1
|
Osterman WHA, Hill A, Hagan JG, Whitton J, Bacon CD, Bjorkman AD. Rethinking pathways to the dioecy-polyploidy association: Genera with many dioecious species have fewer polyploids. AMERICAN JOURNAL OF BOTANY 2024; 111:e16318. [PMID: 38654555 DOI: 10.1002/ajb2.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
PREMISE Numerous studies have found a positive association between dioecy and polyploidy; however, this association presents a theoretical conflict: While polyploids are predicted to benefit from self-reproduction for successful establishment, dioecious species cannot self-reproduce. We propose a theoretical framework to resolve this apparent conflict. We hypothesize that the inability of dioecious species to self-reproduce hinders their establishment as polyploids. We therefore expect that genera with many dioecious species have fewer polyploids, leading to a negative association between polyploidy and dioecy across genera. METHODS We used three publicly available databases to determine ploidy and sexual systems for 131 genera and 546 species. We quantified (1) the relationship between the frequency of polyploid species and the frequency of dioecious species across genera, and (2) the proportion of polyploids with hermaphroditism and dioecy across species, adjusting for phylogenetic history. RESULTS Across genera, we found a negative relationship between the proportion of polyploids and the proportion of dioecious species, a consistent trend across clades. Across all species, we found that sexual system (dioecious or not) was not associated with polyploidy. CONCLUSIONS Polyploids are rare in genera in which the majority of species are dioecious, consistent with the theory that self-reproduction favors polyploid establishment. The low frequency of polyploidy among dioecious species indicates the association is not as widespread as previously suggested. Our findings are consistent with previous studies identifying a positive relationship between the two traits, but only if polyploidy promotes a transition to dioecy, and not the reverse.
Collapse
Affiliation(s)
- Wilhelm H A Osterman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Adrian Hill
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - James G Hagan
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jeannette Whitton
- Department of Botany and Biodiversity Research Centre, The University of British Columbia, Vancouver, Canada
| | - Christine D Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Anne D Bjorkman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| |
Collapse
|
2
|
Li W, Dong X, Zhang X, Cao J, Liu M, Zhou X, Long H, Cao H, Lin H, Zhang L. Genome assembly and resequencing shed light on evolution, population selection, and sex identification in Vernicia montana. HORTICULTURE RESEARCH 2024; 11:uhae141. [PMID: 38988615 PMCID: PMC11233859 DOI: 10.1093/hr/uhae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/08/2024] [Indexed: 07/12/2024]
Abstract
Vernicia montana is a dioecious plant widely cultivated for high-quality tung oil production and ornamental purposes in the Euphorbiaceae family. The lack of genomic information has severely hindered molecular breeding for genetic improvement and early sex identification in V. montana. Here, we present a chromosome-level reference genome of a male V. montana with a total size of 1.29 Gb and a contig N50 of 3.69 Mb. Genome analysis revealed that different repeat lineages drove the expansion of genome size. The model of chromosome evolution in the Euphorbiaceae family suggests that polyploidization-induced genomic structural variation reshaped the chromosome structure, giving rise to the diverse modern chromosomes. Based on whole-genome resequencing data and analyses of selective sweep and genetic diversity, several genes associated with stress resistance and flavonoid synthesis such as CYP450 genes and members of the LRR-RLK family, were identified and presumed to have been selected during the evolutionary process. Genome-wide association studies were conducted and a putative sex-linked insertion and deletion (InDel) (Chr 2: 102 799 917-102 799 933 bp) was identified and developed as a polymorphic molecular marker capable of effectively detecting the gender of V. montana. This InDel is located in the second intron of VmBASS4, suggesting a possible role of VmBASS4 in sex determination in V. montana. This study sheds light on the genome evolution and sex identification of V. montana, which will facilitate research on the development of agronomically important traits and genomics-assisted breeding.
