1
|
Koivu M, Sihvonen AJ, Eerola-Rautio J, Pauls KAM, Resendiz-Nieves J, Vartiainen N, Kivisaari R, Scheperjans F, Pekkonen E. Clinical and Brain Morphometry Predictors of Deep Brain Stimulation Outcome in Parkinson's Disease. Brain Topogr 2024; 37:1186-1194. [PMID: 38662300 PMCID: PMC11408547 DOI: 10.1007/s10548-024-01054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Subthalamic deep brain stimulation (STN-DBS) is known to improve motor function in advanced Parkinson's disease (PD) and to enable a reduction of anti-parkinsonian medication. While the levodopa challenge test and disease duration are considered good predictors of STN-DBS outcome, other clinical and neuroanatomical predictors are less established. This study aimed to evaluate, in addition to clinical predictors, the effect of patients' individual brain topography on DBS outcome. The medical records of 35 PD patients were used to analyze DBS outcomes measured with the following scales: Part III of the Unified Parkinson's Disease Rating Scale (UPDRS-III) off medication at baseline, and at 6-months during medication off and stimulation on, use of anti-parkinsonian medication (LED), Abnormal Involuntary Movement Scale (AIMS) and Non-Motor Symptoms Questionnaire (NMS-Quest). Furthermore, preoperative brain MRI images were utilized to analyze the brain morphology in relation to STN-DBS outcome. With STN-DBS, a 44% reduction in the UPDRS-III score and a 43% decrease in the LED were observed (p<0.001). Dyskinesia and non-motor symptoms decreased significantly [median reductions of 78,6% (IQR 45,5%) and 18,4% (IQR 32,2%) respectively, p=0.001 - 0.047]. Along with the levodopa challenge test, patients' age correlated with the observed DBS outcome measured as UPDRS-III improvement (ρ= -0.466 - -0.521, p<0.005). Patients with greater LED decline had lower grey matter volumes in left superior medial frontal gyrus, in supplementary motor area and cingulum bilaterally. Additionally, patients with greater UPDRS-III score improvement had lower grey matter volume in similar grey matter areas. These findings remained significant when adjusted for sex, age, baseline LED and UPDRS scores respectively and for total intracranial volume (p=0.0041- 0.001). However, only the LED decrease finding remained significant when the analyses were further controlled for stimulation amplitude. It appears that along with the clinical predictors of STN-DBS outcome, individual patient topographic differences may influence DBS outcome. Clinical Trial Registration Number: NCT06095245, registration date October 23, 2023, retrospectively registered.
Collapse
Affiliation(s)
- Maija Koivu
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland.
| | - Aleksi J Sihvonen
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Eerola-Rautio
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
| | - K Amande M Pauls
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
| | | | - Nuutti Vartiainen
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
| |
Collapse
|
2
|
Schröter N, Sajonz BEA, Jost WH, Rijntjes M, Coenen VA, Groppa S. Advanced therapies in Parkinson's disease: an individualized approach to their indication. J Neural Transm (Vienna) 2024; 131:1285-1293. [PMID: 38613674 PMCID: PMC11502575 DOI: 10.1007/s00702-024-02773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Device aided therapies (DAT) comprising the intrajejunal administration of levodopa/carbidopa intestinal gel (LCIG) and levodopa/carbidopa/entacapone intestinal gel (LECIG), the continuous subcutaneous application of foslevodopa/foscarbidopa or apomorphine infusion (CSAI) and deep brain stimulation (DBS) are used to treat Parkinson's disease with insufficient symptom alleviation under intensified pharmacotherapy. These DAT significantly differ in their efficacy profiles, indication, invasiveness, contraindications, and potential side effects. Usually, the evaluation of all these procedures is conducted simultaneously at the same point in time. However, as disease progression and symptom burden is extremely heterogeneous, clinical experience shows that patients reach the individual milestones for a certain therapy at different points in their disease course. Therefore, advocating for an individualized therapy evaluation for each DAT, requiring an ongoing evaluation. This necessitates that, during each consultation, the current symptomatology should be analyzed, and the potential suitability for a DAT be assessed. This work represents a critical interdisciplinary appraisal of these therapies in terms of their individual profiles and compares these DAT regarding contraindications, periprocedural considerations as well as their efficacy regarding motor- and non-motor deficits, supporting a personalized approach.
Collapse
Affiliation(s)
- Nils Schröter
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Bastian E A Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center of Deep Brain Stimulation, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
3
|
Ferrea E, Negahbani F, Cebi I, Weiss D, Gharabaghi A. Machine learning explains response variability of deep brain stimulation on Parkinson's disease quality of life. NPJ Digit Med 2024; 7:269. [PMID: 39354049 PMCID: PMC11445542 DOI: 10.1038/s41746-024-01253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/09/2024] [Indexed: 10/03/2024] Open
Abstract
Improving health-related quality of life (QoL) is crucial for managing Parkinson's disease. However, QoL outcomes after deep brain stimulation (DBS) of the subthalamic nucleus (STN) vary considerably. Current approaches lack integration of demographic, patient-reported, neuroimaging, and neurophysiological data to understand this variability. This study used explainable machine learning to analyze multimodal factors affecting QoL changes, measured by the Parkinson's Disease Questionnaire (PDQ-39) in 63 patients, and quantified each variable's contribution. Results showed that preoperative PDQ-39 scores and upper beta band activity (>20 Hz) in the left STN were key predictors of QoL changes. Lower initial QoL burden predicted worsening, while improvement was associated with higher beta activity. Additionally, electrode positions along the superior-inferior axis, especially relative to the z = -7 coordinate in standard space, influenced outcomes, with improved and worsened QoL above and below this marker. This study emphasizes a tailored, data-informed approach to optimize DBS treatment and improve patient QoL.
