1
|
Pir GJ, Zahid MA, Akhtar N, Ayadathil R, Pananchikkal SV, Joseph S, Morgan DM, Babu B, Ty Ui R, Sivasankaran S, Francis R, Own A, Shuaib A, Parray A, Agouni A. Differentially expressed miRNA profiles of serum derived extracellular vesicles from patients with acute ischemic stroke. Brain Res 2024; 1845:149171. [PMID: 39168264 DOI: 10.1016/j.brainres.2024.149171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND MicroRNAs (miRNAs) participate in diverse cellular changes following acute ischemic stroke (AIS). Circulating miRNAs, stabilized and delivered to target cells via extracellular vesicles (EVs), are potential biomarkers to facilitate diagnosis, prognosis, and therapeutic modulation. We aimed to identify distinctive expression patterns of circulating EV-miRNAs in AIS patients. METHODS miRNA profiles from EVs, isolated from plasma samples collected within 24 h following AIS diagnosis, were examined between a dataset of 10 age-, gender- and existing comorbidities-matched subjects (5 AIS and 5 healthy controls, HC). We measured 2578 miRNAs and identified differentially expressed miRNAs between AIS and HC. An enrichment analysis was conducted to delineate the networks and biological pathways implicated by differentially expressed microRNAs. An enrichment analysis was conducted to delineate the networks and biological pathways implicated by differentially expressed microRNAs. RESULTS Five miRNAs were differentially expressed between stroke (AIS) versus control (HC). hsa-let-7b-5p, hsa-miR-16-5p, and hsa-miR-320c were upregulated, whereas hsa-miR-548a-3p and hsa-miR-6808-3p, with no previously reported changes in stroke were downregulated. The target genes of these miRNAs affect various cellular pathways including, RNA transport, autophagy, cell cycle progression, cellular senescence, and signaling pathways like mTOR, PI3K-Akt, and p53. Key hub genes within these networks include TP53, BCL2, Akt, CCND1, and NF-κB. These pathways are crucial for cellular function and stress response, and their dysregulation can have significant implications for the disease processes. CONCLUSION Our findings reveal distinct circulating EV-miRNA expression patterns in AIS patients from Qatar, highlighting potential biomarkers that could aid in stroke diagnosis and therapeutic strategies. The identified miRNAs are involved in critical cellular pathways, offering novel insights into the molecular mechanisms underlying stroke pathology. Circulating EV-miRNAs differentially expressed in AIS may have a pathophysiological role and may guide further research to elucidate their precise mechanisms.
Collapse
Affiliation(s)
- Ghulam Jeelani Pir
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Muhammad Ammar Zahid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Naveed Akhtar
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Raheem Ayadathil
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sajitha V Pananchikkal
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sujata Joseph
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Deborah M Morgan
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Blessy Babu
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ryan Ty Ui
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shobhna Sivasankaran
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Reny Francis
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Own
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ashfaq Shuaib
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Aijaz Parray
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Xu B, Wu Z, Lin Y, Liu Y, Liu L, Zhang Y. Association of plasma VEGF with futile recanalization and intracranial angiogenesis in ischemic stroke post-endovascular treatment. J Clin Neurosci 2024; 129:110831. [PMID: 39265359 DOI: 10.1016/j.jocn.2024.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
OBJECTIVE This study aimed to compare baseline and subsequent vascular endothelial growth factor (VEGF) levels in predicting futile recanalization (FR) in acute ischemic stroke (AIS) patients undergoing endovascular treatment (EVT), and to explore the association between angiogenesis and VEGF. METHODS 84 participants were recruited, including 46 AIS in the EVT group, 20 AIS in the conventional treatment group, and 18 healthy controls. Plasma VEGF levels were measured at different time points. FR was defined as a modified Rankin scale score of 3-6 at 3 months. Multivariable analysis evaluated whether VEGF levels at different time points independently predicted FR, and receiver operating characteristic (ROC) curves assessed their predictive value. Using intracranial lesion side vascular imaging, the Maas scoring system assessed angiogenesis post-onset, with scores of 4 to 5 indicating angiogenesis. RESULTS In the conventional treatment group, VEGF levels significantly decreased by day 7, while in the EVT group, reduction was observed as early as day 3. After adjusting for potential confounders, only VEGF levels on day 3 emerged as an independent predictor of FR. The combined model incorporating VEGF levels on day 3 with other factors effectively predicted FR (area under the curve = 0.916; sensitivity = 84.21 %; specificity = 100 %, P<0.0001). Plasma VEGF levels were notably higher in patients with angiogenesis in specific brain regions compared to those without angiogenesis at days 1, 3, 7, and 14 (P<0.05). CONCLUSION VEGF levels on the 3rd day post-EVT demonstrate superior predictive value for FR. Elevated VEGF levels correlate with angiogenesis, suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Bingdong Xu