Collapse
Affiliation(s)
- Wenying Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
- College of Biology and Agricultural Resources, Huanggang Normal University, No.146 Xingang 2nd Road, Huangzhou District, Huanggang, Hubei 438000, China
| | - Xiang Dong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No.7 Pengfei Road, Dapeng New District, Shenzhen 518120, China
| | - Jie Cao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Meilan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Xu Zhou
- College of Landscape Architecture, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Hongxu Long
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Blvd, New Orleans, LA 70124-4305, USA
| | - Hai Lin
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| |
Collapse
|
3
|
Ma R, Xu Q, Gao Y, Peng D, Sun H, Song B. Patterns and drivers of plant sexual systems in the dry-hot valley region of southwestern China. PLANT DIVERSITY 2024; 46:158-168. [PMID: 38807913 PMCID: PMC11128841 DOI: 10.1016/j.pld.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 05/30/2024]
Abstract
Sexual systems play important roles in angiosperm evolution and exhibit substantial variations among different floras. Thus, studying their evolution in a whole flora is crucial for understanding the formation and maintenance of plant biodiversity and predicting its responses to environmental change. In this study, we determined the patterns of plant sexual systems and their associations with geographic elements and various life-history traits in dry-hot valley region of southwestern China, an extremely vulnerable ecosystem. Of the 3166 angiosperm species recorded in this area, 74.5% were hermaphroditic, 13.5% were monoecious and 12% were dioecious, showing a high incidence of diclinous species. Diclinous species were strongly associated with tropical elements, whereas hermaphroditic species were strongly associated with temperate and cosmopolitan elements. We also found that hermaphroditism was strongly associated with showy floral displays, specialist entomophily, dry fruits and herbaceous plants. Dioecy was strongly associated with inconspicuous, pale-colored flowers, generalist entomophily, fleshy fruits, and woody plants, whereas monoecy was strongly associated with inconspicuous, pale-colored flowers, anemophily, dry fruits, and herbaceous plants. In addition, hermaphroditic species with generalist entomophily tended to flower in the dry season, whereas diclinous species with specialist entomophily tended to flower in the rainy season. However, independent of sexual systems, plants that produce dry fruits tended to flower in the rainy season and set fruits in the dry season, but the opposite pattern was found for fleshy fruit-producing plants. Our results suggest that in the dry-hot valleys, plant sexual systems are associated with geographic elements as well as various life-history traits that are sensitive to environmental change.
Collapse
Affiliation(s)
- Rong Ma
- State Key Laboratory of Plant Diversity and Specialty Crops/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qi Xu
- State Key Laboratory of Plant Diversity and Specialty Crops/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yongqian Gao
- Yunnan Forestry Technological College, Kunming 650224, China
| | - Deli Peng
- School of Life Science/Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, Yunnan, China
| | - Hang Sun
- State Key Laboratory of Plant Diversity and Specialty Crops/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Bo Song
- State Key Laboratory of Plant Diversity and Specialty Crops/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
4
|
Ferrer MM, Vásquez-Cruz M, Hernández-Hernández T, Good SV. Geographical and life-history traits associated with low and high species richness across angiosperm families. FRONTIERS IN PLANT SCIENCE 2023; 14:1276727. [PMID: 38107007 PMCID: PMC10722503 DOI: 10.3389/fpls.2023.1276727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/26/2023] [Indexed: 12/19/2023]
Abstract
Introduction The phenomenal expansion of angiosperms has prompted many investigations into the factors driving their diversification, but there remain significant gaps in our understanding of flowering plant species diversity. Methods Using the crown age of families from five studies, we used a maximum likelihood approach to classify families as having poor, predicted or high species richness (SR) using strict consensus criteria. Using these categories, we looked for associations between family SR and i) the presence of an inferred familial ancestral polyploidization event, ii) 23 life history and floral traits compiled from previously published datasets and papers, and iii) sexual system (dioecy) or genetically determined self-incompatibility (SI) mating system using an updated version of our own database and iv) geographic distribution using a new database describing the global distribution of plant species/families across realms and biomes and inferred range. Results We find that more than a third of angiosperm families (65%) had predicted SR, a large proportion (30.2%) were species poor, while few (4.8%) had high SR. Families with poor SR were less likely to have undergone an ancestral polyploidization event, exhibited deficits in diverse traits, and were more likely to have unknown breeding systems and to be found in only one or few biomes and realms, especially the Afrotropics or Australasia. On the other hand, families with high SR were more likely to have animal mediated pollination or dispersal, are enriched for epiphytes and taxa with an annual life history, and were more likely to harbour sporophytic SI systems. Mapping the global distribution of georeferenced taxa by their family DR, we find evidence of regions dominated by taxa from lineages with high vs low SR. Discussion These results are discussed within the context of the literature describing "depauperons" and the factors contributing to low and high biodiversity in angiosperm clades.
