1
|
Zivadinov R, Tranquille A, Reeves JA, Dwyer MG, Bergsland N. Brain atrophy assessment in multiple sclerosis: technical- and subject-related barriers for translation to real-world application in individual subjects. Expert Rev Neurother 2024; 24:1081-1096. [PMID: 39233336 DOI: 10.1080/14737175.2024.2398484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION Brain atrophy is a well-established MRI outcome for predicting clinical progression and monitoring treatment response in persons with multiple sclerosis (pwMS) at the group level. Despite the important progress made, the translation of brain atrophy assessment into clinical practice faces several challenges. AREAS COVERED In this review, the authors discuss technical- and subject-related barriers for implementing brain atrophy assessment as part of the clinical routine at the individual level. Substantial progress has been made to understand and mitigate technical barriers behind MRI acquisition. Numerous research and commercial segmentation techniques for volume estimation are available and technically validated, but their clinical value has not been fully established. A systematic assessment of subject-related barriers, which include genetic, environmental, biological, lifestyle, comorbidity, and aging confounders, is critical for the interpretation of brain atrophy measures at the individual subject level. Educating both medical providers and pwMS will help better clarify the benefits and limitations of assessing brain atrophy for disease monitoring and prognosis. EXPERT OPINION Integrating brain atrophy assessment into clinical practice for pwMS requires overcoming technical and subject-related challenges. Advances in MRI standardization, artificial intelligence, and clinician education will facilitate this process, improving disease management and potentially reducing long-term healthcare costs.
Collapse
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ashley Tranquille
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jack A Reeves
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
2
|
Masuda H, Mori M, Hirano S, Uzawa A, Uchida T, Muto M, Ohtani R, Aoki R, Hirano Y, Kuwabara S. Higher longitudinal brain white matter atrophy rate in aquaporin-4 IgG-positive NMOSD compared with healthy controls. Sci Rep 2023; 13:12631. [PMID: 37537208 PMCID: PMC10400628 DOI: 10.1038/s41598-023-38893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
We aimed to compare longitudinal brain atrophy in patients with neuromyelitis optica spectrum disorder (NMOSD) with healthy controls (HCs). The atrophy rate in patients with anti-aquaporin-4 antibody-positive NMOSD (AQP4 + NMOSD) was compared with age-sex-matched HCs recruited from the Japanese Alzheimer's Disease Neuroimaging Initiative study and another study performed at Chiba University. Twenty-nine patients with AQP4 + NMOSD and 29 HCs were enrolled in the study. The time between magnetic resonance imaging (MRI) scans was longer in the AQP4 + NMOSD group compared with the HCs (median; 3.2 vs. 2.9 years, P = 0.009). The annualized normalized white matter volume (NWV) atrophy rate was higher in the AQP4 + NMOSD group compared with the HCs (median; 0.37 vs. - 0.14, P = 0.018). The maximum spinal cord lesion length negatively correlated with NWV at baseline MRI in patients with AQP4 + NMOSD (Spearman's rho = - 0.41, P = 0.027). The annualized NWV atrophy rate negatively correlated with the time between initiation of persistent prednisolone usage and baseline MRI in patients with AQP4 + NMOSD (Spearman's rho = - 0.43, P = 0.019). Patients with AQP4 + NMOSD had a greater annualized NWV atrophy rate than HCs. Suppressing disease activity may prevent brain atrophy in patients with AQP4 + NMOSD.
Collapse
Affiliation(s)
- Hiroki Masuda
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan.
