1
|
Zhukova JV, Lopatnikova JA, Alshevskaya AA, Sennikov SV. Molecular mechanisms of regulation of IL-1 and its receptors. Cytokine Growth Factor Rev 2024; 80:59-71. [PMID: 39414547 DOI: 10.1016/j.cytogfr.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Interleukin 1 (IL-1) is a pro-inflammatory cytokine that plays a key role in the development and regulation of nonspecific defense and specific immunity. However, its regulatory influence extends beyond inflammation and impacts a range of immune and non-immune processes. The involvement of IL-1 in numerous biological processes, including modulation of inflammation, necessitates strict regulation at multiple levels. This review focuses on these regulatory processes and discusses their underlying mechanisms. IL-1 activity is controlled at various levels, including receptor binding, gene transcription, expression as inactive proforms, and regulated post-translational processing and secretion. Regulation at the level of the receptor expression - alternative splicing, tissue-specific isoforms, and gene polymorphism - is also crucial to IL-1 functional activity. Understanding these regulatory features of IL-1 will not only continue to shape future research directions but will also highlight promising therapeutic strategies to modulate the biological effects of IL-1.
Collapse
Affiliation(s)
- J V Zhukova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - J A Lopatnikova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - A A Alshevskaya
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - S V Sennikov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.
| |
Collapse
|
2
|
Xia H, Luan X, Bao Z, Zhu Q, Wen C, Wang M, Song W. A multi-cohort study of the hippocampal radiomics model and its associated biological changes in Alzheimer's Disease. Transl Psychiatry 2024; 14:111. [PMID: 38395947 PMCID: PMC10891125 DOI: 10.1038/s41398-024-02836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
There have been no previous reports of hippocampal radiomics features associated with biological functions in Alzheimer's Disease (AD). This study aims to develop and validate a hippocampal radiomics model from structural magnetic resonance imaging (MRI) data for identifying patients with AD, and to explore the mechanism underlying the developed radiomics model using peripheral blood gene expression. In this retrospective multi-study, a radiomics model was developed based on the radiomics discovery group (n = 420) and validated in other cohorts. The biological functions underlying the model were identified in the radiogenomic analysis group using paired MRI and peripheral blood transcriptome analyses (n = 266). Mediation analysis and external validation were applied to further validate the key module and hub genes. A 12 radiomics features-based prediction model was constructed and this model showed highly robust predictive power for identifying AD patients in the validation and other three cohorts. Using radiogenomics mapping, myeloid leukocyte and neutrophil activation were enriched, and six hub genes were identified from the key module, which showed the highest correlation with the radiomics model. The correlation between hub genes and cognitive ability was confirmed using the external validation set of the AddneuroMed dataset. Mediation analysis revealed that the hippocampal radiomics model mediated the association between blood gene expression and cognitive ability. The hippocampal radiomics model can accurately identify patients with AD, while the predictive radiomics model may be driven by neutrophil-related biological pathways.
Collapse
Affiliation(s)
- Huwei Xia
- Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Xiaoqian Luan
- Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhengkai Bao
- Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qinxin Zhu
- Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Caiyun Wen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Meihao Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weihong Song
- Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
3
|
Su WM, Gu XJ, Hou YB, Zhang LY, Cao B, Ou RW, Wu Y, Chen XP, Song W, Zhao B, Shang HF, Chen YP. Association Analysis of WNT3, HLA-DRB5 and IL1R2 Polymorphisms in Chinese Patients With Parkinson's Disease and Multiple System Atrophy. Front Genet 2021; 12:765833. [PMID: 34868249 PMCID: PMC8636743 DOI: 10.3389/fgene.2021.765833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Background: The association between inflammation and neurodegeneration has long been observed in parkinson's disease (PD) and multiple system atrophy (MSA). Previous genome-wide association studies (GWAS) and meta-analyses have identified several risk loci in inflammation-associated genes associated with PD. Objective: To investigate whether polymorphisms in some inflammation-associated genes could modulate the risk of developing PD and MSA in a Southwest Chinese population. Methods: A total of 2,706 Chinese subjects comprising 1340 PD, 483 MSA and 883 healthy controls were recruited in the study. Three polymorphisms (rs2074404 GG/GT/TT, rs17425622 CC/CT/TT, rs34043159 CC/CT/TT) in genes linked to inflammation in all the subjects were genotyped by using the Sequenom iPLEX Assay. Results: The allele G of WNT3 rs2074404 can increase risk on PD (OR: 1.048, 95% CI: 1.182-1.333, p = 0.006), exclusively in the LOPD subgroup (OR: 1.166, 95% CI:1.025-1.327, p = 0.019), but not in EOPD or MSA. And the recessive model analysis also demonstrated an increased PD risk in GG genotype of this locus (OR = 1.331, p = 0.007). However, no significant differences were observed in the genotype distributions and alleles of HLA-DRB5 rs17425622 and IL1R2 rs34043159 between the PD patients and controls, between the MSA patients and controls, or between subgroups of PD or MSA and controls. Conclusion: Our results suggested the allele G of WNT3 rs2074404 have an adverse effect on PD and particularly, on the LOPD subgroup among a Chinese population.