Collapse
Affiliation(s)
- Miriam Monserrat Ferrer
- Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Universidad Autónoma de Yucatán, Mérida Yucatán, Mexico
| | | | | | - Sara V. Good
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Wang Y, Luo A, Lyu T, Dimitrov D, Liu Y, Li Y, Xu X, Freckleton RP, Hao Z, Wang Z. Global distribution and evolutionary transitions of floral symmetry in angiosperms. SCIENCE ADVANCES 2023; 9:eadg2555. [PMID: 37878700 PMCID: PMC10599613 DOI: 10.1126/sciadv.adg2555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Floral symmetry plays an important role in plant-pollinator interactions and may have remarkable impacts on angiosperm diversification. However, spatiotemporal patterns in floral symmetry and drivers of these patterns remain unknown. Here, using newly compiled floral symmetry (actinomorphy versus zygomorphy) data of 279,877 angiosperm species and their distributions and phylogenies, we estimated global geographic patterns and macroevolutionary dynamics of floral symmetry. We found that frequency of actinomorphic species increased with latitude, while that of zygomorphic species decreased. Solar radiation, present-day temperature, and Quaternary temperature change correlated with geographic variation in floral symmetry frequency. Evolutionary transitions from actinomorphy to zygomorphy dominated floral symmetry evolution, although the transition rate decreased with decreasing paleotemperature throughout the Cenozoic. Notably, we found that zygomorphy may not favor diversification of angiosperms as previously observed in some clades. Our study demonstrates the influence of (paleo)climate on spatiotemporal patterns in floral symmetry and challenges previous views about role of flower symmetry in angiosperm diversification.
Collapse
Affiliation(s)
- Yunyun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710000, China
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ao Luo
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Tong Lyu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
| | - Yunpeng Liu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yichao Li
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Department of Information Management, Peking University, Beijing 100871, China
| | - Xiaoting Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Robert P Freckleton
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Zhanqing Hao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710000, China
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Stephens RE, Gallagher RV, Dun L, Cornwell W, Sauquet H. Insect pollination for most of angiosperm evolutionary history. THE NEW PHYTOLOGIST 2023; 240:880-891. [PMID: 37276503 DOI: 10.1111/nph.18993] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/30/2023] [Indexed: 06/07/2023]
Abstract
Most contemporary angiosperms (flowering plants) are insect pollinated, but pollination by wind, water or vertebrates occurs in many lineages. Though evidence suggests insect pollination may be ancestral in angiosperms, this is yet to be assessed across the full phylogeny. Here, we reconstruct the ancestral pollination mode of angiosperms and quantify the timing and environmental associations of pollination shifts. We use a robust, dated phylogeny and species-level sampling across all angiosperm families to model the evolution of pollination modes. Data on the pollination system or syndrome of 1160 species were collated from the primary literature. Angiosperms were ancestrally insect pollinated, and insects have pollinated angiosperms for c. 86% of angiosperm evolutionary history. Wind pollination evolved at least 42 times, with few reversals to animal pollination. Transitions between insect and vertebrate pollination were more frequent: vertebrate pollination evolved at least 39 times from an insect-pollinated ancestor with at least 26 reversals. The probability of wind pollination increases with habitat openness (measured by Leaf Area Index) and distance from the equator. Our reconstruction gives a clear overview of pollination macroevolution across angiosperms, highlighting the long history of interactions between insect pollinators and angiosperms still vital to biodiversity today.
Collapse
Affiliation(s)
- Ruby E Stephens
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
| | - Rachael V Gallagher
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Lily Dun
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Will Cornwell
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
7
|
Zhang Y, Lin W, Chu C, Ni M. Sex-specific outbreeding advantages and sexual dimorphism in the seedlings of dioecious trees. AMERICAN JOURNAL OF BOTANY 2023; 110:e16153. [PMID: 36905311 DOI: 10.1002/ajb2.16153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Dioecious trees are important components of many forest ecosystems. Outbreeding advantage and sexual dimorphism are two major mechanisms that explain the persistence of dioecious plants; however, they have rarely been studied in dioecious trees. METHODS We investigated the influence of sex and genetic distance between parental trees (GDPT) on the growth and functional traits of multiple seedlings of a dioecious tree, Diospyros morrisiana. RESULTS We found significant positive relationships between GDPT and seedling sizes and tissue density. However, the positive outbreeding effects on seedling growth mainly manifested in female seedlings, but were not prominent in males. Among seedlings, the male ones generally had higher biomass and leaf area than female seedlings, but such differences diminished as GDPT increased. CONCLUSIONS Our research highlights that outbreeding advantage in plants can be sex-specific and that sexual dimorphism begins from the seedling stage of dioecious trees.