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhengdong Wu
- Department of Neurology, The Fifth Affiliated Hospital of Jinan University, Heyuan, China
| | - Yingze Lin
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yujun Liu
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Leiyuan Liu
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yusheng Zhang
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Rust R, Nih LR, Liberale L, Yin H, El Amki M, Ong LK, Zlokovic BV. Brain repair mechanisms after cell therapy for stroke. Brain 2024; 147:3286-3305. [PMID: 38916992 PMCID: PMC11449145 DOI: 10.1093/brain/awae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Cell-based therapies hold great promise for brain repair after stroke. While accumulating evidence confirms the preclinical and clinical benefits of cell therapies, the underlying mechanisms by which they promote brain repair remain unclear. Here, we briefly review endogenous mechanisms of brain repair after ischaemic stroke and then focus on how different stem and progenitor cell sources can promote brain repair. Specifically, we examine how transplanted cell grafts contribute to improved functional recovery either through direct cell replacement or by stimulating endogenous repair pathways. Additionally, we discuss recently implemented preclinical refinement methods, such as preconditioning, microcarriers, genetic safety switches and universal (immune evasive) cell transplants, as well as the therapeutic potential of these pharmacologic and genetic manipulations to further enhance the efficacy and safety of cell therapies. By gaining a deeper understanding of post-ischaemic repair mechanisms, prospective clinical trials may be further refined to advance post-stroke cell therapy to the clinic.
Collapse
Affiliation(s)
- Ruslan Rust
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
| | - Lina R Nih
- Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Mohamad El Amki
- Department of Neurology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Lin Kooi Ong
- School of Health and Medical Sciences & Centre for Health Research, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
4
|
Hu Y, Huang S, Shen T, Wang R, Geng M, Wang Y, Zheng Y, Luo Y, Li S. Prognostic Significance of Plasma VEGFA and VEGFR2 in Acute Ischemic Stroke-a Prospective Cohort Study. Mol Neurobiol 2024; 61:6341-6353. [PMID: 38300447 DOI: 10.1007/s12035-024-03973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024]
Abstract
Enhancement of vascular remodeling in affected brain tissue is a novel therapy for acute ischemic stroke (AIS). However, conclusions regarding angiogenesis after AIS remain ambiguous. Vascular endothelial growth factor A (VEGFA) and VEGF receptor 2 (VEGFR2) are potent regulators of angiogenesis and vascular permeability. We aimed to investigate the association between VEGFA/VEGFR2 expression in the acute stage of stroke and prognosis of patients with AIS. We enrolled 120 patients with AIS within 24 h of stroke onset and 26 healthy controls. Plasma levels of VEGFA and VEGFR2 were measured by enzyme-linked immunosorbent assay (ELISA). The primary endpoint was an unfavorable outcome defined as a modified Rankin Scale (mRS) score > 2 at 3 months after AIS. Univariate and multivariate logistic regression analyses were used to identify risk factors affecting prognosis. Plasma VEGFA and VEGFR2 were significantly higher in patients with AIS than in health controls, and also significantly higher in patients with unfavorable than those with favorable outcomes. Moreover, both VEGFA and VEGFR2 showed a significantly positive correlation with mRS at 3 months. Univariate and multivariate analyses showed VEGFA and VEGFR2 remained associated with unfavorable outcomes, and adding VEGFA and VEGFR2 to the clinical model significantly improved risk reclassification (continuous net reclassification improvement, 105.71%; integrated discrimination improvement, 23.45%). The new risk model curve exhibited a good fit with an area under the receiver operating characteristic curve (ROC) curve of 0.9166 (0.8658-0.9674). Plasma VEGFA and VEGFR2 are potential markers for predicting prognosis; thus these two plasma biomarkers may improve risk stratification in patients with AIS.
