1
|
Na JT, Chun-Dong Xue, Wang YX, Li YJ, Wang Y, Liu B, Qin KR. Fabricating a multi-component microfluidic system for exercise-induced endothelial cell mechanobiology guided by hemodynamic similarity. Talanta 2023; 253:123933. [PMID: 36113333 DOI: 10.1016/j.talanta.2022.123933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022]
Abstract
Generating precise in vivo arterial endothelial hemodynamic microenvironments using microfluidics is essential for exploring endothelial mechanobiology. However, a hemodynamic principle guiding the fabrication of microfluidic systems is still lacking. We propose a hemodynamic similarity principle for quickly obtaining the input impedance of the microfluidic system in vitro derived from that of the arterial system in vivo to precisely generate the desired endothelial hemodynamic microenvironments. First, based on the equivalent of blood pressure (BP) and wall shear stress (WSS) waveforms, we establish a hemodynamic similarity principle to efficiently map the input impedance in vivo to that in vitro, after which the multi-component microfluidic system is designed and fabricated using a lumped parameter hemodynamic model. Second, numerical simulation and experimental studies are carried out to validate the performance of the designed microfluidic system. Finally, the intracellular Ca2+ responses after exposure to different intensities of exercise-induced BP and WSS waveforms are measured to improve the reliability of EC mechanobiological studies using the designed microfluidic system. Overall, the proposed hemodynamic similarity principle can guide the fabrication of a multi-component microfluidic system for endothelial cell mechanobiology.
Collapse
Affiliation(s)
- Jing-Tong Na
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Chun-Dong Xue
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Yan-Xia Wang
- School of Rehabilitation Medicine, Weifang Medical University, Weifang 261053, China
| | - Yong-Jiang Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Yu Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Kai-Rong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China; School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
2
|
Xiong L, Chen X, Liu J, Wong LKS, Leung TW. Cerebral Augmentation Effect Induced by External Counterpulsation Is Not Related to Impaired Dynamic Cerebral Autoregulation in Ischemic Stroke. Front Neurol 2022; 13:784836. [PMID: 35592467 PMCID: PMC9110640 DOI: 10.3389/fneur.2022.784836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose Dynamic cerebral autoregulation is impaired after ischemic stroke. External counterpulsation (ECP) augments the cerebral blood flow of patients with ischemic stroke by elevation of blood pressure (BP). We aimed to investigate if cerebral augmentation effects during ECP were associated with impaired dynamic cerebral autoregulation in patients after acute ischemic stroke. Methods Forty patients with unilateral ischemic stroke and large artery atherosclerosis in the anterior circulation territory within 7 days from symptom onset and eighteen healthy controls were recruited. We monitored changes in mean flow velocity over both middle cerebral arteries (MCA) by transcranial Doppler (TCD) before, during, and immediately after ECP. Cerebral augmentation index was MCA mean flow velocity increase in percentage during ECP compared with baseline to evaluate the augmentation effects of ECP. Spontaneous arterial BP and cerebral blood flow velocity in both bilateral MCAs were recorded using a servo-controlled plethysmograph and TCD, respectively. Transfer function analysis was used to derive the autoregulatory parameters, including phase difference (PD), and gain. Results The cerebral augmentation index in patients with stroke was significantly higher on both the ipsilateral and contralateral sides than that in controls, while the PD in patients with stroke was significantly lower on both sides than those in controls (all P < 0.05). The cerebral augmentation index did not correlate with PD and gain on either the ipsilateral or contralateral side of patients with stroke or in controls (all P > 0.05). The cerebral augmentation index of patients with stroke was significantly related to mean BP change on the ipsilateral side (R2 = 0.108, P = 0.038). Conclusion The degree of ECP-induced cerebral augmentation effects as measured by the cerebral augmentation index did not correlate with the magnitude of impaired dynamic cerebral autoregulation.
Collapse
Affiliation(s)
- Li Xiong
- Clinical Trials Centre, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- *Correspondence: Li Xiong
| | - Xiangyan Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Shatin, Hong Kong SAR, China
- Xiangyan Chen
| | - Jia Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lawrence Ka Sing Wong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Thomas W. Leung
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
3
|
Measurement of Adult Human Brain Responses to Breath-Holding by Multi-Distance Hyperspectral Near-Infrared Spectroscopy. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A major limitation of near-infrared spectroscopy (NIRS) is its high sensitivity to the scalp and low sensitivity to the brain of adult humans. In the present work we used multi-distance hyperspectral NIRS (hNIRS) to investigate the optimal source-detector distances, wavelength ranges, and analysis techniques to separate cerebral responses to 30 s breath-holds (BHs) from the responses in the superficial tissue layer in healthy adult humans. We observed significant responses to BHs in the scalp hemodynamics. Cerebral responses to BHs were detected in the cytochrome C oxidase redox (rCCO) at 4 cm without using data from the short-distance channel. Using the data from the 1 cm channel in the two-layer regression algorithm showed that cerebral hemodynamic and rCCO responses also occurred at 3 cm. We found that the waveband 700–900 nm was optimal for the detection of cerebral responses to BHs in adults.