Collapse
Affiliation(s)
- Yonghua Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325000, China
| | - Wei Lin
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Ming Ni
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
8
|
Helmstetter AJ, Zenil-Ferguson R, Sauquet H, Otto SP, Méndez M, Vallejo-Marin M, Schönenberger J, Burgarella C, Anderson B, de Boer H, Glémin S, Käfer J. Trait-dependent diversification in angiosperms: Patterns, models and data. Ecol Lett 2023; 26:640-657. [PMID: 36829296 DOI: 10.1111/ele.14170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 02/26/2023]
Abstract
Variation in species richness across the tree of life, accompanied by the incredible variety of ecological and morphological characteristics found in nature, has inspired many studies to link traits with species diversification. Angiosperms are a highly diverse group that has fundamentally shaped life on earth since the Cretaceous, and illustrate how species diversification affects ecosystem functioning. Numerous traits and processes have been linked to differences in species richness within this group, but we know little about their relative importance and how they interact. Here, we synthesised data from 152 studies that used state-dependent speciation and extinction (SSE) models on angiosperm clades. Intrinsic traits related to reproduction and morphology were often linked to diversification but a set of universal drivers did not emerge as traits did not have consistent effects across clades. Importantly, SSE model results were correlated to data set properties - trees that were larger, older or less well-sampled tended to yield trait-dependent outcomes. We compared these properties to recommendations for SSE model use and provide a set of best practices to follow when designing studies and reporting results. Finally, we argue that SSE model inferences should be considered in a larger context incorporating species' ecology, demography and genetics.
Collapse
Affiliation(s)
- Andrew J Helmstetter
- Fondation pour la recherche sur la biodiversité-CEntre de Synthèse et d'Analyse sur la Biodiversité, Montpellier, France
| | | | - Hervé Sauquet
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Sarah P Otto
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marcos Méndez
- Area of Biodiversity and Conservation, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | | | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | - Bruce Anderson
- Department of Botany and Zoology, University of Stellenbosch, Matieland, South Africa
| | - Hugo de Boer
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Sylvain Glémin
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- CNRS, Ecosystèmes Biodiversité Evolution (Université de Rennes), Rennes, France
| | - Jos Käfer
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| |
Collapse
|
9
|
Silva DM, Luna ALL, Souza CS, Nunes YRF, Fonseca RS, Azevedo IFPD. Sexual and reproductive systems of woody species in
vereda
are distributed according to the life form and habitat occurrence. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Danila Moreira Silva
- Programa de Pós‐Graduação em Botânica Aplicada Universidade Estadual de Montes Claros Avenida Dr. Ruy Braga, S/N – Bairro Vila Mauricéia Montes Claros 39401‐089 Brazil
| | - Andressa Laís Lacerda Luna
- Programa de Pós‐Graduação em Botânica Aplicada Universidade Estadual de Montes Claros Avenida Dr. Ruy Braga, S/N – Bairro Vila Mauricéia Montes Claros 39401‐089 Brazil
| | - Camila Silveira Souza
- Programa de Pós‐Graduação em Botânica Aplicada Universidade Estadual de Montes Claros Avenida Dr. Ruy Braga, S/N – Bairro Vila Mauricéia Montes Claros 39401‐089 Brazil
- Laboratório de Ecologia Vegetal, Departamento de Biologia Geral Universidade Estadual de Montes Claros Montes Claros Brazil
| | - Yule Roberta Ferreira Nunes
- Programa de Pós‐Graduação em Botânica Aplicada Universidade Estadual de Montes Claros Avenida Dr. Ruy Braga, S/N – Bairro Vila Mauricéia Montes Claros 39401‐089 Brazil
- Laboratório de Ecologia Vegetal, Departamento de Biologia Geral Universidade Estadual de Montes Claros Montes Claros Brazil
| | - Rúbia Santos Fonseca
- Instituto de Ciências Agrárias Universidade Federal de Minas Gerais, Bairro Universitário Montes Claros Brazil
| | - Islaine Franciely Pinheiro de Azevedo
- Programa de Pós‐Graduação em Botânica Aplicada Universidade Estadual de Montes Claros Avenida Dr. Ruy Braga, S/N – Bairro Vila Mauricéia Montes Claros 39401‐089 Brazil
- Laboratório de Ecologia Vegetal, Departamento de Biologia Geral Universidade Estadual de Montes Claros Montes Claros Brazil
| |
Collapse
|
10
|
Villamil N, Sommervogel B, Pannell JR. Disentangling the effects of jasmonate and tissue loss on the sex allocation of an annual plant. FRONTIERS IN PLANT SCIENCE 2022; 13:812558. [PMID: 36119626 PMCID: PMC9478112 DOI: 10.3389/fpls.2022.812558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Selection through pollinators plays a major role in the evolution of reproductive traits. However, herbivory can also induce changes in plant sexual expression and sexual systems, potentially influencing conditions governing transitions between sexual systems. Previous work has shown that herbivory has a strong effect on sex allocation in the wind-pollinated annual plant Mercurialis annua, likely via responses to resource loss. It is also known that many plants respond to herbivory by inducing signaling, and endogenous responses to it, via the plant hormone jasmonate. Here, we attempt to uncouple the effects of herbivory on sex allocation in M. annua through resource limitation (tissue loss) versus plant responses to jasmonate hormone signaling. We used a two-factorial experiment with four treatment combinations: control, herbivory (25% chronic tissue loss), jasmonate, and combined herbivory and jasmonate. We estimated the effects of tissue loss and defense-inducing hormones on reproductive allocation, male reproductive effort, and sex allocation. Tissue loss caused plants to reduce their male reproductive effort, resulting in changes in total sex allocation. However, application of jasmonate after herbivory reversed its effect on male investment. Our results show that herbivory has consequences on plant sex expression and sex allocation, and that defense-related hormones such as jasmonate can buffer the impacts. We discuss the physiological mechanisms that might underpin the effects of herbivory on sex allocation, and their potential implications for the evolution of plant sexual systems.
