1
|
Huang D, Xia R, Chen C, Liao J, Chen L, Wang D, Alvarez PJJ, Yu P. Adaptive strategies and ecological roles of phages in habitats under physicochemical stress. Trends Microbiol 2024; 32:902-916. [PMID: 38433027 DOI: 10.1016/j.tim.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024]
Abstract
Bacteriophages (phages) play a vital role in ecosystem functions by influencing the composition, genetic exchange, metabolism, and environmental adaptation of microbial communities. With recent advances in sequencing technologies and bioinformatics, our understanding of the ecology and evolution of phages in stressful environments has substantially expanded. Here, we review the impact of physicochemical environmental stress on the physiological state and community dynamics of phages, the adaptive strategies that phages employ to cope with environmental stress, and the ecological effects of phage-host interactions in stressful environments. Specifically, we highlight the contributions of phages to the adaptive evolution and functioning of microbiomes and suggest that phages and their hosts can maintain a mutualistic relationship in response to environmental stress. In addition, we discuss the ecological consequences caused by phages in stressful environments, encompassing biogeochemical cycling. Overall, this review advances an understanding of phage ecology in stressful environments, which could inform phage-based strategies to improve microbiome performance and ecosystem resilience and resistance in natural and engineering systems.
Collapse
Affiliation(s)
- Dan Huang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rong Xia
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengyi Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Linxing Chen
- Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314100, China.
| |
Collapse
|
2
|
Chen Y, Yan B, Chen W, Zhang X, Liu Z, Zhang Q, Li L, Hu M, Zhao X, Xu X, Lv Q, Luo Y, Cai Y, Liu Y. Development of the CRISPR-Cas12a system for editing of Pseudomonas aeruginosa phages. iScience 2024; 27:110210. [PMID: 39055914 PMCID: PMC11269290 DOI: 10.1016/j.isci.2024.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/26/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas aeruginosa is a common opportunistic pathogen. The potential efficacy of phage therapy has attracted the attention of researchers, but efficient gene-editing tools are lacking, limiting the study of their biological properties. Here, we designed a type V CRISPR-Cas12a system for the gene editing of P. aeruginosa phages. We first evaluated the active cutting function of the CRISPR-Cas12a system in vitro and discovered that it had a higher gene-cutting efficiency than the type II CRISPR-Cas9 system in three different P. aeruginosa phages. We also demonstrated the system's ability to precisely edit genes in Escherichia coli phages, Salmonella phages, and P. aeruginosa phages. Using the aforementioned strategies, non-essential P. aeruginosa phage genes can be efficiently deleted, resulting in a reduction of up to 5,215 bp (7.05%). Our study has provided a rapid, efficient, and time-saving tool that accelerates progress in phage engineering.
Collapse
Affiliation(s)
- Yibao Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
- Shandong Vamph Animal Health Products Co., LTD, Jinan, China
| | - Bingjie Yan
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Weizhong Chen
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xue Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Zhengjie Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Qing Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Lulu Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Ming Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
- Shandong Vamph Animal Health Products Co., LTD, Jinan, China
| | - Xiaonan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Xiaohui Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Qianghua Lv
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Yanbo Luo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Yumei Cai
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
- Shandong Vamph Animal Health Products Co., LTD, Jinan, China
| |
Collapse
|
3
|
Horwitz EK, Strobel HM, Haiso J, Meyer JR. More evolvable bacteriophages better suppress their host. Evol Appl 2024; 17:e13742. [PMID: 38975285 PMCID: PMC11224127 DOI: 10.1111/eva.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/09/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
The number of multidrug-resistant strains of bacteria is increasing rapidly, while the number of new antibiotic discoveries has stagnated. This trend has caused a surge in interest in bacteriophages as anti-bacterial therapeutics, in part because there is near limitless diversity of phages to harness. While this diversity provides an opportunity, it also creates the dilemma of having to decide which criteria to use to select phages. Here we test whether a phage's ability to coevolve with its host (evolvability) should be considered and how this property compares to two previously proposed criteria: fast reproduction and thermostability. To do this, we compared the suppressiveness of three phages that vary by a single amino acid yet differ in these traits such that each strain maximized two of three characteristics. Our studies revealed that both evolvability and reproductive rate are independently important. The phage most able to suppress bacterial populations was the strain with high evolvability and reproductive rate, yet this phage was unstable. Phages varied due to differences in the types of resistance evolved against them and their ability to counteract resistance. When conditions were shifted to exaggerate the importance of thermostability, one of the stable phages was most suppressive in the short-term, but not over the long-term. Our results demonstrate the utility of biological therapeutics' capacities to evolve and adjust in action to resolve complications like resistance evolution. Furthermore, evolvability is a property that can be engineered into phage therapeutics to enhance their effectiveness.