Collapse
|
4
|
Xiong L, Liu X, Shang T, Smielewski P, Donnelly J, Guo ZN, Yang Y, Leung T, Czosnyka M, Zhang R, Liu J, Wong KS. Impaired cerebral autoregulation: measurement and application to stroke. J Neurol Neurosurg Psychiatry 2017; 88:520-531. [PMID: 28536207 DOI: 10.1136/jnnp-2016-314385] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/04/2022]
Abstract
Cerebral autoregulation (CA) is a protective mechanism that maintains cerebral blood flow at a relatively constant level despite fluctuations of cerebral perfusion pressure or arterial blood pressure. It is a universal physiological mechanism that may involve myogenic, neural control as well as metabolic regulations of cerebral vasculature in response to changes in pressure or cerebral blood flow. Traditionally, CA has been represented by a sigmoid curve with a wide plateau between about 50 mm Hg and 170 mm Hg of steady-state changes in mean arterial pressure, defined as static CA. With the advent of transcranial Doppler, measurement of cerebral blood flow in response to transient changes in arterial pressure has been used to assess dynamic CA. However, a gold standard for measuring CA is not currently available. Stroke has been the leading cause of long-term adult disability throughout the world. A better understanding of CA and its response to pathological derangements can help assess the severity of stroke, guide management decisions, assess response to interventions and provide prognostic information. The objective of this review is to provide a comprehensive insight about physiology of autoregulation, measurement methodologies and clinical applications in stroke to help build a consensus for what should be included in an internationally agreed protocol for CA testing and monitoring, and to promote its translation into clinical bedside practice for stroke management.
Collapse
Affiliation(s)
- Li Xiong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Xiuyun Liu
- Department of Clinical Neurosciences, Brain Physics Laboratory, Division of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Ty Shang
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peter Smielewski
- Department of Clinical Neurosciences, Brain Physics Laboratory, Division of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Joseph Donnelly
- Department of Clinical Neurosciences, Brain Physics Laboratory, Division of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Zhen-Ni Guo
- Department of Neurology, Neuroscience Center, The First Norman Bethune Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Thomas Leung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Marek Czosnyka
- Department of Clinical Neurosciences, Brain Physics Laboratory, Division of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Rong Zhang
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jia Liu
- Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Ka Sing Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
5
|
Is Dynamic Cerebral Autoregulation Bilaterally Impaired after Unilateral Acute Ischemic Stroke? J Stroke Cerebrovasc Dis 2017; 26:1081-1087. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.12.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/16/2016] [Accepted: 12/24/2016] [Indexed: 11/20/2022] Open
|
6
|
Xiong L, Lin W, Han J, Chen X, Leung T, Soo Y, Wong KS. Enhancing cerebral perfusion with external counterpulsation after ischaemic stroke: how long does it last? J Neurol Neurosurg Psychiatry 2016; 87:531-6. [PMID: 25934015 DOI: 10.1136/jnnp-2014-309842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/13/2015] [Indexed: 11/03/2022]
Abstract
OBJECTIVE External counterpulsation (ECP) is a non-invasive method used to augment cerebral perfusion in ischaemic stroke. We aimed to investigate time-course effects on blood pressure elevation and cerebral blood flow augmentation induced by ECP in ischaemic stroke. METHODS Patients with acute unilateral ischaemic stroke and large artery occlusive disease were recruited to receive 35 daily 1 h ECP treatment sessions. Serial transcranial Doppler monitoring of bilateral middle cerebral arteries was performed on days 3, 5, 7, 10, 14, 21, 28 and 35 after stroke onset. Flow velocity changes before, during and after ECP and continuous beat-to-beat blood pressure data were recorded. The cerebral augmentation index (CAI) is the increase in the percentage of the middle cerebral artery mean flow velocity during ECP compared with baseline. RESULTS The CAI in patients with stroke was significantly higher on the ipsilateral side and on the contralateral side on day 3 (ipsilateral CAI, 9.3%; contralateral CAI, 7.2%), day 5 (7.0%; 6.7%), day 7 (6.8%; 6.0%), day 10 (6.0%; 5.1%), day 14 (4.7%; 2.6%) and day 21 (4.1%; 2.2%) after stroke onset than that in controls (-2.0%) (all p<0.05). There was a significant trend of decreasing CAI on the ipsilateral and contralateral sides over time after a stroke. Differences in the percentage increase in the mean blood pressure did not change significantly over time in patients with stroke. CONCLUSIONS Blood pressure elevation persists throughout ECP treatment, which consists of 35 sessions. However, cerebral blood flow augmentation may last at least 3 weeks and then appears to return to baseline 1 month after acute stroke onset.
