areas to support a more functionally diverse and resilient natural enemy community to mitigate selection for symbiont-mediated pest resistance throughout the cropping area.
Collapse
Affiliation(s)
- Sharon E. Zytynska
- Department of Evolution, Ecology, and Behaviour, Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life SciencesTechnical University of MunichFreisingGermany
| | - Sarah Sturm
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life SciencesTechnical University of MunichFreisingGermany
| | - Cathy Hawes
- Ecological Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - Wolfgang W. Weisser
- Terrestrial Ecology Research Group, Department of Life Science Systems, School of Life SciencesTechnical University of MunichFreisingGermany
| | - Alison Karley
- Ecological Sciences DepartmentThe James Hutton InstituteDundeeUK
| |
Collapse
|
8
|
Gimmi E, Wallisch J, Vorburger C. Defensive symbiosis in the wild: Seasonal dynamics of parasitism risk and symbiont-conferred resistance. Mol Ecol 2023. [PMID: 37160764 DOI: 10.1111/mec.16976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Parasite-mediated selection can rapidly drive up resistance levels in host populations, but fixation of resistance traits may be prevented by costs of resistance. Black bean aphids (Aphis fabae) benefit from increased resistance to parasitoids when carrying the defensive bacterial endosymbiont Hamiltonella defensa. However, due to fitness costs that come with symbiont infection, symbiont-conferred resistance may result in either a net benefit or a net cost to the aphid host, depending on parasitoid presence as well as on the general ecological context. Balancing selection may therefore explain why in natural aphid populations, H. defensa is often found at intermediate frequencies. Here we present a 2-year field study where we set out to look for signatures of balancing selection in natural aphid populations. We collected temporally well-resolved data on the prevalence of H. defensa in A. f. fabae and estimated the risk imposed by parasitoids using sentinel hosts. Despite a marked and consistent early-summer peak in parasitism risk, and significant changes in symbiont prevalence over time, we found just a weak correlation between parasitism risk and H. defensa frequency dynamics. H. defensa prevalence in the populations under study was, in fact, better explained by the number of heat days that previous aphid generations were exposed to. Our study grants an unprecedentedly well-resolved insight into the dynamics of endosymbiont and parasitoid communities of A. f. fabae populations, and it adds to a growing body of empirical evidence suggesting that not only parasitism risk, but rather multifarious selection is shaping H. defensa prevalence in the wild.
Collapse
Affiliation(s)
- Elena Gimmi
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- D-USYS, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Jesper Wallisch
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Christoph Vorburger
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- D-USYS, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Frago E, Zytynska S. Impact of herbivore symbionts on parasitoid foraging behaviour. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101027. [PMID: 36990151 DOI: 10.1016/j.cois.2023.101027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Parasitoids are insects that lay eggs in other insects, but before this, they have the remarkable task of locating and successfully attacking a suitable individual. Once an egg is laid, many herbivorous hosts carry defensive symbionts that prevent parasitoid development. Some symbioses can act ahead of these defences by reducing parasitoid foraging efficiency, while others may betray their hosts by producing chemical cues that attract parasitoids. In this review, we provide examples of symbionts altering the different steps that adult parasitoids need to take to achieve egg laying. We also discuss how interactions between habitat complexity, plants and herbivores modulate the way symbionts affect parasitoid foraging, and parasitoid evaluation of patch quality based on risk cues derived from parasitoid antagonists such as competing parasitoids and predators.