Collapse
Affiliation(s)
- Yue Hu
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Shuangfeng Huang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Tong Shen
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Meng Geng
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yangmin Zheng
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Sijie Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Zhu J, Shi Q, Han X, Wang M, Zhang L, Ying H, Yu B. AMPK deficiency inhibits fatty acid oxidation in endothelial progenitor cells to aggravate impaired angiogenesis after ischemic stroke in hyperlipidemic mice. Brain Inj 2024; 38:835-847. [PMID: 38716911 DOI: 10.1080/02699052.2024.2349776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 04/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Hyperlipidemia is a risk factor for stroke, and worsens neurological outcome after stroke. Endothelial progenitor cells (EPCs), which become dysfunctional in cerebral ischemia, hold capacity to promote revascularization. OBJECTIVE We investigated the role of dyslipidemia in impairment of EPC-mediated angiogenesis in cerebral ischemic mice. METHODS AND RESULTS The high fat diet (HFD)-fed mice following by ischemic stroke exhibited increased infarct volumes and neurological severity scores, and poorer angiogenesis. Bone marrow-EPCs treated with palmitic acid (PA) showed impaired functions and inhibited activity of AMP-activated protein kinase (AMPK). Notably, AMPK deficiency aggravated EPC dysfunction, further decreased mitochondrial membrane potential, and increased reactive oxygen species level in EPCs with PA treatment. Furthermore, the expression of fatty acid oxidation (FAO)-related genes was remarkably reduced, and carnitine palmitoyltransferase 1A (CPT1A) protein expression was downregulated in AMPK-deficient EPCs. AMPK deficiency aggravated neurological severity scores and angiogenesis in ischemic brain of HFD-fed mice, accompanied by suppressed protein level of CPT1A. EPC transplantation corrected impaired neurological severity scores and angiogenesis in AMPK-deficient mice. CONCLUSION Our findings suggest that AMPK deficiency aggravates poor angiogenesis in ischemic brain by mediating FAO and oxidative stress thereby inducing EPC dysfunction in hyperlipidemic mice.
Collapse
Affiliation(s)
- Jian Zhu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiaojuan Shi
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Xue Han
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Mengyang Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Lu Zhang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huazhong Ying
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Bing Yu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Zhang B, Li J, Zeng C, Tao C, He Q, Liu C, Zheng Z, Zhao Z, Mou S, Sun W, Wang J, Zhang Q, Wang R, Zhang Y, Ge P, Zhang D. Nonalcoholic fatty liver disease is an independent risk factor for ischemic stroke after revascularization in patients with Moyamoya disease: a prospective cohort study. Lipids Health Dis 2024; 23:80. [PMID: 38494486 PMCID: PMC10944598 DOI: 10.1186/s12944-024-02065-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND The study aimed to investigate the association between nonalcoholic fatty liver disease (NAFLD) and ischemic stroke events after revascularization in patients with Moyamoya disease (MMD). METHODS This study prospectively enrolled 275 MMD patients from September 2020 to December 2021. Patients with alcoholism and other liver diseases were excluded. NAFLD was confirmed by CT imaging or abdominal ultrasonography. Stroke events and modified Rankin Scale (mRS) scores at the latest follow-up were compared between the two groups. RESULTS A total of 275 patients were enrolled in the study, among which 65 were diagnosed with NAFLD. Univariate logistic regression analysis showed that NAFLD (P = 0.029) was related to stroke events. Multivariate logistic regression analysis showed that NAFLD is a predictor of postoperative stroke in MMD patients (OR = 27.145, 95% CI = 2.031-362.81, P = 0.013). Kaplan-Meier analysis showed that compared with MMD patients with NAFLD, patients in the control group had a longer stroke-free time (P = 0.004). Univariate Cox analysis showed that NAFLD (P = 0.016) was associated with ischemic stroke during follow-up in patients with MMD. Multivariate Cox analysis showed that NAFLD was an independent risk factor for stroke in patients with MMD (HR = 10.815, 95% CI = 1.259-92.881, P = 0.030). Furthermore, fewer patients in the NAFLD group had good neurologic status (mRS score ≤ 2) than the control group (P = 0.005). CONCLUSION NAFLD was an independent risk factor for stroke in patients with MMD after revascularization and worse neurological function outcomes.