Collapse
Affiliation(s)
- Elijah K. Horwitz
- Department of Ecology, Behavior and EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Hannah M. Strobel
- Department of Ecology, Behavior and EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Jason Haiso
- Department of Ecology, Behavior and EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Justin R. Meyer
- Department of Ecology, Behavior and EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
4
|
Moore CJ, Bornemann TLV, Figueroa-Gonzalez PA, Esser SP, Moraru C, Soares AR, Hinzke T, Trautwein-Schult A, Maaß S, Becher D, Starke J, Plewka J, Rothe L, Probst AJ. Time-series metaproteogenomics of a high-CO 2 aquifer reveals active viruses with fluctuating abundances and broad host ranges. MICROLIFE 2024; 5:uqae011. [PMID: 38855384 PMCID: PMC11162154 DOI: 10.1093/femsml/uqae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
Ecosystems subject to mantle degassing are of particular interest for understanding global biogeochemistry, as their microbiomes are shaped by prolonged exposure to high CO2 and have recently been suggested to be highly active. While the genetic diversity of bacteria and archaea in these deep biosphere systems have been studied extensively, little is known about how viruses impact these microbial communities. Here, we show that the viral community in a high-CO2 cold-water geyser (Wallender Born, Germany) undergoes substantial fluctuations over a period of 12 days, although the corresponding prokaryotic community remains stable, indicating a newly observed "infect to keep in check" strategy that maintains prokaryotic community structure. We characterized the viral community using metagenomics and metaproteomics, revealing 8 654 viral operational taxonomic units (vOTUs). CRISPR spacer-to-protospacer matching linked 278 vOTUs to 32 hosts, with many vOTUs sharing hosts from different families. High levels of viral structural proteins present in the metaproteome (several structurally annotated based on AlphaFold models) indicate active virion production at the time of sampling. Viral genomes expressed many proteins involved in DNA metabolism and manipulation, and encoded for auxiliary metabolic genes, which likely bolster phosphate and sulfur metabolism of their hosts. The active viral community encodes genes to facilitate acquisition and transformation of host nutrients, and appears to consist of many nutrient-demanding members, based on abundant virion proteins. These findings indicate viruses are inextricably linked to the biogeochemical cycling in this high-CO2 environment and substantially contribute to prokaryotic community stability in the deep biosphere hotspots.
Collapse
Affiliation(s)
- Carrie Julia Moore
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - Till L V Bornemann
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Perla Abigail Figueroa-Gonzalez
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - Sarah P Esser
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - Cristina Moraru
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - André Rodrigues Soares
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Tjorven Hinzke
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
- Department of Pathogen Evolution, Helmholtz Institute for One Health, 17489 Greifswald, Germany
| | - Anke Trautwein-Schult
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Sandra Maaß
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Joern Starke
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - Julia Plewka
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
| | - Lousia Rothe
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Alexander J Probst
- Environmental Metagenomics, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University Duisburg-Essen, 45141 Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
5
|
Pfeifer E, Rocha EPC. Phage-plasmids promote recombination and emergence of phages and plasmids. Nat Commun 2024; 15:1545. [PMID: 38378896 PMCID: PMC10879196 DOI: 10.1038/s41467-024-45757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Phages and plasmids are regarded as distinct types of mobile genetic elements that drive bacterial evolution by horizontal gene transfer. However, the distinction between both types is blurred by the existence of elements known as prophage-plasmids or phage-plasmids, which transfer horizontally between cells as viruses and vertically within cellular lineages as plasmids. Here, we study gene flow between the three types of elements. We show that the gene repertoire of phage-plasmids overlaps with those of phages and plasmids. By tracking recent recombination events, we find that phage-plasmids exchange genes more frequently with plasmids than with phages, and that direct gene exchange between plasmids and phages is less frequent in comparison. The results suggest that phage-plasmids can mediate gene flow between plasmids and phages, including exchange of mobile element core functions, defense systems, and antibiotic resistance. Moreover, a combination of gene transfer and gene inactivation may result in the conversion of elements. For example, gene loss turns P1-like phage-plasmids into integrative prophages or into plasmids (that are no longer phages). Remarkably, some of the latter have acquired conjugation-related functions to became mobilisable by conjugation. Thus, our work indicates that phage-plasmids can play a key role in the transfer of genes across mobile elements within their hosts, and can act as intermediates in the conversion of one type of element into another.
Collapse
Affiliation(s)
- Eugen Pfeifer
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, 75015, Paris, France.
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, 75015, Paris, France.
| |
Collapse
|
6
|
Thammatinna K, Sinprasertporn A, Naknaen A, Samernate T, Nuanpirom J, Chanwong P, Somboonwiwat K, Pogliano J, Sathapondecha P, Thawonsuwan J, Nonejuie P, Chaikeeratisak V. Nucleus-forming vibriophage cocktail reduces shrimp mortality in the presence of pathogenic bacteria. Sci Rep 2023; 13:17844. [PMID: 37857653 PMCID: PMC10587174 DOI: 10.1038/s41598-023-44840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
The global aquaculture industry has suffered significant losses due to the outbreak of Acute Hepatopancreatic Necrosis Disease (AHPND) caused by Vibrio parahaemolyticus. Since the use of antibiotics as control agents has not been shown to be effective, an alternative anti-infective regimen, such as phage therapy, has been proposed. Here, we employed high-throughput screening for potential phages from 98 seawater samples and obtained 14 phages exhibiting diverse host specificity patterns against pathogenic VPAHPND strains. Among others, two Chimallinviridae phages, designated Eric and Ariel, exhibited the widest host spectrum against vibrios. In vitro and in vivo studies revealed that a cocktail derived from these two nucleus-forming vibriophages prolonged the bacterial regrowth of various pathogenic VPAHPND strains and reduced shrimp mortality from VPAHPND infection. This research highlights the use of high-throughput phage screening that leads to the formulation of a nucleus-forming phage cocktail applicable for bacterial infection treatment in aquaculture.