Collapse
|
11
|
Almeida SC, Neiva J, Sousa F, Martins N, Cox CJ, Melo-Ferreira J, Guiry MD, Serrão EA, Pearson GA. A low-latitude species pump: Peripheral isolation, parapatric speciation and mating-system evolution converge in a marine radiation. Mol Ecol 2022; 31:4797-4817. [PMID: 35869812 DOI: 10.1111/mec.16623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022]
Abstract
Geologically recent radiations can shed light on speciation processes, but incomplete lineage sorting and introgressive gene flow render accurate evolutionary reconstruction and interpretation challenging. Independently evolving metapopulations of low dispersal taxa may provide an additional level of phylogeographic information, given sufficiently broad sampling and genome-wide sequencing. Evolution in the marine brown algal genus Fucus in the south-eastern North Atlantic was shaped by Quaternary climate-driven range shifts. Over this timescale, divergence and speciation occurred against a background of expansion-contraction cycles from multiple refugia, together with mating-system shifts from outcrossing (dioecy) to selfing hermaphroditism. We tested the hypothesis that peripheral isolation of range edge (dioecious) F. vesiculosus led to parapatric speciation and radiation of hermaphrodite lineages. Species tree methods using 876 single-copy nuclear genes and extensive geographic coverage produced conflicting topologies with respect to geographic clades of F. vesiculosus. All methods, however, revealed a new and early diverging hermaphrodite species, Fucus macroguiryi sp. nov. Both the multispecies coalescent and polymorphism-aware models (in contrast to concatenation) support sequential paraphyly in F. vesiculosus resulting from distinct evolutionary processes. Our results support (1) peripheral isolation of the southern F. vesiculosus clade prior to parapatric speciation and radiation of hermaphrodite lineages-a "low-latitude species pump". (2) Directional introgressive gene flow into F. vesiculosus around the present-day secondary contact zone (sympatric-allopatric boundary) between dioecious/hermaphrodite lineages as hermaphrodites expanded northwards, supported by concordance analysis and statistical tests of introgression. (3) Species boundaries in the extensive sympatric range are probably maintained by reproductive system (selfing in hermaphrodites) and reinforcement.
Collapse
Affiliation(s)
- Susana C Almeida
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - João Neiva
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Filipe Sousa
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Neusa Martins
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Cymon J Cox
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - José Melo-Ferreira
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, R. Padre Armando Quintas, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Michael D Guiry
- AlgaeBase, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Ester A Serrão
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Gareth A Pearson
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
12
|
Song B, Sun L, Barrett SCH, Moles AT, Luo YH, Armbruster WS, Gao YQ, Zhang S, Zhang ZQ, Sun H. Global analysis of floral longevity reveals latitudinal gradients and biotic and abiotic correlates. THE NEW PHYTOLOGIST 2022; 235:2054-2065. [PMID: 35611604 DOI: 10.1111/nph.18271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The length of time a flower remains open and functional - floral longevity - governs important reproductive processes influencing pollination and mating and varies considerably among angiosperm species. However, little is known about large-scale biogeographic patterns and the correlates of floral longevity. Using published data on floral longevity from 818 angiosperm species in 134 families and 472 locations world-wide, we present the first global quantification of the latitudinal pattern of floral longevity and the relationships between floral longevity and a range of biotic and abiotic factors. Floral longevity exhibited a significant phylogenetic signal and was longer at higher latitudes in both northern and southern hemispheres, even after accounting for elevation. This latitudinal variation was associated with several biotic and abiotic variables. The mean temperature of the flowering season had the highest predictive power for floral longevity, followed by pollen number per flower. Surprisingly, compatibility status, flower size, pollination mode, and growth form had no significant effects on flower longevity. Our results suggest that physiological processes associated with floral maintenance play a key role in explaining latitudinal variation in floral longevity across global ecosystems, with potential implications for floral longevity under global climate change and species distributions.