Collapse
Affiliation(s)
- Enrico Ferrea
- Institute for Neuromodulation and Neurotechnology, University Hospital Tübingen (UKT), Faculty of Medicine, University Tübingen, 72076, Tübingen, Germany
| | - Farzin Negahbani
- Institute for Neuromodulation and Neurotechnology, University Hospital Tübingen (UKT), Faculty of Medicine, University Tübingen, 72076, Tübingen, Germany
| | - Idil Cebi
- Institute for Neuromodulation and Neurotechnology, University Hospital Tübingen (UKT), Faculty of Medicine, University Tübingen, 72076, Tübingen, Germany
- Center for Neurology, Department for Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University Tübingen, 72076, Tübingen, Germany
| | - Daniel Weiss
- Center for Neurology, Department for Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University Tübingen, 72076, Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital Tübingen (UKT), Faculty of Medicine, University Tübingen, 72076, Tübingen, Germany.
- Center for Bionic Intelligence Tübingen Stuttgart (BITS), 72076, Tübingen, Germany.
- German Center for Mental Health (DZPG), 72076, Tübingen, Germany.
| |
Collapse
|
4
|
Tröster AI. Developments in the prediction of cognitive changes following deep brain stimulation in persons with Parkinson's disease. Expert Rev Neurother 2024; 24:643-659. [PMID: 38814926 DOI: 10.1080/14737175.2024.2360121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD) motor symptoms that improves function and quality of life in appropriately selected patients. Because mild to moderate cognitive declines can follow DBS and impact quality of life in a minority of patients, an important consideration involves the cognitive deficit and its prediction. AREAS COVERED The author briefly summarizes cognitive outcomes from DBS and reviews in more detail the risks/predictors of post-DBS cognitive dysfunction by mainly focusing on work published between 2018 and 2024 and using comprehensive neuropsychological (NP) evaluations. Most publications concern bilateral subthalamic nucleus (STN) DBS. Comment is offered on challenges and potential avenues forward. EXPERT OPINION STN DBS is relatively safe cognitively but declines occur especially in verbal fluency and executive function/working memory. Numerous predictors and risk factors for cognitive outcomes have been identified (age and pre-operative neuropsychological status appear the most robust) but precise risk estimates cannot yet be confidently offered. Future studies should employ study center consortia, follow uniform reporting criteria (to be developed), capitalize on advances in stimulation, biomarkers, and artificial intelligence, and address DBS in diverse groups. Advances offer an avenue to investigate the amelioration of cognitive deficits in PD using neuromodulation.
Collapse
Affiliation(s)
- Alexander I Tröster
- Department of Clinical Neuropsychology and Center for Neuromodulation, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
5
|
Gronostay A, Jost ST, Silverdale M, Rizos A, Loehrer PA, Evans J, Sauerbier A, Indi D, Leta V, Reker P, Fink GR, Ashkan K, Antonini A, Nimsky C, Visser-Vandewalle V, Martinez-Martin P, Ray Chaudhuri K, Timmermann L, Dafsari HS. Stratifying quality of life outcome in subthalamic stimulation for Parkinson's disease. J Neurol Neurosurg Psychiatry 2024; 95:630-638. [PMID: 38124227 DOI: 10.1136/jnnp-2023-332272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN-DBS) for Parkinson's disease (PD) improves quality of life (QoL), motor and non-motor symptoms (NMS). However, in previous studies, 43%-49% of patients did not experience clinically relevant postoperative QoL improvement. To inform individualised prediction of postoperative QoL improvement, we developed a stratification analysis of QoL outcomes based on preoperative non-motor total burden, severity of motor progression and motor response in levodopa challenge tests. METHODS This was a prospective, open-label, multicentre, international study with a 6-month follow-up. A distribution-based threshold identified 'QoL responders' in the PDQuestionnaire-8 Summary Index (PDQ-8 SI). After baseline stratification based on the NMS Scale, Hoehn and Yahr Scale and levodopa response assessed with the Unified PD Rating Scale-III, we compared postoperative QoL response between these strata. To assess the clinical usefulness and statistical feasibility of stratifications, we compared cumulative distribution function curves, respectively PDQ-8 within-stratum variation. RESULTS All main outcomes improved postoperatively. Based on the 8.1 points threshold for clinically meaningful PDQ-8 SI improvement, only 80/161 patients were classified as 'QoL responders'. The absolute risk reductions for QoL non-response among respective non-motor, motor progression and levodopa response strata were 23%, 8% and 3%, respectively. Only non-motor stratification reduced PDQ-8 within-stratum variation compared with the overall cohort. CONCLUSIONS Non-motor stratification, but not motor progression or levodopa response stratification, is clinically useful and statistically feasible for personalised preoperative prediction of postoperative QoL outcome of STN-DBS for PD. Our findings highlight that non-motor assessments are necessary components of a case-based, holistic approach of DBS indication evaluations geared towards optimising postoperative QoL outcomes. TRIAL REGISTRATION NUMBER GermanClinicalTrialsRegister: #6735.