Collapse
Affiliation(s)
- Khrongkhwan Thammatinna
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ammara Sinprasertporn
- Songkhla Aquatic Animal Health Research and Development Center (SAAHRDC), Department of Fisheries, Songkhla, Thailand
| | - Ampapan Naknaen
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanadon Samernate
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Jiratchaya Nuanpirom
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Parinda Chanwong
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ponsit Sathapondecha
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jumroensri Thawonsuwan
- Songkhla Aquatic Animal Health Research and Development Center (SAAHRDC), Department of Fisheries, Songkhla, Thailand
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Moniruzzaman M, Erazo Garcia MP, Farzad R, Ha AD, Jivaji A, Karki S, Sheyn U, Stanton J, Minch B, Stephens D, Hancks DC, Rodrigues RAL, Abrahao JS, Vardi A, Aylward FO. Virologs, viral mimicry, and virocell metabolism: the expanding scale of cellular functions encoded in the complex genomes of giant viruses. FEMS Microbiol Rev 2023; 47:fuad053. [PMID: 37740576 PMCID: PMC10583209 DOI: 10.1093/femsre/fuad053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The phylum Nucleocytoviricota includes the largest and most complex viruses known. These "giant viruses" have a long evolutionary history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired from the host-referred to here as viral homologs or "virologs"-as a means of promoting viral propagation. The best-known examples of these are involved in mimicry, in which viral machinery "imitates" immunomodulatory elements in the vertebrate defense system. But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Maria Paula Erazo Garcia
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Abdeali Jivaji
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Sangita Karki
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Uri Sheyn
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Joshua Stanton
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Benjamin Minch
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Danae Stephens
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, United States
| | - Rodrigo A L Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Jonatas S Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
8
|
Ha AD, Moniruzzaman M, Aylward FO. Assessing the biogeography of marine giant viruses in four oceanic transects. ISME COMMUNICATIONS 2023; 3:43. [PMID: 37120676 PMCID: PMC10148842 DOI: 10.1038/s43705-023-00252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Viruses of the phylum Nucleocytoviricota are ubiquitous in ocean waters and play important roles in shaping the dynamics of marine ecosystems. In this study, we leveraged the bioGEOTRACES metagenomic dataset collected across the Atlantic and Pacific Oceans to investigate the biogeography of these viruses in marine environments. We identified 330 viral genomes, including 212 in the order Imitervirales and 54 in the order Algavirales. We found that most viruses appeared to be prevalent in shallow waters (<150 m), and that viruses of the Mesomimiviridae (Imitervirales) and Prasinoviridae (Algavirales) are by far the most abundant and diverse groups in our survey. Five mesomimiviruses and one prasinovirus are particularly widespread in oligotrophic waters; annotation of these genomes revealed common stress response systems, photosynthesis-associated genes, and oxidative stress modulation genes that may be key to their broad distribution in the pelagic ocean. We identified a latitudinal pattern in viral diversity in one cruise that traversed the North and South Atlantic Ocean, with viral diversity peaking at high latitudes of the northern hemisphere. Community analyses revealed three distinct Nucleocytoviricota communities across latitudes, categorized by latitudinal distance towards the equator. Our results contribute to the understanding of the biogeography of these viruses in marine systems.
Collapse
Affiliation(s)
- Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Mohammad Moniruzzaman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149, USA
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
9
|
Mayers KMJ, Kuhlisch C, Basso JTR, Saltvedt MR, Buchan A, Sandaa RA. Grazing on Marine Viruses and Its Biogeochemical Implications. mBio 2023; 14:e0192121. [PMID: 36715508 PMCID: PMC9973340 DOI: 10.1128/mbio.01921-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Viruses are the most abundant biological entities in the ocean and show great diversity in terms of size, host specificity, and infection cycle. Lytic viruses induce host cell lysis to release their progeny and thereby redirect nutrients from higher to lower trophic levels. Studies continue to show that marine viruses can be ingested by nonhost organisms. However, not much is known about the role of viral particles as a nutrient source and whether they possess a nutritional value to the grazing organisms. This review seeks to assess the elemental composition and biogeochemical relevance of marine viruses, including roseophages, which are a highly abundant group of bacteriophages in the marine environment. We place a particular emphasis on the phylum Nucleocytoviricota (NCV) (formerly known as nucleocytoplasmic large DNA viruses [NCLDVs]), which comprises some of the largest viral particles in the marine plankton that are well in the size range of prey for marine grazers. Many NCVs contain lipid membranes in their capsid that are rich carbon and energy sources, which further increases their nutritional value. Marine viruses may thus be an important nutritional component of the marine plankton, which can be reintegrated into the classical food web by nonhost organism grazing, a process that we coin the "viral sweep." Possibilities for future research to resolve this process are highlighted and discussed in light of current technological advancements.
Collapse
Affiliation(s)
- Kyle M. J. Mayers
- Environment and Climate Division, NORCE Norwegian Research Centre, Bergen, Norway
| | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonelle T. R. Basso
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | | | - Alison Buchan
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - Ruth-Anne Sandaa
- Department of Microbiology, University of Bergen, Bergen, Norway
| |
Collapse
|
10
|
Abundant and cosmopolitan lineage of cyanopodoviruses lacking a DNA polymerase gene. THE ISME JOURNAL 2023; 17:252-262. [PMID: 36357781 PMCID: PMC9860041 DOI: 10.1038/s41396-022-01340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Cyanopodoviruses affect the mortality and population dynamics of the unicellular picocyanobacteria Prochlorococcus and Synechococcus, the dominant primary producers in the oceans. Known cyanopodoviruses all contain the DNA polymerase gene (DNA pol) that is important for phage DNA replication and widely used in field quantification and diversity studies. However, we isolated 18 cyanopodoviruses without identifiable DNA pol. They form a new MPP-C clade that was separated from the existing MPP-A, MPP-B, and P-RSP2 clades. The MPP-C phages have the smallest genomes (37.3-37.9 kb) among sequenced cyanophages, and show longer latent periods than the MPP-B phages. Metagenomic reads of both clades are highly abundant in surface waters, but the MPP-C phages show higher relative abundance in surface waters than in deeper waters, while MPP-B phages have higher relative abundance in deeper waters. Our study reveals that cyanophages with distinct genomic contents and infection kinetics can exhibit different depth profiles in the oceans.