Collapse
Affiliation(s)
- Bo Song
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan International Joint Laboratory for Biodiversity of Central Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lu Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Angela T Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Ya-Huang Luo
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Yong-Qian Gao
- Yunnan Forestry Technological College, Kunming, 650224, China
| | - Shuang Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhi-Qiang Zhang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
13
|
Zhang Y, Liu Y, Sun L, Baskin CC, Baskin JM, Cao M, Yang J. Seed dormancy in space and time: global distribution, paleoclimatic and present climatic drivers, and evolutionary adaptations. THE NEW PHYTOLOGIST 2022; 234:1770-1781. [PMID: 35292965 DOI: 10.1111/nph.18099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Seed dormancy is an important life history state that increases survival and fitness of seed plants, and thus it has attracted much attention. However, global biogeography, effects of paleoenvironment, evolutionary roles of dormancy transitions, and differences in adaptations of seed dormancy between life-forms are poorly understood. We compiled global distribution records for seed dormancy of 12 743 species and their phylogeny to explore the biogeographic patterns, environmental drivers, and evolutionary transitions between seed dormancy and nondormancy. Biogeographic patterns reveal a low proportion of dormancy in tropical rainforest regions and arctic regions and a high proportion of dormancy in remaining tropical, subtropical, and temperate regions for all species and woody species. Herbaceous plants show a greater proportion of dormancy in most global regions except arctic regions. Seasonal environments have a consistent positive influence on the dormancy pattern for both life-forms, but precipitation and temperature were important driving factors for woody and herbaceous plants, respectively. Seed dormancy was the dominating state during the evolutionary history of seed plants, and dormancy transitions had a significant relationship with paleotemperatures. Dormancy and nondormancy transitions in response to fluctuating environments during long-term evolutionary history may have played important roles in the diversification of seed plants. Our results add to the current knowledge about seed dormancy from macro-adaptive perspectives and the potential adaptive mechanisms of seed plants.
Collapse
Affiliation(s)
- Yazhou Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yuan Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Sun
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Carol C Baskin
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Jerry M Baskin
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
14
|
Jabbour F, Espinosa F, Dejonghe Q, Le Péchon T. Development and Evolution of Unisexual Flowers: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020155. [PMID: 35050043 PMCID: PMC8780417 DOI: 10.3390/plants11020155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/12/2023]
Abstract
The development of unisexual flowers has been described in a large number of taxa, sampling the diversity of floral phenotypes and sexual systems observed in extant angiosperms, in studies focusing on floral ontogeny, on the evo-devo of unisexuality, or on the genetic and chromosomal bases of unisexuality. We review here such developmental studies, aiming at characterizing the diversity of ontogenic pathways leading to functionally unisexual flowers. In addition, we present for the first time and in a two-dimensional morphospace a quantitative description of the developmental rate of the sexual organs in functionally unisexual flowers, in a non-exhaustive sampling of angiosperms with contrasted floral morphologies. Eventually, recommendations are provided to help plant evo-devo researchers and botanists addressing macroevolutionary and ecological issues to more precisely select the taxa, the biological material, or the developmental stages to be investigated.
Collapse
Affiliation(s)
- Florian Jabbour
- Institut de Systématique Évolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP39, 75005 Paris, France;
| | - Felipe Espinosa
- Independent Researcher, Carrera 13 # 113-24, Bogotá 110111, Colombia;
| | - Quentin Dejonghe
- Institut de Systématique Évolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP39, 75005 Paris, France;
| | - Timothée Le Péchon
- Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium;
- Fédération Wallonie-Bruxelles, Service Général de l’Enseignement Supérieur et de la Recherche Scientifique, Rue A. Lavalée, 1, 1080 Brussels, Belgium
| |
Collapse
|