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Tomohiko Uchida
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Mayumi Muto
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
- Department of Neurology, Chiba Rosai Hospital, 2-16, Tatsumidai-Higashi, Ichihara, 290-0003, Japan
| | - Ryohei Ohtani
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
- Department of Neurology, Kimitsu Chuo Hospital, 1010, Sakurai, Kisarazu-Shi, Chiba, 292-8535, Japan
| | - Reiji Aoki
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Yoshiyuki Hirano
- Research Center for Child Mental Development, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| |
Collapse
|
3
|
Yokote H, Miyazaki Y, Toru S, Nishida Y, Hattori T, Niino M, Sanjo N, Yokota T. High-efficacy therapy reduces subcortical grey matter volume loss in Japanese patients with relapse-onset multiple sclerosis: A 2-year cohort study. Mult Scler Relat Disord 2022; 67:104077. [DOI: 10.1016/j.msard.2022.104077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 11/27/2022]
|
4
|
Marastoni D, Crescenzo F, Pisani AI, Zuco C, Schiavi G, Benedetti G, Ricciardi GK, Montemezzi S, Pizzini FB, Tamanti A, Calabrese M. Two years' effect of dimethyl fumarate on focal and diffuse gray matter pathology in multiple sclerosis. Mult Scler 2022; 28:2090-2098. [PMID: 35765211 DOI: 10.1177/13524585221104014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Data on the effect of dimethyl fumarate (DMF) on focal and diffuse gray matter (GM) damage, a relevant pathological substrate of multiple sclerosis (MS)-related disability are lacking. OBJECTIVE To evaluate the DMF effect on cortical lesions (CLs) accumulation and global and regional GM atrophy in subjects with relapsing-remitting MS. METHODS A total of 148 patients (mean age 38.1 ± 9.7 years) treated with DMF ended a 2-year longitudinal study. All underwent regular Expanded Disability Status Scale (EDSS assessment), and at least two 3T-magnetic resonance imaging (MRI) at 3 and 24 months after DMF initiation. CLs and changes in global and regional atrophy of several brain regions were compared with 47 untreated age and sex-matched patients. RESULTS DMF-treated patients showed lower CLs accumulation (median 0[0-3] vs 2[0-7], p < 0.001) with respect to controls. Global cortical thickness (p < 0.001) and regional thickness and volume were lower in treated group (cerebellum, hippocampus, caudate, and putamen: p < 0.001; thalamus p = 0.03). Lower relapse rate (14% vs 40%, p < 0.001), EDSS change (0.2 ± 0.4 vs 0.4 ± 0.9, p < 0.001), and new WM lesions (median 0[0-5] vs 2[0-6], p < 0.001) were reported. No severe adverse drug reactions occurred. CONCLUSIONS Beyond the well-known effect on disease activity, these results provide evidence of the effect of DMF through reduced progression of focal and diffuse GM damage.
Collapse
Affiliation(s)
- Damiano Marastoni
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Anna I Pisani
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carmela Zuco
- Neurology Unit, "Carlo Poma" Hospital, ASST Mantua, Mantua, Italy
| | - Gianmarco Schiavi
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giulia Benedetti
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe K Ricciardi
- Neuroradiology & Radiology Units, Department of Diagnostic and Pathology, Integrated University Hospital of Verona, Verona, Italy
| | - Stefania Montemezzi
- Neuroradiology & Radiology Units, Department of Diagnostic and Pathology, Integrated University Hospital of Verona, Verona, Italy
| | - Francesca B Pizzini
- Radiology Unit, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Agnese Tamanti
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Massimiliano Calabrese
- Regional Multiple Sclerosis Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Masuda H, Mori M, Hirano S, Uzawa A, Uchida T, Muto M, Ohtani R, Aoki R, Kuwabara S. Silent progression of brain atrophy in aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder. J Neurol Neurosurg Psychiatry 2022; 93:32-40. [PMID: 34362853 PMCID: PMC8685614 DOI: 10.1136/jnnp-2021-326386] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To investigate longitudinal brain atrophy in patients with neuromyelitis optica spectrum disorder (NMOSD). METHODS We investigated the longitudinal brain atrophy rate in patients with aquaporin-4 antibody-positive NMOSD (AQP4+NMOSD) and those with multiple sclerosis (MS) in a retrospective cohort study. Brain volume was calculated with statistical parametric mapping-12. RESULTS We enrolled 36 patients with AQP4+NMOSD and 60 with MS. Patients with NMOSD were older and had a higher Kurtzke's expanded disability status scale score at baseline MRI compared with those with MS. Disease duration, annual relapse rate and intervals from the last attack and from disease-modifying drugs initiation were not significantly different between the two groups. Lower normalised lesion volume and higher normalised white matter volume were found in patients with NMOSD compared with those with MS at baseline MRI. However, the annualised atrophy rate of normalised brain volume was similar between the NMOSD (median 0.47; IQR 0.75; p=0.49) and MS (median 0.46; IQR 0.84) groups. After adjustment of age and the presence of clinical relapse, no differences of the annualised atrophy rate of normalised brain volume also were found for NMOSD and MS. Patients with AQP4+NMOSD with long cord lesion showed higher annualised atrophy rate of normalised grey matter volume compared with those without long cord lesion. CONCLUSIONS Silent progression of brain atrophy was present in patients with AQP4+NMOSD, as shown in patients with MS, even in the clinically inactive age-matched cases. Subclinical dying back degeneration may explain the brain atrophy in patients with AQP4 +NMOSD.
Collapse
Affiliation(s)
- Hiroki Masuda
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Masahiro Mori
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Shigeki Hirano
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Akiyuki Uzawa
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Tomohiko Uchida
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Mayumi Muto
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Ryohei Ohtani
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Reiji Aoki
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Neurology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| |
Collapse
|