Collapse
|
11
|
Wang H, Li S, Wang L, Liao Z, Zhang H, Wei T, Dai Z. Functionalized biological metal-organic framework with nanosized coronal structure and hierarchical wrapping pattern for enhanced targeting therapy. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 456:140963. [PMID: 36531859 PMCID: PMC9749395 DOI: 10.1016/j.cej.2022.140963] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Inefficient tumor-targeted delivery and uncontrolled drug release are the major obstacles in cancer chemotherapy. Herein, inspired by the targeting advantage of coronavirus from its size and coronal structure, a coronal biological metal-organic framework nanovehicle (named as corona-BioMOF) is constructed for improving its precise cancer targeting ability. The designed corona-BioMOF is constructed as the carriers-encapsulated carrier model by inner coated with abundant protein-nanocaged doxorubicin particles and external decorated with high-affinity apoferritin proteins to form the spiky surface for constructing the specific coronal structure. The corona-BioMOF shows a higher affinity and an enhanced targeting ability towards receptor-positive cancer cells compared to that of MOF-drug composites without spiky surface. It also exhibits the hierarchical wrapping pattern-endowed controlled lysosome-specific drug release and remarkable tumor lethality in vivo. Moreover, water-induced surface defect-based protein handle mechanism is first proposed to shape the coronal-BioMOF. This work will provide a better inspiration for nanovehicle construction and be broadly useful for clinical precision nanomedicine.
Collapse
Affiliation(s)
- Huafeng Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shi Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Lei Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zimei Liao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hang Zhang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Zhihui Dai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
12
|
Yuan S, Shi J, Jiang J, Ma Y. Genome-scale top-down strategy to generate viable genome-reduced phages. Nucleic Acids Res 2022; 50:13183-13197. [PMID: 36511873 PMCID: PMC9825161 DOI: 10.1093/nar/gkac1168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Efforts have been made to reduce the genomes of living cells, but phage genome reduction remains challenging. It is of great interest to investigate whether genome reduction can make phages obtain new infectious properties. We developed a CRISPR/Cas9-based iterative phage genome reduction (CiPGr) approach and applied this to four distinct phages, thereby obtaining heterogeneous genome-reduced mutants. We isolated and sequenced 200 mutants with loss of up to 8-23% (3.3-35 kbp) of the original sequences. This allowed the identification of non-essential genes for phage propagation, although loss of these genes is mostly detrimental to phage fitness to various degrees. Notwithstanding this, mutants with higher infectious efficiency than their parental strains were characterized, indicating a trade-off between genome reduction and infectious fitness for phages. In conclusion, this study provides a foundation for future work to leverage the information generated by CiPGr in phage synthetic biology research.
Collapse
Affiliation(s)
- Shengjian Yuan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Shi
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianrong Jiang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yingfei Ma
- To whom correspondence should be addressed. Tel: +86 755 8639 2674;
| |
Collapse
|
13
|
Lam A, Yuan DS, Ahmed SH, Rawle RJ. Viral Size Modulates Sendai Virus Binding to Cholesterol-Stabilized Receptor Nanoclusters. J Phys Chem B 2022; 126:6802-6810. [PMID: 36001793 PMCID: PMC9484459 DOI: 10.1021/acs.jpcb.2c03830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Binding to the host membrane is the initial infection step for animal viruses. Sendai virus (SeV), the model respirovirus studied here, utilizes sialic-acid-conjugated glycoproteins and glycolipids as receptors for binding. In a previous report studying single virus binding to supported lipid bilayers (SLBs), we found a puzzling mechanistic difference between the binding of SeV and influenza A virus (strain X31, IAVX31). Both viruses use similar receptors and exhibit similar cooperative binding behavior, but whereas IAVX31 binding was altered by SLB cholesterol concentration, which can stabilize receptor nanoclusters, SeV was not. Here, we propose that differences in viral size distributions can explain this discrepancy; viral size could alter the number of virus-receptor interactions in the contact area and, therefore, the sensitivity to receptor nanoclusters. To test this, we compared the dependence of SeV binding on SLB cholesterol concentration between size-filtered and unfiltered SeV. At high receptor density, the unfiltered virus showed little dependence, but the size-filtered virus exhibited a linear cholesterol dependence, similar to IAVX31. However, at low receptor densities, the unfiltered virus did exhibit a cholesterol dependence, indicating that receptor nanoclusters enhance viral binding only when the number of potential virus-receptor interactions is small enough. We also studied the influence of viral size and receptor nanoclusters on viral mobility following binding. Whereas differences in viral size greatly influenced mobility, the effect of receptor nanoclusters on mobility was small. Together, our results highlight the mechanistic salience of both the distribution of viral sizes and the lateral distribution of receptors in a viral infection.
Collapse
Affiliation(s)
- Amy Lam
- Department of Chemistry, Williams
College, Williamstown, Massachusetts01267, United States
| | - Daniel S. Yuan
- Department of Chemistry, Williams
College, Williamstown, Massachusetts01267, United States
| | - Samir H. Ahmed
- Department of Chemistry, Williams
College, Williamstown, Massachusetts01267, United States
| | - Robert J. Rawle
- Department of Chemistry, Williams
College, Williamstown, Massachusetts01267, United States
| |
Collapse
|
14
|
Abstract
Viruses are obligate intracellular parasites. Despite their dependence on host cells, viruses are evolutionarily autonomous, with their own genomes and evolutionary trajectories locked in arms races with the hosts. Here, we discuss a simple functional logic to explain virus macroevolution that appears to define the course of virus evolution. A small core of virus hallmark genes that are responsible for genome replication apparently descended from primordial replicators, whereas most virus genes, starting with those encoding capsid proteins, were subsequently acquired from hosts. The oldest of these acquisitions antedate the last universal cellular ancestor (LUCA). Host gene capture followed two major routes: convergent recruitment of genes with functions that directly benefit virus reproduction and exaptation when host proteins are repurposed for unique virus functions. These forms of host protein recruitment by viruses result in different levels of similarity between virus and host homologs, with the exapted ones often changing beyond easy recognition.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA.
| | - Valerian V Dolja
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA; Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, F-75015 Paris, France.