Collapse
Affiliation(s)
- Li Xiong
- Department of Medicine & Therapeutics, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Wenhua Lin
- Department of Medicine & Therapeutics, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jinghao Han
- Department of Medicine & Therapeutics, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Xiangyan Chen
- Department of Medicine & Therapeutics, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Thomas Leung
- Department of Medicine & Therapeutics, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yannie Soo
- Department of Medicine & Therapeutics, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Ka Sing Wong
- Department of Medicine & Therapeutics, Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
7
|
Tian G, Xiong L, Lin W, Han J, Chen X, Leung TWH, Soo YOY, Wong LKS. External Counterpulsation Reduces Beat-to-Beat Blood Pressure Variability When Augmenting Blood Pressure and Cerebral Blood Flow in Ischemic Stroke. J Clin Neurol 2016; 12:308-15. [PMID: 27095525 PMCID: PMC4960215 DOI: 10.3988/jcn.2016.12.3.308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE External counterpulsation (ECP) is a noninvasive method used to enhance cerebral perfusion by elevating the blood pressure in ischemic stroke. However, the response of the beat-to-beat blood pressure variability (BPV) in ischemic stroke patients during ECP remains unknown. METHODS We enrolled recent ischemic stroke patients and healthy controls. Changes in the blood flow velocities in bilateral middle cerebral arteries and the continuous beat-to-beat blood pressure before, during, and after ECP were monitored. Power spectral analysis revealed that the BPV included oscillations at very low frequency (VLF; <0.04 Hz), low frequency (LF; 0.04-0.15 Hz), and high frequency (HF; 0.15-0.40 Hz), and the total power spectral density (TP; <0.40 Hz) and LF/HF ratio were calculated. RESULTS We found that ECP significantly increased the systolic and diastolic blood pressures in both stroke patients and controls. ECP decreased markedly the systolic and diastolic BPVs at VLF and LF and the TP, and the diastolic BPV at HF when compared with baseline. The decreases in diastolic and systolic BPV reached 37.56% and 23.20%, respectively, at VLF, 21.15% and 12.19% at LF, 8.76% and 16.59% at HF, and 31.92% and 23.62% for the total TP in stroke patients, which did not differ from those in healthy controls. The change in flow velocity on the contralateral side was positively correlated with the total TP systolic BPV change induced by ECP (r=0.312, p=0.035). CONCLUSIONS ECP reduces the beat-to-beat BPV when increasing the blood pressure and cerebral blood flow velocity in ischemic stroke patients. ECP might be able to improve the clinical outcome by decreasing the beat-to-beat BPV in stroke patients, and this should be explored further in future studies.
Collapse
Affiliation(s)
- Ge Tian
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Xiong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenhua Lin
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinghao Han
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiangyan Chen
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Thomas Wai Hong Leung
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Yannie Oi Yan Soo
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Lawrence Ka Sing Wong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Affiliation(s)
- A H V Schapira
- Department of Clinical Neurosciences, UCL Institute of Neurology, London, UK.
| |
Collapse
|
9
|
Xiong L, Lin W, Han J, Chen X, Leung TWH, Soo YOY, Wong LKS. A retrospective pilot study of correlation of cerebral augmentation effects of external counterpulsation with functional outcome after acute ischaemic stroke. BMJ Open 2015; 5:e009233. [PMID: 26351195 PMCID: PMC4563223 DOI: 10.1136/bmjopen-2015-009233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE External counterpulsation (ECP) is a non-invasive method used to augment cerebral blood flow of patients with ischaemic stroke via induced hypertension. We aimed to explore the correlation between the cerebral blood flow augmentation effects induced by ECP and clinical outcome after acute ischaemic stroke. METHODS We retrospectively analysed our ECP registry of patients with ischaemic stroke who were enrolled within 7 days after stroke onset. Bilateral middle cerebral arteries of patients were monitored using transcranial Doppler (TCD). Flow velocity changes before, during and after ECP were, respectively, recorded for 3 min. The cerebral augmentation index (CAI) was the increase in percentage of the middle cerebral artery mean flow velocity during ECP compared with baseline. TCD data were analysed based on the side ipsilateral or contralateral to the infarct. The modified Rankin Scale (mRS) (good outcome: mRS 0∼2; poor outcome: mRS 3∼6) was evaluated 6 months after the index stroke. RESULTS 72 patients were included (mean age, 63.8±10.7 years; 87.5% males). At month 6 after stroke onset, univariate analysis showed that the National Institutes of Health Stroke Scale at recruitment was significantly higher and ECP therapy duration was longer in the poor outcome group, while the ipsilateral CAI was significantly lower in the good outcome group than that in the poor outcome group (3.71±4.94 vs 7.73±7.66, p=0.044). Multivariate logistic regression showed that ipsilateral CAI was independently correlated with an unfavourable functional outcome after adjusting for confounding factors. CONCLUSIONS The higher degree of cerebral blood flow velocity augmentation on the side ipsilateral to the infarct induced by ECP is independently correlated with an unfavourable functional outcome after acute ischaemic stroke.
Collapse
Affiliation(s)
- Li Xiong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Wenhua Lin
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jinghao Han
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Xiangyan Chen
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Thomas Wai Hong Leung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yannie Oi Yan Soo
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Lawrence Ka Sing Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|