Collapse
Affiliation(s)
- Alexandra Gronostay
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Stefanie Theresa Jost
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Monty Silverdale
- Department of Neurology and Neurosurgery, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, Greater Manchester, UK
| | - Alexandra Rizos
- Parkinson Foundation International Centre of Excellence, King's College Hospital, London, UK
| | | | - Julian Evans
- Department of Neurology and Neurosurgery, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, Greater Manchester, UK
| | - Anna Sauerbier
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Parkinson Foundation International Centre of Excellence, King's College Hospital, London, UK
| | - Donya Indi
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Valentina Leta
- Parkinson Foundation International Centre of Excellence, King's College Hospital, London, UK
| | - Paul Reker
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Gereon Rudolf Fink
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Keyoumars Ashkan
- Parkinson Foundation International Centre of Excellence, King's College Hospital, London, UK
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neurosciences (DNS), Padova University, Padova, Italy
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Pablo Martinez-Martin
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health, Madrid, Spain
| | - K Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence, King's College Hospital, London, UK
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lars Timmermann
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Haidar S Dafsari
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
6
|
Hermann MG, Schröter N, Rau A, Reisert M, Jarc N, Rijntjes M, Hosp JA, Reinacher PC, Jost WH, Urbach H, Weiller C, Coenen VA, Sajonz BEA. The connection of motor improvement after deep brain stimulation in Parkinson's disease and microstructural integrity of the substantia nigra and subthalamic nucleus. Neuroimage Clin 2024; 42:103607. [PMID: 38643635 PMCID: PMC11046219 DOI: 10.1016/j.nicl.2024.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Nigrostriatal microstructural integrity has been suggested as a biomarker for levodopa response in Parkinson's disease (PD), which is a strong predictor for motor response to deep brain stimulation (DBS) of the subthalamic nucleus (STN). This study aimed to explore the impact of microstructural integrity of the substantia nigra (SN), STN, and putamen on motor response to STN-DBS using diffusion microstructure imaging. METHODS Data was collected from 23 PD patients (mean age 63 ± 7, 6 females) who underwent STN-DBS, had preoperative 3 T diffusion magnetic resonance imaging including multishell diffusion-weighted MRI with b-values of 1000 and 2000 s/mm2 and records of motor improvement available. RESULTS The association between a poorer DBS-response and increased free interstitial fluid showed notable effect sizes (rho > |0.4|) in SN and STN, but not in putamen. However, this did not reach significance after Bonferroni correction and controlling for sex and age. CONCLUSION Microstructural integrity of SN and STN are potential biomarkers for the prediction of therapy efficacy following STN-DBS, but further studies are required to confirm these associations.
Collapse
Affiliation(s)
- Marco G Hermann
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Schröter
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Rau
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nadja Jarc
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas A Hosp
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | | | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Deep Brain Stimulation, University of Freiburg, Germany
| | - Bastian E A Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Kähkölä J, Katisko J, Lahtinen M. Deep Brain Stimulation of Subthalamic Nucleus Improves Quality of Life in General and Mental Health Domains in Parkinson's Disease to the Level of the General Population. Neuromodulation 2024; 27:520-527. [PMID: 37086220 DOI: 10.1016/j.neurom.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVES Parkinson's disease (PD) leads to significant impairment in quality of life (QoL) across various domains. Deep brain stimulation of the subthalamic nucleus (STN-DBS) is known to improve motor and nonmotor symptoms in PD. The aim was to study whether STN-DBS could improve the QoL of patients with PD to the level of the general population, and to determine factors predicting better motor outcomes. MATERIALS AND METHODS The retrospective analysis included 43 patients who underwent either primary or revision STN-DBS. Patients filled out a general QoL questionnaire (RAND 36-item health survey) before and 12 months after surgery, and scores were compared with age- and sex-adjusted national population values. In addition, motor scores were calculated using Unified Parkinson Disease Rating Scale part 3 (UPDRS 3) with the best PD medication. Levodopa equivalent daily dose (LEDD) was also collected. Changes in the QoL were compared with operation age, disease duration, and preoperative QoL. RESULTS Preoperatively, patients had significantly impaired QoL in all subsections compared with that of the general population. The mean postoperative UPDRS 3 improvement was 50.0%, and reduction in LEDD was 69.0%. Statistically significant QoL improvements were found in Physical Function, Mental Health, Social Function, Vitality, and Role Physical 12 months postoperatively compared with baseline. The mean differences compared with a healthy population were not statistically significant in General Health, Mental Health, Vitality, and Role Emotional. Furthermore, disease duration was found to be negatively correlated with improvements in UPDRS 3 score, and worse preoperative QoL positively correlated with changes in Physical Function. CONCLUSIONS Patients experienced significant QoL improvements after STN-DBS. The General Health and Mental Health of patients were postoperatively most comparable with age- and sex-adjusted population values. Moreover, earlier stimulation predicted better motor improvements, which emphasizes the importance of earlier timing of STN-DBS surgery and minimizing loss of function at a critical disease stage.
Collapse
Affiliation(s)
- Johannes Kähkölä
- Oulu Research Group of Advanced Surgical Technologies and Physics, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland; Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
| | - Jani Katisko
- Oulu Research Group of Advanced Surgical Technologies and Physics, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland; Neurocenter, Oulu University Hospital, University of Oulu, Oulu, Finland; Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
| | - Maija Lahtinen
- Oulu Research Group of Advanced Surgical Technologies and Physics, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland; Neurocenter, Oulu University Hospital, University of Oulu, Oulu, Finland; Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
8
|
Aquino CHD, Moscovich M, Marinho MM, Barcelos LB, Felício AC, Halverson M, Hamani C, Ferraz HB, Munhoz RP. Fundamentals of deep brain stimulation for Parkinson's disease in clinical practice: part 1. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-9. [PMID: 38653485 PMCID: PMC11039067 DOI: 10.1055/s-0044-1786026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
Deep brain stimulation (DBS) is recognized as an established therapy for Parkinson's disease (PD) and other movement disorders in the light of the developments seen over the past three decades. Long-term efficacy is established for PD with documented improvement in the cardinal motor symptoms of PD and levodopa-induced complications, such as motor fluctuations and dyskinesias. Timing of patient selection is crucial to obtain optimal benefits from DBS therapy, before PD complications become irreversible. The objective of this first part review is to examine the fundamental concepts of DBS for PD in clinical practice, discussing the historical aspects, patient selection, potential effects of DBS on motor and non-motor symptoms, and the practical management of patients after surgery.
Collapse
Affiliation(s)
- Camila Henriques de Aquino
- University of Calgary, Cumming School of Medicine, Department of Clinical Neurosciences, Calgary, AB, Canada.
- University of Calgary, Hotchkiss Brain Institute, Calgary, AB, Canada.