Collapse
Affiliation(s)
- Enric Frago
- CIRAD, UMR CBGP, INRAE, Institut Agro, IRD, Université Montpellier, F-34398 Montpellier, France.
| | - Sharon Zytynska
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
10
|
Hoang KL, King KC. Symbiont-mediated immune priming in animals through an evolutionary lens. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35442184 DOI: 10.1099/mic.0.001181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protective symbionts can defend hosts from parasites through several mechanisms, from direct interference to modulating host immunity, with subsequent effects on host and parasite fitness. While research on symbiont-mediated immune priming (SMIP) has focused on ecological impacts and agriculturally important organisms, the evolutionary implications of SMIP are less clear. Here, we review recent advances made in elucidating the ecological and molecular mechanisms by which SMIP occurs. We draw on current works to discuss the potential for this phenomenon to drive host, parasite, and symbiont evolution. We also suggest approaches that can be used to address questions regarding the impact of immune priming on host-microbe dynamics and population structures. Finally, due to the transient nature of some symbionts involved in SMIP, we discuss what it means to be a protective symbiont from ecological and evolutionary perspectives and how such interactions can affect long-term persistence of the symbiosis.
Collapse
Affiliation(s)
- Kim L Hoang
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Kayla C King
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
11
|
Narayan KS, Vorburger C, Hafer‐Hahmann N. Bottom-up effect of host protective symbionts on parasitoid diversity: Limited evidence from two field experiments. J Anim Ecol 2022; 91:643-654. [PMID: 34910305 PMCID: PMC9306599 DOI: 10.1111/1365-2656.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022]
Abstract
Protective symbionts can provide effective and specific protection to their hosts. This protection can differ between different symbiont strains with each strain providing protection against certain components of the parasite and pathogen community their host faces. Protective symbionts are especially well known from aphids where, among other functions, they provide protection against different parasitoid wasps. However, most of the evidence for this protection comes from laboratory experiments. Our aim was to understand how consistent protection is across different symbiont strains under natural field conditions and whether symbiont diversity enhanced the species diversity of colonizing parasitoids, as could be expected from the specificity of their protection. We used experimental colonies of the black bean aphid Aphis fabae to investigate symbiont-conferred protection under natural field conditions over two seasons. Colonies differed only in their symbiont composition, carrying either no symbionts, a single strain of the protective symbiont Hamiltonella defensa, or a mixture of three H. defensa strains. These aphid colonies were exposed to natural parasitoid communities in the field. Subsequently, we determined the parasitoids hatched from each aphid colony. The evidence for a protective effect of H. defensa was limited and inconsistent between years, and aphid colonies harbouring multiple symbiont strains did not support a more diverse parasitoid community. Instead, parasitoid diversity tended to be highest in the absence of H. defensa. Symbiont-conferred protection, although a strong and repeatable effect under laboratory conditions may not always cause the predicted bottom-up effects under natural conditions in the field.
Collapse
Affiliation(s)
- Karthik Sankar Narayan
- Department of Aquatic EcologyEawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Christoph Vorburger
- Department of Aquatic EcologyEawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Nina Hafer‐Hahmann
- Department of Aquatic EcologyEawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| |
Collapse
|
12
|
Henry Y, Brechbühler E, Vorburger C. Gated Communities: Inter- and Intraspecific Diversity of Endosymbionts Across Four Sympatric Aphid Species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.816184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aphids have evolved tight relationships with heritable endosymbionts, i.e., bacteria hosted within their tissues. Besides the primary endosymbiont Buchnera aphidicola, aphids host many facultative secondary endosymbionts with functions they may or may not benefit from. The different phenologies, lifestyles, and natural enemies of aphid species are predicted to favor the selection for distinct endosymbiont assemblages, as well as the emergence of intra-specific genetic diversity in the symbiotic bacteria. In this study, we (1) investigated the diversity of endosymbionts associated with four species from the genus Aphis in the field, and (2) we characterized the genetic diversity of Hamiltonella defensa, an endosymbiont that protects aphids against parasitoid wasps. We observed strong differences in the composition of endosymbiont communities among the four aphid species. H. defensa was clearly the dominant symbiont, although its abundance in each species varied from 25 to 96%. Using a multilocus sequence-typing approach, we found limited strain diversity in H. defensa. Each aphid species harbored two major strains, and none appeared shared between species. Symbiont phylogenies can thus help to understand the (seemingly limited) mobility of endosymbionts in aphid communities and the selection forces driving strain diversification.