| |
Collapse
|
15
|
Xie L, Zhang R, Luo YW. Assessment of Explicit Representation of Dynamic Viral Processes in Regional Marine Ecological Models. Viruses 2022; 14:v14071448. [PMID: 35891428 PMCID: PMC9324674 DOI: 10.3390/v14071448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 01/27/2023] Open
Abstract
Viruses, the most abundant microorganisms in the ocean, play important roles in marine ecosystems, mainly by killing their hosts and contributing to nutrient recycling. However, in models simulating ecosystems in real marine environments, the virus-mediated mortality (VMM) rates of their hosts are implicitly represented by constant parameters, thus ignoring the dynamics caused by interactions between viruses and hosts. Here, we construct a model explicitly representing marine viruses and the VMM rates of major hosts, heterotrophic bacteria, and apply it to two sites in the oligotrophic North Pacific and the more productive Arabian Sea. The impacts of the viral processes were assessed by comparing model results with the viral processes enabled and disabled. For reliable assessments, a data assimilation method was used to objectively optimize the model parameters in each run. The model generated spatiotemporally variable VMM rates, generally decreasing in the subsurface but increasing at the surface. Although the dynamics introduced by viruses could be partly stabilized by the ecosystems, they still caused substantial changes to the bacterial abundance, primary production and carbon export, with the changes greater at the more productive site. Our modeling experiments reveal the importance of explicitly simulating dynamic viral processes in marine ecological models.
Collapse
|
16
|
Dominguez-Huerta G, Zayed AA, Wainaina JM, Guo J, Tian F, Pratama AA, Bolduc B, Mohssen M, Zablocki O, Pelletier E, Delage E, Alberti A, Aury JM, Carradec Q, da Silva C, Labadie K, Poulain J, Bowler C, Eveillard D, Guidi L, Karsenti E, Kuhn JH, Ogata H, Wincker P, Culley A, Chaffron S, Sullivan MB. Diversity and ecological footprint of Global Ocean RNA viruses. Science 2022; 376:1202-1208. [PMID: 35679415 DOI: 10.1126/science.abn6358] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA viruses are increasingly recognized as influencing marine microbes and microbe-mediated biogeochemical cycling. However, little is known about global marine RNA virus diversity, ecology, and ecosystem roles. In this study, we uncover patterns and predictors of marine RNA virus community- and "species"-level diversity and contextualize their ecological impacts from pole to pole. Our analyses revealed four ecological zones, latitudinal and depth diversity patterns, and environmental correlates for RNA viruses. Our findings only partially parallel those of cosampled plankton and show unexpectedly high polar ecological interactions. The influence of RNA viruses on ecosystems appears to be large, as predicted hosts are ecologically important. Moreover, the occurrence of auxiliary metabolic genes indicates that RNA viruses cause reprogramming of diverse host metabolisms, including photosynthesis and carbon cycling, and that RNA virus abundances predict ocean carbon export.
Collapse
Affiliation(s)
- Guillermo Dominguez-Huerta
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,EMERGE Biology Integration Institute, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,EMERGE Biology Integration Institute, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA
| | - James M Wainaina
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA
| | - Jiarong Guo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,EMERGE Biology Integration Institute, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA
| | - Funing Tian
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA
| | - Akbar Adjie Pratama
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,EMERGE Biology Integration Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,EMERGE Biology Integration Institute, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA
| | - Mohamed Mohssen
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA.,The Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Olivier Zablocki
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,EMERGE Biology Integration Institute, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Erwan Delage
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France.,Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Corinne da Silva
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | | | - Chris Bowler
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France.,Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Damien Eveillard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France.,Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France
| | - Lionel Guidi
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefanche, LOV, F-06230 Villefranche-sur-mer, France
| | - Eric Karsenti
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France.,Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.,Directors' Research European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Alexander Culley
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Samuel Chaffron
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France.,Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,EMERGE Biology Integration Institute, The Ohio State University, Columbus, OH 43210, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH 43210, USA.,The Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Weinheimer AR, Aylward FO. Infection strategy and biogeography distinguish cosmopolitan groups of marine jumbo bacteriophages. THE ISME JOURNAL 2022; 16:1657-1667. [PMID: 35260829 PMCID: PMC9123017 DOI: 10.1038/s41396-022-01214-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Abstract
Recent research has underscored the immense diversity and key biogeochemical roles of large DNA viruses in the ocean. Although they are important constituents of marine ecosystems, it is sometimes difficult to detect these viruses due to their large size and complex genomes. This is true for "jumbo" bacteriophages, which have genome sizes >200 kbp and large capsids reaching up to 0.45 µm in diameter. In this study, we sought to assess the genomic diversity and distribution of these bacteriophages in the ocean by generating and analyzing jumbo phage genomes from metagenomes. We recover 85 marine jumbo phages that ranged in size from 201 to 498 kilobases, and we examine their genetic similarities and biogeography together with a reference database of marine jumbo phage genomes. By analyzing Tara Oceans metagenomic data, we show that although most jumbo phages can be detected in a range of different size fractions, 17 of our bins tend to be found in those greater than 0.22 µm, potentially due to their large size. Our network-based analysis of gene-sharing patterns reveals that jumbo bacteriophages belong to five genome clusters that are typified by diverse replication strategies, genomic repertoires, and potential host ranges. Our analysis of jumbo phage distributions in the ocean reveals that depth is a major factor shaping their biogeography, with some phage genome clusters occurring preferentially in either surface or mesopelagic waters, respectively. Taken together, our findings indicate that jumbo phages are widespread community members in the ocean with complex genomic repertoires and ecological impacts that warrant further targeted investigation.