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | - Mariana Moscovich
- Christian-Albrechts University, Department of Neurology, Kiel, Germany.
| | - Murilo Martinez Marinho
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | - Lorena Broseghini Barcelos
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | | | - Matthew Halverson
- University of Utah, Department of Neurology, Salt Lake City, Utah, United States.
| | - Clement Hamani
- University of Toronto, Sunnybrook Hospital, Toronto, ON, Canada.
| | - Henrique Ballalai Ferraz
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil.
| | | |
Collapse
|
9
|
Geraedts VJ, van Vugt JPP, Marinus J, Kuiper R, Middelkoop HAM, Zutt R, van der Gaag NA, Hoffmann CFE, Dorresteijn LDA, van Hilten JJ, Contarino MF. Predicting Motor Outcome and Quality of Life After Subthalamic Deep Brain Stimulation for Parkinson's Disease: The Role of Standard Screening Measures and Wearable-Data. JOURNAL OF PARKINSON'S DISEASE 2023:JPD225101. [PMID: 37182900 DOI: 10.3233/jpd-225101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Standardized screening for subthalamic deep brain stimulation (STN DBS) in Parkinson's disease (PD) patients is crucial to determine eligibility, but its utility to predict postoperative outcomes in eligible patients is inconclusive. It is unknown whether wearable data can contribute to this aim. OBJECTIVE To evaluate the utility of universal components incorporated in the DBS screening, complemented by a wearable sensor, to predict motor outcomes and Quality of life (QoL) one year after STN DBS surgery. METHODS Consecutive patients were included in the OPTIMIST cohort study from two DBS centers. Standardized assessments included a preoperative Levodopa Challenge Test (LCT), and questionnaires on QoL and non-motor symptoms including cognition, psychiatric symptoms, impulsiveness, autonomic symptoms, and sleeping problems. Moreover, an ambulatory wearable sensor (Parkinson Kinetigraph (PKG)) was used. Postoperative assessments were similar and also included a Stimulation Challenge Test to determine DBS effects on motor function. RESULTS Eighty-three patients were included (median (interquartile range) age 63 (56-68) years, 36% female). Med-OFF (Stim-OFF) motor severity deteriorated indicating disease progression, but patients significantly improved in terms of Med-ON (Stim-ON) motor function, motor fluctuations, QoL, and most non-motor domains. Motor outcomes were not predicted by preoperative tests, including covariates of either LCT or PKG. Postoperative QoL was predicted by better preoperative QoL, lower age, and more preoperative impulsiveness scores in multivariate models. CONCLUSION Data from the DBS screening including wearable data do not predict postoperative motor outcome at one year. Post-DBS QoL appears primarily driven by non-motor symptoms, rather than by motor improvement.
Collapse
Affiliation(s)
- Victor J Geraedts
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Johan Marinus
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roy Kuiper
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, HAGA Teaching Hospital, Den Haag, the Netherlands
| | - Huub A M Middelkoop
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rodi Zutt
- Department of Neurology, HAGA Teaching Hospital, Den Haag, the Netherlands
| | - Niels A van der Gaag
- Department of Neurosurgery, HAGA Teaching Hospital, Den Haag, the Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Carel F E Hoffmann
- Department of Neurosurgery, HAGA Teaching Hospital, Den Haag, the Netherlands
| | | | - Jacobus J van Hilten
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, HAGA Teaching Hospital, Den Haag, the Netherlands
| |
Collapse
|
10
|
Jiang JL, Chen SY, Tsai ST, Ma YC, Wang JH. Long-Term Effects of Subthalamic Stimulation on Motor Symptoms and Quality of Life in Patients with Parkinson's Disease. Healthcare (Basel) 2023; 11:healthcare11060920. [PMID: 36981577 PMCID: PMC10048478 DOI: 10.3390/healthcare11060920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting both motor functions and quality of life (QoL). This study compared motor symptoms and QoL in patients with PD before and at 1 and 5 years after subthalamic nucleus deep brain stimulation (STN-DBS) surgery in Taiwan. This study included 53 patients with PD undergoing STN-DBS. The motor symptoms improved by 39.71 ± 26.52% and 18.83 ± 37.15% in the Unified Parkinson's Disease Rating Scale (UPDRS) part II and by 36.83 ± 22.51% and 22.75 ± 36.32% in the UPDRS part III at 1 and 5 years after STN-DBS in the off-medication/on-stimulation state, respectively. The Hoehn and Yahr stage significantly improved at the 1-year follow-up but declined progressively and returned to the baseline stage 5 years post-surgery. The Schwab and England Activities of Daily Living improved and sustained for 5 years following STN-DBS. Levodopa equivalent daily dose decreased by 35.32 ± 35.87% and 15.26 ± 65.76% at 1 and 5 years post-surgery, respectively. The QoL revealed significant improvement at 1 year post-surgery; however, patients regressed to near baseline levels 5 years post-surgery. The long-term effects of STN-DBS on motor symptoms were maintained over 5 years after STN-DBS surgery. At the same time, STN-DBS had no long-lasting effect on QoL. The study findings will enable clinicians to become more aware of visible and invisible manifestations of PD.