Collapse
|
13
|
Vorburger C. Defensive Symbionts and the Evolution of Parasitoid Host Specialization. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:329-346. [PMID: 34614366 DOI: 10.1146/annurev-ento-072621-062042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insect host-parasitoid interactions abound in nature and are characterized by a high degree of host specialization. In addition to their behavioral and immune defenses, many host species rely on heritable bacterial endosymbionts for defense against parasitoids. Studies on aphids and flies show that resistance conferred by symbionts can be very strong and highly specific, possibly as a result of variation in symbiont-produced toxins. I argue that defensive symbionts are therefore an important source of diversifying selection, promoting the evolution of host specialization by parasitoids. This is likely to affect the structure of host-parasitoid food webs. I consider potential changes in terms of food web complexity, although the nature of these effects will also be influenced by whether maternally transmitted symbionts have some capacity for lateral transfer. This is discussed in the light of available evidence for horizontal transmission routes. Finally, I propose that defensive mutualisms other than microbial endosymbionts may also exert diversifying selection on insect parasitoids.
Collapse
Affiliation(s)
- Christoph Vorburger
- Department of Aquatic Ecology, Eawag, 8600 Dübendorf, Switzerland;
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
14
|
Gimmi E, Vorburger C. Strong genotype-by-genotype interactions between aphid-defensive symbionts and parasitoids persist across different biotic environments. J Evol Biol 2021; 34:1944-1953. [PMID: 34695269 PMCID: PMC9298302 DOI: 10.1111/jeb.13953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
The dynamics of coevolution between hosts and parasites are influenced by their genetic interactions. Highly specific interactions, where the outcome of an infection depends on the precise combination of host and parasite genotypes (G × G interactions), have the potential to maintain genetic variation by inducing negative frequency‐dependent selection. The importance of this effect also rests on whether such interactions are consistent across different environments or modified by environmental variation (G × G × E interaction). In the black bean aphid, Aphis fabae, resistance to its parasitoid Lysiphlebus fabarum is largely determined by the possession of a heritable bacterial endosymbiont, Hamiltonella defensa, with strong G × G interactions between H. defensa and L. fabarum. A key environmental factor in this system is the host plant on which the aphid feeds. Here, we exposed genetically identical aphids harbouring three different strains of H. defensa to three asexual genotypes of L. fabarum and measured parasitism success on three common host plants of A. fabae, namely Vicia faba, Chenopodium album and Beta vulgaris. As expected, we observed the pervasive G × G interaction between H. defensa and L. fabarum, but despite strong main effects of the host plants on average rates of parasitism, this interaction was not altered significantly by the host plant environment (no G × G × E interaction). The symbiont‐conferred specificity of resistance is thus likely to mediate the coevolution of A. fabae and L. fabarum, even when played out across diverse host plants of the aphid.
Collapse
Affiliation(s)
- Elena Gimmi
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Department of Environmental Systems Science, D-USYS, ETH Zürich, Switzerland
| | - Christoph Vorburger
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Department of Environmental Systems Science, D-USYS, ETH Zürich, Switzerland
| |
Collapse
|
15
|