Collapse
Affiliation(s)
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061-0913, USA
| |
Collapse
|
18
|
Flynn KJ, Mitra A, Wilson WH, Kimmance SA, Clark DR, Pelusi A, Polimene L. 'Boom-and-busted' dynamics of phytoplankton-virus interactions explain the paradox of the plankton. THE NEW PHYTOLOGIST 2022; 234:990-1002. [PMID: 35179778 PMCID: PMC9313554 DOI: 10.1111/nph.18042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/04/2022] [Indexed: 05/13/2023]
Abstract
Rapid virus proliferation can exert a powerful control on phytoplankton host populations, playing a significant role in marine biogeochemistry and ecology. We explore how marine lytic viruses impact phytoplankton succession, affecting host and nonhost populations. Using an in silico food web we conducted simulation experiments under a range of different abiotic and biotic conditions, exploring virus-host-grazer interactions and manipulating competition, allometry, motility and cyst cycles. Virus-host and predator-prey interactions, and interactions with competitors, generate bloom dynamics with a pronounced 'boom-and-busted' dynamic (BBeD) which leads to the suppression of otherwise potentially successful phytoplankton species. The BBeD is less pronounced at low nutrient loading through distancing of phytoplankton hosts, while high sediment loading and high nonhost biomass decrease the abundance of viruses through adsorption. Larger hosts are inherently more distanced, but motility increases virus attack, while cyst cycles promote spatial and temporal distancing. Virus control of phytoplankton bloom development appears more important than virus-induced termination of those blooms. This affects plankton succession - not only the growth of species infected by the virus, but also those that compete for the same resources and are collectively subjected to common grazer control. The role of viruses in structuring plankton communities via BBeDs can thus provide an explanation for the paradox of the plankton.
Collapse
Affiliation(s)
- Kevin J. Flynn
- Plymouth Marine LaboratoryProspect Place, West HoePlymouthPL1 3DHUK
| | - Aditee Mitra
- School of Earth and Environmental SciencesCardiff UniversityCardiffCF10 3ATUK
| | - William H. Wilson
- Marine Biological Association of the UK, The LaboratoryCitadel HillPlymouthPL1 2PBUK
- School of Biological and Marine SciencesUniversity of PlymouthPL4 8AAUK
| | | | - Darren R. Clark
- Plymouth Marine LaboratoryProspect Place, West HoePlymouthPL1 3DHUK
| | - Angela Pelusi
- School of Earth and Environmental SciencesCardiff UniversityCardiffCF10 3ATUK
| | - Luca Polimene
- Plymouth Marine LaboratoryProspect Place, West HoePlymouthPL1 3DHUK
| |
Collapse
|
19
|
Predicting the capsid architecture of phages from metagenomic data. Comput Struct Biotechnol J 2022; 20:721-732. [PMID: 35140890 PMCID: PMC8814770 DOI: 10.1016/j.csbj.2021.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/29/2022] Open
Abstract
Tailed phages are viruses that infect bacteria and are the most abundant biological entities on Earth. Their ecological, evolutionary, and biogeochemical roles in the planet stem from their genomic diversity. Known tailed phage genomes range from 10 to 735 kilobase pairs thanks to the size variability of the protective protein capsids that store them. However, the role of tailed phage capsids’ diversity in ecosystems is unclear. A fundamental gap is the difficulty of associating genomic information with viral capsids in the environment. To address this problem, here, we introduce a computational approach to predict the capsid architecture (T-number) of tailed phages using the sequence of a single gene—the major capsid protein. This approach relies on an allometric model that relates the genome length and capsid architecture of tailed phages. This allometric model was applied to isolated phage genomes to generate a library that associated major capsid proteins and putative capsid architectures. This library was used to train machine learning methods, and the most computationally scalable model investigated (random forest) was applied to human gut metagenomes. Compared to isolated phages, the analysis of gut data reveals a large abundance of mid-sized (T = 7) capsids, as expected, followed by a relatively large frequency of jumbo-like tailed phage capsids (T ≥ 25) and small capsids (T = 4) that have been under-sampled. We discussed how to increase the method’s accuracy and how to extend the approach to other viruses. The computational pipeline introduced here opens the doors to monitor the ongoing evolution and selection of viral capsids across ecosystems.
Collapse
|
20
|
Gómez-López VM, Jubinville E, Rodríguez-López MI, Trudel-Ferland M, Bouchard S, Jean J. Inactivation of Foodborne Viruses by UV Light: A Review. Foods 2021; 10:foods10123141. [PMID: 34945692 PMCID: PMC8701782 DOI: 10.3390/foods10123141] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Viruses on some foods can be inactivated by exposure to ultraviolet (UV) light. This green technology has little impact on product quality and, thus, could be used to increase food safety. While its bactericidal effect has been studied extensively, little is known about the viricidal effect of UV on foods. The mechanism of viral inactivation by UV results mainly from an alteration of the genetic material (DNA or RNA) within the viral capsid and, to a lesser extent, by modifying major and minor viral proteins of the capsid. In this review, we examine the potential of UV treatment as a means of inactivating viruses on food processing surfaces and different foods. The most common foodborne viruses and their laboratory surrogates; further explanation on the inactivation mechanism and its efficacy in water, liquid foods, meat products, fruits, and vegetables; and the prospects for the commercial application of this technology are discussed. Lastly, we describe UV’s limitations and legislation surrounding its use. Based on our review of the literature, viral inactivation in water seems to be particularly effective. While consistent inactivation through turbid liquid food or the entire surface of irregular food matrices is more challenging, some treatments on different food matrices seem promising.