Collapse
Affiliation(s)
- Wei-Ming Su
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Jing Gu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan-Bing Hou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling-Yu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ru-Wei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xue-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Song
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Zhao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, China
- Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Ghosh P, Singh R, Ganeshpurkar A, Pokle AV, Singh RB, Singh SK, Kumar A. Cellular and molecular influencers of neuroinflammation in Alzheimer's disease: Recent concepts & roles. Neurochem Int 2021; 151:105212. [PMID: 34656693 DOI: 10.1016/j.neuint.2021.105212] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/22/2021] [Accepted: 10/10/2021] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD), an extremely common neurodegenerative disorder of the older generation, is one of the leading causes of death globally. Besides the conventional hallmarks i.e. Amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), neuroinflammation also serves as a major contributing factor in the pathogenesis of AD. There are mounting evidences to support the fundamental role of cellular (microglia, astrocytes, mast cells, and T-cells) and molecular (cytokines, chemokines, caspases, and complement proteins) influencers of neuroinflammation in producing/promoting neurodegeneration and dementia in AD. Genome-wide association studies (GWAS) have revealed the involvement of various single nucleotide polymorphisms (SNPs) of genes related to neuroinflammation with the risk of developing AD. Modulating the release of the neuroinflammatory molecules and targeting their relevant mechanisms may have beneficial effects on the onset, progress and severity of the disease. Here, we review the distinct role of various mediators and modulators of neuroinflammation that impact the pathogenesis and progression of AD as well as incite further research efforts for the treatment of AD through a neuroinflammatory approach.
Collapse
Affiliation(s)
- Powsali Ghosh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Vyankatrao Pokle
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Bhushan Singh
- Institute of Pharmacy Harischandra PG College, Bawanbigha, Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
5
|
Liu X, Peng L, Li D, He C, Xing S, Wang Y, He Y. The Impacts of IL1R1 and IL1R2 Genetic Variants on Rheumatoid Arthritis Risk in the Chinese Han Population: A Case-Control Study. Int J Gen Med 2021; 14:2147-2159. [PMID: 34093035 PMCID: PMC8169084 DOI: 10.2147/ijgm.s291395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/16/2021] [Indexed: 12/02/2022] Open
Abstract
Background Rheumatoid arthritis (RA), an autoimmune systemic inflammatory disease, largely resulted from genetic factor. Our purpose was to explore the association for IL1R1 and IL1R2 genetic variants with RA susceptibility in the Chinese Han population. Patients and Methods A total of 508 RA patients and 494 controls were involved in this case–control study; single-nucleotide polymorphisms (SNPs) genotyping was identified by the Agena MassARRAY platform. The relationship between polymorphisms and RA susceptibility was calculated using the Pearson’s Chi-square test with odds ratios and 95% confidence intervals (CIs) in multiple genetic models. The Pearson’s Chi-square test and Student’s t-test were used for sample basic characteristic analysis. And linkage disequilibrium (LD) analysis and haplotype analysis were performed by logistic regression analysis. Results The result from this study showed that rs2072472 (IL1R2) was an increased risk factor of RA (adjusted OR = 1.41, p = 0.011). Stratified analysis indicated SNPs rs10490571, rs956730, rs3917318 of IL1R1, and SNPs rs4851527, rs719250, rs3218896, rs3218977, rs2072472 of IL1R2 had impacts on RA risk after stratification based on gender and average age (54 years). Finally, haplotype analysis revealed that Ars3218977Ars2072472 haplotype in IL1R2 was related to a decreased RA risk (adjusted OR = 0.79; 95% CI = 0.65–0.94; p = 0.010). Yet, rs3917225(IL1R1) and rs11674595(IL1R2) were not significant in RA association analysis. Conclusion We determined SNPs (rs3917318, rs956730, rs1049057) of IL1R1 and SNPs (rs3218977, rs719250, rs4851527, rs3218896, rs2072472) of IL1R2 were correlated with the RA susceptibility in the Chinese Han population.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, People's Republic of China
| | - Linna Peng
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, People's Republic of China
| | - Dandan Li
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, People's Republic of China
| | - Chunjuan He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, People's Republic of China
| | - Shishi Xing
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, People's Republic of China
| | - Yuhe Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Xizang Minzu University, Xianyang, People's Republic of China
| | - Yongjun He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, 712082, People's Republic of China
| |
Collapse
|