Collapse
Affiliation(s)
- Bojian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Chuming Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Zhikang Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Siqi Mou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Wei Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China.
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China.
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Włodarczyk L, Cichoń N, Karbownik MS, Saso L, Saluk J, Miller E. Circulating Serum VEGF, IGF-1 and MMP-9 and Expression of Their Genes as Potential Prognostic Markers of Recovery in Post-Stroke Rehabilitation-A Prospective Observational Study. Brain Sci 2023; 13:846. [PMID: 37371326 DOI: 10.3390/brainsci13060846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
The key period in post-stroke recovery is the first three months due to the high activity of spontaneous and therapeutic-induced processes related to neuroplasticity, angiogenesis and reperfusion. Therefore, the present study examines the expression of VEGF, IGF-1 and MMP-9 proteins and their genes to identify biomarkers that can prognose brain repair ability and thus estimate the outcome of stroke. It also identifies possible associations with clinical scales, including cognitive assessment and depression scales. The study group comprised 32 patients with moderate ischemic stroke severity, three to four weeks after incident. The results obtained after three-week hospitalization indicate a statistically significant change in clinical parameter estimations, as well as in MMP9 and VEGF protein and mRNA expression, over the rehabilitation process. Our findings indicate that combined MMP9 protein and mRNA expression might be a useful biomarker for cognitive improvement in post-stroke patients, demonstrating 87% sensitivity and 71% specificity (p < 0.0001).
Collapse
Affiliation(s)
- Lidia Włodarczyk
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland
| | - Natalia Cichoń
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michał Seweryn Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Elżbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland
| |
Collapse
|
8
|
Chou YI, Chang HY, Lin MY, Tseng CH, Wang TJ, Lin IC. Risk analysis for patients with arterial thromboembolic events after intravitreal ranibizumab or aflibercept injections. Sci Rep 2023; 13:7597. [PMID: 37165045 PMCID: PMC10172364 DOI: 10.1038/s41598-023-34128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
Intravitreal anti-vascular endothelial growth factor (anti-VEGF) agents have been increasingly applied in the treatment of retinal neovascular diseases. Concerns have arisen that these intravitreal agents may be associated with a potential risk of arterial thromboembolic (ATE) events. We conducted a retrospective, nationwide population-based cohort study to analyze the risks for ATE events in patients receiving intravitreal ranibizumab (IVR) or intravitreal aflibercept (IVA). Data (2011-2018) were obtained from Taiwan's National Health Insurance Research Database. Cox proportional-hazards model was used to identify the risk factors for ATEs. Of the total 3,469 patients, 1393 and 2076 patients received IVR and IVA, respectively. In our result, 38 ATEs occurred within 6 months after IVR or IVA. The risk of ATEs was lower in patients receiving IVR than in those receiving IVA (adjusted hazard ratio [aHR], 0.27; 95% confidence interval [CI], 0.11-0.66). Patients with coronary artery disease (CAD) exhibited a higher risk of ATEs than did those without CAD (aHR, 3.47; 95% CI, 1.41-8.53). The risk of ATEs was higher in patients with an event of acute myocardial infarction (AMI) or ischemic stroke (IS) within 6 months prior to index IVI than in those without recent AMI/IS events (aHR, 23.8; 95% CI, 7.35-77.2 and IS: aHR, 290.2; 95% CI, 103.1-816.4). In conclusion, compared with IVA, IVR was associated with a lower risk of ATEs. When strategies for anti-VEGF agents are devised, risk factors, such as CAD and a history of AMI or IS within 6 months should be considered. Further large-scale studies are warranted to elucidate the safety of anti-VEGF injections.