Collapse
Affiliation(s)
- Vicente M. Gómez-López
- Catedra Alimentos para la Salud, Universidad Católica San Antonio de Murcia, Campus de los Jerónimos, E-30107 Murcia, Spain;
| | - Eric Jubinville
- Institute of Nutraceuticals and Functional Foods, Département des Sciences des Aliments, Université Laval, Québec, QC G1V 0A6, Canada; (E.J.); (M.T.-F.); (S.B.)
| | - María Isabel Rodríguez-López
- Departamento de Tecnología de la Alimentación y Nutrición, Universidad Católica San Antonio de Murcia, Campus de los Jerónimos, E-30107 Murcia, Spain;
| | - Mathilde Trudel-Ferland
- Institute of Nutraceuticals and Functional Foods, Département des Sciences des Aliments, Université Laval, Québec, QC G1V 0A6, Canada; (E.J.); (M.T.-F.); (S.B.)
| | - Simon Bouchard
- Institute of Nutraceuticals and Functional Foods, Département des Sciences des Aliments, Université Laval, Québec, QC G1V 0A6, Canada; (E.J.); (M.T.-F.); (S.B.)
| | - Julie Jean
- Institute of Nutraceuticals and Functional Foods, Département des Sciences des Aliments, Université Laval, Québec, QC G1V 0A6, Canada; (E.J.); (M.T.-F.); (S.B.)
- Correspondence: ; Tel.: +1-418-656-2131 (ext. 413849)
| |
Collapse
|
21
|
DeLong JP, Al-Sammak MA, Al-Ameeli ZT, Dunigan DD, Edwards KF, Fuhrmann JJ, Gleghorn JP, Li H, Haramoto K, Harrison AO, Marston MF, Moore RM, Polson SW, Ferrell BD, Salsbery ME, Schvarcz CR, Shirazi J, Steward GF, Van Etten JL, Wommack KE. Towards an integrative view of virus phenotypes. Nat Rev Microbiol 2021; 20:83-94. [PMID: 34522049 DOI: 10.1038/s41579-021-00612-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
Understanding how phenotypes emerge from genotypes is a foundational goal in biology. As challenging as this task is when considering cellular life, it is further complicated in the case of viruses. During replication, a virus as a discrete entity (the virion) disappears and manifests itself as a metabolic amalgam between the virus and the host (the virocell). Identifying traits that unambiguously constitute a virus's phenotype is straightforward for the virion, less so for the virocell. Here, we present a framework for categorizing virus phenotypes that encompasses both virion and virocell stages and considers functional and performance traits of viruses in the context of fitness. Such an integrated view of virus phenotype is necessary for comprehensive interpretation of viral genome sequences and will advance our understanding of viral evolution and ecology.
Collapse
Affiliation(s)
- John P DeLong
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Maitham A Al-Sammak
- Tropical Biological Research Unit, College of Science, University of Baghdad, Baghdad, Iraq.,Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Zeina T Al-Ameeli
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA.,Medical Technical Institutes, Middle Technical University, Baghdad, Iraq
| | - David D Dunigan
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Kyle F Edwards
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Jeffry J Fuhrmann
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Jason P Gleghorn
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Hanqun Li
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Kona Haramoto
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Amelia O Harrison
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Marcia F Marston
- Department of Biology and Marine Biology, Roger Williams University, Bristol, RI, USA
| | - Ryan M Moore
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Shawn W Polson
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Barbra D Ferrell
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Miranda E Salsbery
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Jasmine Shirazi
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Grieg F Steward
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - James L Van Etten
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - K Eric Wommack
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA. .,Department of Biological Sciences, University of Delaware, Newark, DE, USA. .,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.
| |
Collapse
|
22
|
Demory D, Weitz JS, Baudoux AC, Touzeau S, Simon N, Rabouille S, Sciandra A, Bernard O. A thermal trade-off between viral production and degradation drives virus-phytoplankton population dynamics. Ecol Lett 2021; 24:1133-1144. [PMID: 33877734 DOI: 10.1111/ele.13722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Marine viruses interact with microbial hosts in dynamic environments shaped by variation in abiotic factors, including temperature. However, the impacts of temperature on viral infection of phytoplankton are not well understood. Here we coupled mathematical modelling with experiments to explore the effect of temperature on virus-phytoplankton interactions. Our model shows the negative consequences of high temperatures on infection and suggests a temperature-dependent threshold between viral production and degradation. Modelling long-term dynamics in environments with different average temperatures revealed the potential for long-term host-virus coexistence, epidemic free or habitat loss states. We generalised our model to variation in global sea surface temperatures corresponding to present and future seas and show that climate change may differentially influence virus-host dynamics depending on the virus-host pair. Temperature-dependent changes in the infectivity of virus particles may lead to shifts in virus-host habitats in warmer oceans, analogous to projected changes in the habitats of macro-, microorganisms and pathogens.