Collapse
Affiliation(s)
- Jiin-Ling Jiang
- Department of Nursing, Tzu Chi University, Hualien 97004, Taiwan
| | - Shin-Yuan Chen
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Sheng-Tzung Tsai
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Yu-Chin Ma
- Department of Nursing, Tzu Chi University, Hualien 97004, Taiwan
| | - Jen-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| |
Collapse
|
11
|
Krause P, Reimer J, Kaplan J, Borngräber F, Schneider GH, Faust K, Kühn AA. Deep brain stimulation in Early Onset Parkinson's disease. Front Neurol 2022; 13:1041449. [PMID: 36468049 PMCID: PMC9713840 DOI: 10.3389/fneur.2022.1041449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/24/2022] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Subthalamic Deep Brain Stimulation (STN-DBS) is a safe and well-established therapy for the management of motor symptoms refractory to best medical treatment in patients with Parkinson's disease (PD). Early intervention is discussed especially for Early-onset PD (EOPD) patients that present with an age of onset ≤ 45-50 years and see themselves often confronted with high psychosocial demands. METHODS We retrospectively assessed the effect of STN-DBS at 12 months follow-up (12-MFU) in 46 EOPD-patients. Effects of stimulation were evaluated by comparison of disease-specific scores for motor and non-motor symptoms including impulsiveness, apathy, mood, quality of life (QoL), cognition before surgery and in the stimulation ON-state without medication. Further, change in levodopa equivalent dosage (LEDD) after surgery, DBS parameter, lead localization, adverse and serious adverse events as well as and possible additional clinical features were assessed. RESULTS PD-associated gene mutations were found in 15% of our EOPD-cohort. At 12-MFU, mean motor scores had improved by 52.4 ± 17.6% in the STIM-ON/MED-OFF state compared to the MED-OFF state at baseline (p = 0.00; n = 42). These improvements were accompanied by a significant 59% LEDD reduction (p < 0.001), a significant 6.6 ± 16.1 points reduction of impulsivity (p = 0.02; n = 35) and a significant 30 ± 50% improvement of QoL (p = 0.01). At 12-MFU, 9 patients still worked full- and 6 part-time. Additionally documented motor and/or neuropsychiatric features decreased from n = 41 at baseline to n = 14 at 12-MFU. CONCLUSION The present study-results demonstrate that EOPD patients with and without known genetic background benefit from STN-DBS with significant improvement in motor as well as non-motor symptoms. In line with this, patients experienced a meaningful reduction of additional neuropsychiatric features. Physicians as well as patients have an utmost interest in possible predictors for the putative DBS outcome in a cohort with such a highly complex clinical profile. Longitudinal monitoring of DBS-EOPD-patients over long-term intervals with standardized comprehensive clinical assessment, accurate phenotypic characterization and documentation of clinical outcomes might help to gain insights into disease etiology, to contextualize genomic information and to identify predictors of optimal DBS candidates as well as those in danger of deterioration and/or non-response in the future.
Collapse
Affiliation(s)
- Patricia Krause
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | - Johanna Reimer
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | - Jonathan Kaplan
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | - Friederike Borngräber
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | | | - Katharina Faust
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Andrea A. Kühn
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
12
|
Salles PA, Mata IF. Steering the genes into the field of deep brain stimulation. Parkinsonism Relat Disord 2022; 103:166-168. [PMID: 36109294 DOI: 10.1016/j.parkreldis.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Philippe A Salles
- Centro de Trastornos Del Movimiento CETRAM, Santiago, Chile; Movement Disorders Section, Neurology Department, Clínica Alemana, Santiago, Chile; Movement Disorders Section, Neuroscience Center, Clínica Dávila, Santiago, Chile.
| | - Ignacio F Mata
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH, USA.
| |
Collapse
|
13
|
Martinez Marinho M, Broseghini Barcelos L, Hyczy de Siqueira Tosin M, Candeias da Silva C, Borges V, Ballalai Ferraz H, Silva Centeno R. Effect of bilateral deep brain stimulation on the subthalamic nucleus on patients with Parkinson's disease: An observational and non-blinded study. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2021.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Voruz P, Pierce J, Ahrweiller K, Haegelen C, Sauleau P, Drapier S, Drapier D, Vérin M, Péron J. Motor symptom asymmetry predicts non-motor outcome and quality of life following STN DBS in Parkinson's disease. Sci Rep 2022; 12:3007. [PMID: 35194127 PMCID: PMC8863787 DOI: 10.1038/s41598-022-07026-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/27/2022] [Indexed: 11/09/2022] Open
Abstract
Risk factors for long-term non-motor symptoms and quality of life following subthalamic nucleus deep brain stimulation (STN DBS) have not yet been fully identified. In the present study, we investigated the impact of motor symptom asymmetry in Parkinson's disease. Data were extracted for 52 patients with Parkinson's disease (half with predominantly left-sided motor symptoms and half with predominantly right-sided ones) who underwent bilateral STN and a matched healthy control group. Performances for cognitive tests, apathy and depression symptoms, as well as quality-of-life questionnaires at 12 months post-DBS were compared with a pre-DBS baseline. Results indicated a deterioration in cognitive performance post-DBS in patients with predominantly left-sided motor symptoms. Performances of patients with predominantly right-sided motor symptoms were maintained, except for a verbal executive task. These differential effects had an impact on patients' quality of life. The results highlight the existence of two distinct cognitive profiles of Parkinson's disease, depending on motor symptom asymmetry. This asymmetry is a potential risk factor for non-motor adverse effects following STN DBS.
Collapse
Affiliation(s)
- Philippe Voruz
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, 40 bd du Pont d'Arve, 1205, Geneva, Switzerland.,Neuropsychology Unit, Neurology Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Jordan Pierce
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, 40 bd du Pont d'Arve, 1205, Geneva, Switzerland
| | - Kévin Ahrweiller
- 'Behavior and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, Rennes, France.,Neurology Department, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Claire Haegelen
- Neurosurgery Department, Pontchaillou Hospital, Rennes University Hospital, Rennes, France.,MediCIS, INSERM-University of Rennes 1, Rennes, France
| | - Paul Sauleau
- 'Behavior and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, Rennes, France.,Physiology Department, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Sophie Drapier
- 'Behavior and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, Rennes, France.,Neurology Department, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Dominique Drapier
- 'Behavior and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, Rennes, France.,Adult Psychiatry Department, Guillaume Régnier Hospital, Rennes, France
| | - Marc Vérin
- 'Behavior and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, Rennes, France.,Neurology Department, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Julie Péron
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, 40 bd du Pont d'Arve, 1205, Geneva, Switzerland. .,Neuropsychology Unit, Neurology Department, University Hospitals of Geneva, Geneva, Switzerland. .,'Behavior and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, Rennes, France.