Zhang S, Su H, Jiang W, Hu D, Ali I, Jin T, Yang Y, Ma X. Symbiotic microbial studies in diverse populations of Aphis gossypii, existing on altered host plants in different localities during different times. Ecol Evol 2021; 11:13948-13960. [PMID: 34707830 PMCID: PMC8525075 DOI: 10.1002/ece3.8100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Complex interactions between symbiotic bacteria and insects ultimately result in equilibrium in all aspects of life in natural insect populations. In this study, abundance of principal symbiotic bacteria was estimated using qPCR in 1553 individuals of aphids, Aphis gossypii. Aphids were sampled from primary and secondary host plants-hibiscus and cotton. Hibiscus aphids were collected from 24 different locations in April, September, and November, whereas cotton aphids were collected between 2015 and 2017 from areas with wide variations in climatic conditions. About 30%-45% aphids were recorded with the most dominant symbiont, Arsenophonus. The other symbionts were in low frequency, and about 7% of aphids were noted with Hamiltonella, Acinetobacter, and Microbacterium, and 3% of aphids were verified with Serratia and Pseudomonas. Aphids infected with Hamiltonella, Arsenophonus, and Serratia can influence Buchnera densities. Hamiltonella has positive interaction with densities of Arsenophonus and Serratia. Almost 100% coinfection of Hamiltonella and Arsenophonus was detected in Xinxiang aphids and 50% coinfection was reported in aphids from North China, while no coinfection was detected in Hainan aphids. These findings describe the prevalence pattern and richness of core community of symbiotic bacteria in naturally occurring populations of A. gossypii and provide new insights for the study of symbiotic bacteria.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouChina
| | - Honghua Su
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouChina
| | - Weili Jiang
- Basic Experimental Teaching Center of Life SciencesYangzhou UniversityYangzhouChina
| | - Daowu Hu
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Intazar Ali
- Department of Entomology, Faculty of Agriculture and Environment (FA & E)The Islamia University of Bahawalpur, Baghdad ul‑jadeed CampusBahawalpurPakistan
| | - Tianxing Jin
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouChina
| | - Yizhong Yang
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouChina
| | - Xiaoyan Ma
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| |
Collapse
|
16
|
Kaech H, Dennis AB, Vorburger C. Triple RNA-Seq characterizes aphid gene expression in response to infection with unequally virulent strains of the endosymbiont Hamiltonella defensa. BMC Genomics 2021; 22:449. [PMID: 34134631 PMCID: PMC8207614 DOI: 10.1186/s12864-021-07742-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background Secondary endosymbionts of aphids provide benefits to their hosts, but also impose costs such as reduced lifespan and reproductive output. The aphid Aphis fabae is host to different strains of the secondary endosymbiont Hamiltonella defensa, which encode different putative toxins. These strains have very different phenotypes: They reach different densities in the host, and the costs and benefits (protection against parasitoid wasps) they confer to the host vary strongly. Results We used RNA-Seq to generate hypotheses on why four of these strains inflict such different costs to A. fabae. We found different H. defensa strains to cause strain-specific changes in aphid gene expression, but little effect of H. defensa on gene expression of the primary endosymbiont, Buchnera aphidicola. The highly costly and over-replicating H. defensa strain H85 was associated with strongly reduced aphid expression of hemocytin, a marker of hemocytes in Drosophila. The closely related strain H15 was associated with downregulation of ubiquitin-related modifier 1, which is related to nutrient-sensing and oxidative stress in other organisms. Strain H402 was associated with strong differential regulation of a set of hypothetical proteins, the majority of which were only differentially regulated in presence of H402. Conclusions Overall, our results suggest that costs of different strains of H. defensa are likely caused by different mechanisms, and that these costs are imposed by interacting with the host rather than the host’s obligatory endosymbiont B. aphidicola. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07742-8.