Collapse
Affiliation(s)
- David Demory
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anne-Claire Baudoux
- Sorbonne Université, CNRS, UMR 7144 - Ecology of Marine Plankton, Station Biologique de Roscoff, Roscoff, 29860, France
| | - Suzanne Touzeau
- Université Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORE, Sophia Antipolis, 06902, France.,Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Natalie Simon
- Sorbonne Université, CNRS, UMR 7144 - Ecology of Marine Plankton, Station Biologique de Roscoff, Roscoff, 29860, France
| | - Sophie Rabouille
- Sorbonne Université, CNRS, UMR 7621 - Laboratoire d'Océanographie Microbienne, Banyuls-sur-Mer, 66650, France
| | - Antoine Sciandra
- Sorbonne Université, CNRS, UMR 7093 - Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, 06230, France
| | - Olivier Bernard
- Université Côte d'Azur, INRIA, INRAE, CNRS, Sorbonne Université, BIOCORE, Sophia Antipolis, 06902, France
| |
Collapse
|
23
|
Chaudhari HV, Inamdar MM, Kondabagil K. Scaling relation between genome length and particle size of viruses provides insights into viral life history. iScience 2021; 24:102452. [PMID: 34113814 PMCID: PMC8169800 DOI: 10.1016/j.isci.2021.102452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
In terms of genome and particle sizes, viruses exhibit great diversity. With the discovery of several nucleocytoplasmic large DNA viruses (NCLDVs) and jumbo phages, the relationship between particle and genome sizes has emerged as an important criterion for understanding virus evolution. We use allometric scaling of capsid volume with the genome length of different groups of viruses to shed light on its relationship with virus life history. The allometric exponents for icosahedral dsDNA bacteriophages and NCDLVs were found to be 1 and 2, respectively, indicating that with increasing capsid size DNA packaging density remains the same in bacteriophages but decreases for NCLDVs. We argue that the exponents are largely shaped by their entry mechanism and capsid mechanical stability. We further show that these allometric size parameters are also intricately linked to the relative energy costs of translation and replication in viruses and can have further implications on viral life history. Capsid and genome size allometric exponent gives insights into viral life history The allometric exponent of NCLDVs is almost twice that of bacteriophages The exponent is largely shaped by the viral entry mechanism and capsid stability The relaxed genome size constraint allows large viruses to evolve greater autonomy
Collapse
Affiliation(s)
- Harshali V Chaudhari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
24
|
Glazier DS. Genome Size Covaries More Positively with Propagule Size than Adult Size: New Insights into an Old Problem. BIOLOGY 2021; 10:270. [PMID: 33810583 PMCID: PMC8067107 DOI: 10.3390/biology10040270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The body size and (or) complexity of organisms is not uniformly related to the amount of genetic material (DNA) contained in each of their cell nuclei ('genome size'). This surprising mismatch between the physical structure of organisms and their underlying genetic information appears to relate to variable accumulation of repetitive DNA sequences, but why this variation has evolved is little understood. Here, I show that genome size correlates more positively with egg size than adult size in crustaceans. I explain this and comparable patterns observed in other kinds of animals and plants as resulting from genome size relating strongly to cell size in most organisms, which should also apply to single-celled eggs and other reproductive propagules with relatively few cells that are pivotal first steps in their lives. However, since body size results from growth in cell size or number or both, it relates to genome size in diverse ways. Relationships between genome size and body size should be especially weak in large organisms whose size relates more to cell multiplication than to cell enlargement, as is generally observed. The ubiquitous single-cell 'bottleneck' of life cycles may affect both genome size and composition, and via both informational (genotypic) and non-informational (nucleotypic) effects, many other properties of multicellular organisms (e.g., rates of growth and metabolism) that have both theoretical and practical significance.
Collapse
|
25
|
vB_EfaS-DELF1, a novel Siphoviridae bacteriophage with highly effective lytic activity against vancomycin-resistant Enterococcus faecalis. Virus Res 2021; 298:198391. [PMID: 33737153 DOI: 10.1016/j.virusres.2021.198391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/14/2023]
Abstract
Enterococcus faecalis is an environmental agent of bovine mastitis in cows and has many cytopathic effects on the urinary tract in both humans and animals. In this study, a novel lytic bacteriophage, vB_EfaS-DELF1, was isolated against 21 E. faecalis isolated from bovine mastitis, including vancomycin-resistant E. faecalis (VRE). vB_EfaS-DELF1 bacteriophage was specific for E. faecalis and showed no lytic effects against other tested Enterococcus spp., Gram-negative, or Gram-positive bacteria. Moreover, no activity was observed against yogurt starters. The phage suspension was stable in a wide range of pH, salinity, and temperature. It retained its activity in 3.5 % fat milk. vB_EfaS-DELF1 has the common phenotypic features of Siphoviridae with a double-strand DNA of 40,248 bp in length and a G + C content of 34.9 %. The genome encodes 62 putative ORFs and no tRNA. No undesirable genes such as lysogenic mediators, antibiotic resistance, or virulence factor genes were detected in the genome. The comparative genomic analysis demonstrated similarity to the other available phage genomes. The highest similarity was observed with two other phages (50 % coverage and 82.38 % identities with IME-EFm1; 35 % coverage and 86.22 % identities with IME-EFm5) that were placed in the same clade. The differences with the other aligned phages were high and were placed in distant clusters. Regarding the specificity of this new bacteriophage against all of the tested E. faecalis isolates and, in particular, against the vancomycin-resistant ones, and also the absence of antibiotic resistance or virulence genes in its genome, vB_EfaS-DELF1 is suggested as a potential candidate for biocontrol of E. faecalis infections.
Collapse
|
26
|
Luque A, Benler S, Lee DY, Brown C, White S. The Missing Tailed Phages: Prediction of Small Capsid Candidates. Microorganisms 2020; 8:E1944. [PMID: 33302408 PMCID: PMC7762592 DOI: 10.3390/microorganisms8121944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/17/2022] Open
Abstract
Tailed phages are the most abundant and diverse group of viruses on the planet. Yet, the smallest tailed phages display relatively complex capsids and large genomes compared to other viruses. The lack of tailed phages forming the common icosahedral capsid architectures T = 1 and T = 3 is puzzling. Here, we extracted geometrical features from high-resolution tailed phage capsid reconstructions and built a statistical model based on physical principles to predict the capsid diameter and genome length of the missing small-tailed phage capsids. We applied the model to 3348 isolated tailed phage genomes and 1496 gut metagenome-assembled tailed phage genomes. Four isolated tailed phages were predicted to form T = 3 icosahedral capsids, and twenty-one metagenome-assembled tailed phages were predicted to form T < 3 capsids. The smallest capsid predicted was a T = 4/3 ≈ 1.33 architecture. No tailed phages were predicted to form the smallest icosahedral architecture, T = 1. We discuss the feasibility of the missing T = 1 tailed phage capsids and the implications of isolating and characterizing small-tailed phages for viral evolution and phage therapy.
Collapse
Affiliation(s)
- Antoni Luque
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; (D.Y.L.); (C.B.)
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA
| | - Sean Benler
- National Center for Biotechnology Information (NCBI), Bethesda, MD 20894, USA;
| | - Diana Y. Lee
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; (D.Y.L.); (C.B.)
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Colin Brown
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; (D.Y.L.); (C.B.)
- Department of Physics, San Diego State University, San Diego, CA 92182, USA
| | - Simon White
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA;
| |
Collapse
|