| |
Collapse
|
15
|
Visanji NP, Ghani M, Yu E, Kakhki EG, Sato C, Moreno D, Naranian T, Poon YY, Abdollahi M, Naghibzadeh M, Rajalingam R, Lozano AM, Kalia SK, Hodaie M, Cohn M, Statucka M, Boutet A, Elias GJB, Germann J, Munhoz R, Lang AE, Gan-Or Z, Rogaeva E, Fasano A. Axial Impairment Following Deep Brain Stimulation in Parkinson's Disease: A Surgicogenomic Approach. JOURNAL OF PARKINSONS DISEASE 2021; 12:117-128. [PMID: 34602499 PMCID: PMC8842751 DOI: 10.3233/jpd-212730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background: Postoperative outcome following deep brain stimulation (DBS) of the subthalamic nucleus is variable, particularly with respect to axial motor improvement. We hypothesized a genetic underpinning to the response to surgical intervention, termed “surgicogenomics”. Objective: We aimed to identify genetic variants associated with clinical heterogeneity in DBS outcome of Parkinson’s disease (PD) patients that could then be applied clinically to target selection leading to improved surgical outcome. Methods: Retrospective clinical data was extracted from 150 patient’s charts. Each individual was genotyped using the genome-wide NeuroX array tailored to study neurologic diseases. Genetic data were clustered based on surgical outcome assessed by comparing pre- and post-operative scores of levodopa equivalent daily dose and axial impairment at one and five years post-surgery. Allele frequencies were compared between patients with excellent vs. moderate/poor outcomes grouped using a priori defined cut-offs. We analyzed common variants, burden of rare coding variants, and PD polygenic risk score. Results: NeuroX identified 2,917 polymorphic markers at 113 genes mapped to known PD loci. The gene-burden analyses of 202 rare nonsynonymous variants suggested a nominal association of axial impairment with 14 genes (most consistent with CRHR1, IP6K2, and PRSS3). The strongest association with surgical outcome was detected between a reduction in levodopa equivalent daily dose and common variations tagging two linkage disequilibrium blocks with SH3GL2. Conclusion: Once validated in independent populations, our findings may be implemented to improve patient selection for DBS in PD.
Collapse
Affiliation(s)
- Naomi P Visanji
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.,The Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Erfan Ghani Kakhki
- DisorDATA Analytics, Ottawa, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Taline Naranian
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Yu-Yan Poon
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Maryam Abdollahi
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Maryam Naghibzadeh
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Rajasumi Rajalingam
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Mojgan Hodaie
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Melanie Cohn
- Krembil Brain Institute, Toronto, Ontario, Canada
| | | | - Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Gavin J B Elias
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Jürgen Germann
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Renato Munhoz
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.,The Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,The Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| |
Collapse
|
16
|
Weiss D, Volkmann J, Fasano A, Kühn A, Krack P, Deuschl G. Changing Gears - DBS For Dopaminergic Desensitization in Parkinson's Disease? Ann Neurol 2021; 90:699-710. [PMID: 34235776 DOI: 10.1002/ana.26164] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022]
Abstract
In Parkinson's disease, both motor and neuropsychiatric complications unfold as a consequence of both incremental striatal dopaminergic denervation and intensifying long-term dopaminergic treatment. Together, this leads to 'dopaminergic sensitization' steadily increasing motor and behavioral responses to dopaminergic medication that result in the detrimental sequalae of long-term dopaminergic treatment. We review the clinical presentations of 'dopaminergic sensitization', including rebound off and dyskinesia in the motor domain, and neuropsychiatric fluctuations and behavioral addictions with impulse control disorders and dopamine dysregulation syndrome in the neuropsychiatric domain. We summarize state-of-the-art deep brain stimulation, and show that STN-DBS allows dopaminergic medication to be tapered, thus supporting dopaminergic desensitization. In this framework, we develop our integrated debatable viewpoint of "changing gears", that is we suggest rethinking earlier use of subthalamic nucleus deep brain stimulation, when the first clinical signs of dopaminergic motor or neuropsychiatric complications emerge over the steadily progressive disease course. In this sense, subthalamic deep brain stimulation may help reduce longitudinal motor and neuropsychiatric symptom expression - importantly, not by neuroprotection but by supporting dopaminergic desensitization through postoperative medication reduction. Therefore, we suggest considering STN-DBS early enough before patients encounter potentially irreversible psychosocial consequences of dopaminergic complications, but importantly not before a patient shows first clinical signs of dopaminergic complications. We propose to consider neuropsychiatric dopaminergic complications as a new inclusion criterion in addition to established motor criteria, but this concept will require validation in future clinical trials. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Daniel Weiss
- Centre for Neurology, Department for Neurodegenerative Diseases, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital and Julius-Maximilian-University, Würzburg, Germany
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON, Canada.,Division of Neurology, University of Toronto, Toronto, ON, Canada.,Krembil Brain Institute, Toronto, ON, Canada.,Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Andrea Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Paul Krack
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Günther Deuschl
- Department of Neurology, University Hospital Schleswig Holstein (UKSH), Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
17
|