Collapse
Affiliation(s)
- Heidi Kaech
- Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland. .,D-USYS, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Alice B Dennis
- Institute of Biochemistry and Biology, University Potsdam, Potsdam, Germany
| | - Christoph Vorburger
- Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,D-USYS, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
17
|
Smith AH, O'Connor MP, Deal B, Kotzer C, Lee A, Wagner B, Joffe J, Woloszynek S, Oliver KM, Russell JA. Does getting defensive get you anywhere?-Seasonal balancing selection, temperature, and parasitoids shape real-world, protective endosymbiont dynamics in the pea aphid. Mol Ecol 2021; 30:2449-2472. [PMID: 33876478 DOI: 10.1111/mec.15906] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/16/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Facultative, heritable endosymbionts are found at intermediate prevalence within most insect species, playing frequent roles in their hosts' defence against environmental pressures. Focusing on Hamiltonella defensa, a common bacterial endosymbiont of aphids, we tested the hypothesis that such pressures impose seasonal balancing selection, shaping a widespread infection polymorphism. In our studied pea aphid (Acyrthosiphon pisum) population, Hamiltonella frequencies ranged from 23.2% to 68.1% across a six-month longitudinal survey. Rapid spikes and declines were often consistent across fields, and we estimated that selection coefficients for Hamiltonella-infected aphids changed sign within this field season. Prior laboratory research suggested antiparasitoid defence as the major Hamiltonella benefit, and costs under parasitoid absence. While a prior field study suggested these forces can sometimes act as counter-weights in a regime of seasonal balancing selection, our present survey showed no significant relationship between parasitoid wasps and Hamiltonella prevalence. Field cage experiments provided some explanation: parasitoids drove modest ~10% boosts to Hamiltonella frequencies that would be hard to detect under less controlled conditions. They also showed that Hamiltonella was not always costly under parasitoid exclusion, contradicting another prediction. Instead, our longitudinal survey - and two overwintering studies - showed temperature to be the strongest predictor of Hamiltonella prevalence. Matching some prior lab discoveries, this suggested that thermally sensitive costs and benefits, unrelated to parasitism, can shape Hamiltonella dynamics. These results add to a growing body of evidence for rapid, seasonal adaptation in multivoltine organisms, suggesting that such adaptation can be mediated through the diverse impacts of heritable bacterial endosymbionts.
Collapse
Affiliation(s)
- Andrew H Smith
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Michael P O'Connor
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA, USA
| | - Brooke Deal
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Coleman Kotzer
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Amanda Lee
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Barrett Wagner
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Jonah Joffe
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | | | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
18
|
Leclair M, Buchard C, Mahéo F, Simon JC, Outreman Y. A Link Between Communities of Protective Endosymbionts and Parasitoids of the Pea Aphid Revealed in Unmanipulated Agricultural Systems. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.618331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the last decade, the influence of microbial symbionts on ecological and physiological traits of their hosts has been increasingly recognized. However, most of these effects have been revealed under laboratory conditions, which oversimplifies the complexity of the factors involved in the dynamics of symbiotic associations in nature. The pea aphid, Acyrthosiphon pisum, forms a complex of plant-adapted biotypes, which strongly differ in the prevalence of their facultative endosymbionts. Some of the facultative endosymbionts of A. pisum have been shown to confer protection against natural enemies, among which Hamiltonella defensa is known to protect its host from parasitoid wasps. Here, we tested under natural conditions whether the endosymbiont communities of different A. pisum biotypes had a protective effect on their hosts and whether endosymbiotic associations and parasitoid communities associated with the pea aphid complex were linked. A space-time monitoring of symbiotic associations, parasitoid pressure and parasitoid communities was carried out in three A. pisum biotypes respectively specialized on Medicago sativa (alfalfa), Pisum sativum (pea), and Trifolium sp. (clover) throughout the whole cropping season. While symbiotic associations, and to a lesser extent, parasitoid communities were stable over time and structured mainly by the A. pisum biotypes, the parasitoid pressure strongly varied during the season and differed among the three biotypes. This suggests a limited influence of parasitoid pressure on the dynamics of facultative endosymbionts at a seasonal scale. However, we found a positive correlation between the α and β diversities of the endosymbiont and parasitoid communities, indicating interactions between these two guilds. Also, we revealed a negative correlation between the prevalence of H. defensa and Fukatsuia symbiotica in co-infection and the intensity of parasitoid pressure in the alfalfa biotype, confirming in field conditions the protective effect of this symbiotic combination.
Collapse
|
19
|
Hafer‐Hahmann N, Vorburger C. Positive association between the diversity of symbionts and parasitoids of aphids in field populations. Ecosphere 2021. [DOI: 10.1002/ecs2.3355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Nina Hafer‐Hahmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology Überlandstrasse 133 Dübendorf8600Switzerland
| | - Christoph Vorburger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology Überlandstrasse 133 Dübendorf8600Switzerland
- Institute of Integrative Biology ETH Zürich Universitätsstrasse 16 Zürich8092Switzerland
| |
Collapse
|