Geraedts VJ, Koch M, Kuiper R, Kefalas M, Bäck THW, van Hilten JJ, Wang H, Middelkoop HAM, van der Gaag NA, Contarino MF, Tannemaat MR. Preoperative Electroencephalography-Based Machine Learning Predicts Cognitive Deterioration after Subthalamic Deep Brain Stimulation. Mov Disord 2021; 36:2324-2334. [PMID: 34080712 PMCID: PMC8596544 DOI: 10.1002/mds.28661] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background Subthalamic deep brain stimulation (STN DBS) may relieve refractory motor complications in Parkinson's disease (PD) patients. Despite careful screening, it remains difficult to determine severity of alpha‐synucleinopathy involvement which influences the risk of postoperative complications including cognitive deterioration. Quantitative electroencephalography (qEEG) reflects cognitive dysfunction in PD and may provide biomarkers of postoperative cognitive decline. Objective To develop an automated machine learning model based on preoperative EEG data to predict cognitive deterioration 1 year after STN DBS. Methods Sixty DBS candidates were included; 42 patients had available preoperative EEGs to compute a fully automated machine learning model. Movement Disorder Society criteria classified patients as cognitively stable or deteriorated at 1‐year follow‐up. A total of 16,674 EEG‐features were extracted per patient; a Boruta algorithm selected EEG‐features to reflect representative neurophysiological signatures for each class. A random forest classifier with 10‐fold cross‐validation with Bayesian optimization provided class‐differentiation. Results Tweny‐five patients were classified as cognitively stable and 17 patients demonstrated cognitive decline. The model differentiated classes with a mean (SD) accuracy of 0.88 (0.05), with a positive predictive value of 91.4% (95% CI 82.9, 95.9) and negative predictive value of 85.0% (95% CI 81.9, 91.4). Predicted probabilities between classes were highly differential (hazard ratio 11.14 [95% CI 7.25, 17.12]); the risk of cognitive decline in patients with high probabilities of being prognosticated as cognitively stable (>0.5) was very limited. Conclusions Preoperative EEGs can predict cognitive deterioration after STN DBS with high accuracy. Cortical neurophysiological alterations may indicate future cognitive decline and can be used as biomarkers during the DBS screening. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Victor J Geraedts
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Milan Koch
- Leiden Institute of Advanced Computer Science, Leiden, The Netherlands
| | - Roy Kuiper
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Haga Teaching Hospital, Den Haag, The Netherlands
| | - Marios Kefalas
- Leiden Institute of Advanced Computer Science, Leiden, The Netherlands
| | - Thomas H W Bäck
- Leiden Institute of Advanced Computer Science, Leiden, The Netherlands
| | - Jacobus J van Hilten
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hao Wang
- Leiden Institute of Advanced Computer Science, Leiden, The Netherlands
| | - Huub A M Middelkoop
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Neuropsychology Unit, Leiden University Institute of Psychology, Leiden, The Netherlands
| | - Niels A van der Gaag
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurosurgery, Haga Teaching Hospital, Den Haag, The Netherlands
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Haga Teaching Hospital, Den Haag, The Netherlands
| | - Martijn R Tannemaat
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
18
|
Azevedo P, Aquino CC, Fasano A. Surgical Management of Parkinson's Disease in the Elderly. Mov Disord Clin Pract 2021; 8:500-509. [PMID: 33981782 DOI: 10.1002/mdc3.13161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 11/09/2022] Open
Abstract
Background Deep Brain Stimulation (DBS) is an increasingly popular therapy for Parkinson's Disease (PD). Despite the experience gained over time with DBS of either the subthalamus or the globus pallidus pars interna, there is still no consensus regarding the age limit for DBS indication. Objectives This narrative review of the literature discusses the issues of age and DBS, emphasizing the critical need for good quality evidence to support the surgical management of elderly patients with PD. Methods We searched PubMed using the terms Parkinson's Disease; Parkinson's Disease therapy; deep brain stimulation; antiparkinsonian agents therapeutic use; age factors; aged; aged, 80 and over; middle aged; treatment outcome; and risk assessments. Results We identified several limitations of the available evidence, such as under-representation of older patients in DBS studies, small sample sizes in studies with older participants, heterogeneity of outcomes, and conflicting results. Conclusions Despite preliminary suggestions that age might affect the outcomes of DBS, the evidence to support the hypothesis of age as an independent predictor of DBS outcomes is limited and results are controversial. Ultimately, finding an age-independent biomarker predicting DBS outcome is the final goal to expand this powerful treatment to all patients age in an effective and safe manner.
Collapse
Affiliation(s)
- Paula Azevedo
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology University of Toronto Toronto Ontario Canada
| | - Camila C Aquino
- Department of Clinical Neurosciences University of Calgary Calgary Alberta Canada.,Hotchkiss Brain Institute, University of Calgary Calgary Alberta Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology University of Toronto Toronto Ontario Canada.,Krembil Brain Institute Toronto Ontario Canada.,CenteR for Advancing Neurotechnological Innovation to Application (CRANIA) Toronto Ontario Canada
| |
Collapse
|
19
|
Magnetic resonance-guided focused ultrasound for Parkinson's disease since ExAblate, 2016-2019: a systematic review. Neurol Sci 2021; 42:553-563. [PMID: 33389248 DOI: 10.1007/s10072-020-05020-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION ExAblate received FDA approval for treatment of a range of movement disorders in 2016, including tremor-dominant Parkinson's disease (TDPD), dyskinetic PD, and essential tremor. This incisionless device allows for magnetic resonance-guided focused ultrasound (MRgFUS) for ablation of several regions of interest. Current studies should aim to measure pre- and post-operative neurocognitive functioning to better understand MRgFUS in PD and how it compares to deep brain stimulation, which has known cognitive risks among certain populations. METHODS PubMed, CINAHL, PsycINFO, and Cochrane Library databases were searched from January 2016 to January 2020. Guidelines for Preferred Reporting Items for Systematic Review and Meta-Analyses were used to review clinical trials comprehensively assessing pre- and post-operative neurocognitive functioning in PD patients undergoing MRgFUS. Due to limited extant literature in this area, TDPD was expanded to PD with severe dyskinesia. RESULTS Twenty-two abstracts were reviewed following removal of duplicates. After full-text review of eight articles, only two studies included comprehensive neuropsychological evaluations of PD patients undergoing MRgFUS thalamotomy or pallidotomy. Most excluded studies used only brief cognitive screeners to assess functioning. Cognitive declines appear to be minimal following MRgFUS in PD, with exceptions in verbal fluency and inhibition. These results are limited by sample size and sample diversity. CONCLUSIONS Significant methodological gaps were inadvertently discovered. Few studies to-date have administered comprehensive neuropsychological batteries to ascertain MRgFUS risks to neurocognitive functioning in PD. Studies must extend beyond brief screeners when assessing PD populations vulnerable to decline. Furthermore, consensus on a comprehensive battery would better serve replicability and the ability to engage in useful meta-analyses.
Collapse
|
20
|
Deep Brain Stimulation Selection Criteria for Parkinson's Disease: Time to Go beyond CAPSIT-PD. J Clin Med 2020; 9:jcm9123931. [PMID: 33291579 PMCID: PMC7761824 DOI: 10.3390/jcm9123931] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Despite being introduced in clinical practice more than 20 years ago, selection criteria for deep brain stimulation (DBS) in Parkinson's disease (PD) rely on a document published in 1999 called 'Core Assessment Program for Surgical Interventional Therapies in Parkinson's Disease'. These criteria are useful in supporting the selection of candidates. However, they are both restrictive and out-of-date, because the knowledge on PD progression and phenotyping has massively evolved. Advances in understanding the heterogeneity of PD presentation, courses, phenotypes, and genotypes, render a better identification of good DBS outcome predictors a research priority. Additionally, DBS invasiveness, cost, and the possibility of serious adverse events make it mandatory to predict as accurately as possible the clinical outcome when informing the patients about their suitability for surgery. In this viewpoint, we analyzed the pre-surgical assessment according to the following topics: early versus delayed DBS; the evolution of the levodopa challenge test; and the relevance of axial symptoms; patient-centered outcome measures; non-motor symptoms; and genetics. Based on the literature, we encourage rethinking of the selection process for DBS in PD, which should move toward a broad clinical and instrumental assessment of non-motor symptoms, quantitative measurement of gait, posture, and balance, and in-depth genotypic and phenotypic characterization.
Collapse
|
21
|
van Hienen MM, Contarino MF, Middelkoop HAM, van Hilten JJ, Geraedts VJ. Effect of deep brain stimulation on caregivers of patients with Parkinson's disease: A systematic review. Parkinsonism Relat Disord 2020; 81:20-27. [PMID: 33038702 DOI: 10.1016/j.parkreldis.2020.09.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Caregivers of patients with Parkinson's Disease (PD) often provide important support in the pre- and postoperative phase of Deep Brain Stimulation (DBS). DBS-associated changes of patient-functioning may affect caregiver wellbeing and impact the support system. Factors influencing caregiver-wellbeing under these circumstances are incompletely known. OBJECTIVE to systematically review studies of sufficient methodological quality on the impact of DBS on caregivers of PD patients. METHODS using PRISMA guidelines, major databases were searched up to May 2020. Five subcategories were identified: Caregiver burden, Caregiver cognitive and psychiatric functioning, Caregiver Quality of Life (QoL), Marital Satisfaction/Conflicts, and Caregiver Satisfaction. Quality was assessed using an in-house checklist. RESULTS 293 studies were identified; 12 were ultimately included. Caregiver burden, psychiatric and cognitive functioning and QoL remained relatively unchanged. Results on marital satisfaction/conflicts were contrasting: an increase in marital conflicts despite improved relationship quality scores DBS. Caregiver satisfaction with surgery was low with 50-58% of caregivers being disappointed with DBS outcomes. Concerning caregiver related factors: a higher preoperative caregiver QoL, younger age, lower scores on psychiatric rating scales, and more favourable preoperative relationship quality scores, were associated with better caregiver wellbeing. A favourable patient-profile includes younger age and age-at-onset, shorter disease duration, lower medication requirements, and lower scores on psychiatric rating scales. CONCLUSION Although most patient- and caregiver-related subdomains remained unchanged after DBS, dissatisfaction among caregivers and marital problems may constitute a large risk for a well-functioning patient-caregiver dyad. Early recognition of potential problem situations may improve post-DBS care for both patients and caregivers.
Collapse
Affiliation(s)
- Marle M van Hienen
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Department of Neurology, Haga Teaching Hospital, the Hague, the Netherlands
| | - Huub A M Middelkoop
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Institute of Psychology, Health, Medical and Neuropsychology Unit, Leiden University, Leiden, the Netherlands
| | - Jacobus J van Hilten
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Victor J Geraedts
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
22
|
Ehlers C, Timpka J, Odin P, Honig H. Levodopa infusion in Parkinson's disease: Individual quality of life. Acta Neurol Scand 2020; 142:248-254. [PMID: 32383152 DOI: 10.1111/ane.13260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Parkinson's disease (PD) features both motor and non-motor symptoms that substantially impact quality of life (QoL). Levodopa-carbidopa intestinal gel (LCIG) reduces motor complications and improves some non-motor symptoms in advanced PD (APD). Change in patients' health-related quality of life (hrQoL) is a common endpoint in PD trials and has become an important factor in judging overall effect of LCIG. However, hrQoL is considered to be only one dimension of QoL. The primary aim of this prospective observational study was to observe the effects of LCIG on individual quality of life (iQoL) in PD and caregivers. The secondary aim was to investigate its effects on patients' motor and non-motor symptoms as well as effects on caregiver burden. MATERIALS & METHODS Utilizing the Schedule for the Evaluation of Individual Quality of Life-Questionnaire (SEIQoL-Q) and the Personal Wellbeing Index-Adult (PWI-A), twelve patients with advanced PD and their caregivers were followed for six months after initiation of LCIG treatment. RESULTS At the final follow-up, improvements of iQoL for patients (median SEIQoL index improvement 0.16, P < .05) and caregivers (median SEIQoL index improvement 0.20, P < .05) were seen together with improvements of motor and non-motor symptoms. There were no significant improvements of hrQoL. CONCLUSIONS The study results indicate that LCIG improves iQoL in PD in addition to the improvement of motor and non-motor symptoms. Furthermore, this study signals that LCIG may also contribute to improvement of iQoL in caregivers.
Collapse
Affiliation(s)
- Claas Ehlers
- Department of Neurology Hospital Bremerhaven Reinkenheide Bremerhaven Germany
| | - Jonathan Timpka
- Division of Neurology Department of Clinical Sciences Lund Lund University Lund Sweden
- Department of Neurology Skane University Hospital Lund Sweden
| | - Per Odin
- Division of Neurology Department of Clinical Sciences Lund Lund University Lund Sweden
- Department of Neurology Skane University Hospital Lund Sweden
| | - Holger Honig
- Department of Neurology Hospital Bremerhaven Reinkenheide Bremerhaven Germany
| |
Collapse
|
23
|
Schrag A, Quinn N. What contributes to quality of life in Parkinson's disease: a re-evaluation. J Neurol Neurosurg Psychiatry 2020; 91:563-565. [PMID: 32139651 DOI: 10.1136/jnnp-2019-322379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Anette Schrag
- UCL Institute of Neurology, University College London, London, UK
| | - Niall Quinn
- UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|