Collapse
Affiliation(s)
- Yun-I Chou
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hao-Yun Chang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Yin Lin
- Department of Ophthalmology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Han Tseng
- Department of Ophthalmology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Jen Wang
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - I-Chan Lin
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Duan M, Li K, Zhang L, Zhou Y, Bian L, Wang C. Screening, characterization and specific binding mechanism of aptamers against human plasminogen Kringle 5. Bioorg Chem 2023; 137:106579. [PMID: 37149949 DOI: 10.1016/j.bioorg.2023.106579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Plasminogen Kringle 5 is one of the most potent cytokines identified to inhibit the proliferation and migration of vascular endothelial cells. Herein, six aptamer candidates that specifically bind to Kringle 5 were generated by the systematic evolution of ligands by exponential enrichment (SELEX). After 10 rounds of screening against Kringle 5, a highly enriched ssDNA pool was sequenced and the representative aptamers were subjected to binding assays to evaluate their affinity and specificity. The preferred aptamer KG-4, which demonstrated a low dissociation constant (Kd) of ∼ 432 nM and excellent selectivity for Kringle 5. A conserved "motif" of eight bases located at the stem-loop intersection, common to the aptamer, was further confirmed as the recognition element for binding with Kringle 5. The bulge formed by the motif and depression on the lysine binding site of Kringle 5 were both located at the binding interface, and the "induced fit" between their structures played a central role in the recognition process. Kringle 5 interacts KG-4 primarily through enthalpy-driven van der Waals forces and hydrogen bond. The key nucleotides A34 and C35 at motif on KG-4 and the positively charged amino acids in the loop 1 and loop 4 regions on Kringle 5 play a major role in the interaction. Furthermore, KG-4 dose-dependently reduced the proliferation inhibition of vascular endothelial cells by Kringle 5 and had a blocking effect on the function of Kringle 5 in inhibiting migration and promoting apoptosis of vascular endothelial cells in vitro. This study put a new light on protein-aptamer binding mechanism and may provide insight into the treatment of ischemic diseases by target depletion of Kringle 5.
Collapse
Affiliation(s)
- Meijiao Duan
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Kewei Li
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Ling Zhang
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yaqi Zhou
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Cuiling Wang
- College of Life Science, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
10
|
Kumar P, Pennypacker K. Editorial: Biomarkers for stroke recovery. Front Neurol 2023; 14:1170308. [PMID: 36959825 PMCID: PMC10028240 DOI: 10.3389/fneur.2023.1170308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Affiliation(s)
- Pradeep Kumar
- Clinical Research Unit, All India Institute of Medical Sciences, New Delhi, India
- *Correspondence: Pradeep Kumar ;
| | - Keith Pennypacker
- Department of Neurology and Neuroscience, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
11
|
Circulating MicroRNA Profiling Identifies Distinct MicroRNA Signatures in Acute Ischemic Stroke and Transient Ischemic Attack Patients. Int J Mol Sci 2022; 24:ijms24010108. [PMID: 36613546 PMCID: PMC9820644 DOI: 10.3390/ijms24010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Transient ischemic attack (TIA) refers to a momentary neurologic deficit caused by focal cerebral, spinal or retinal ischemic insult. TIA is associated with a high risk of impending acute ischemic stroke (AIS), a neurologic dysfunction characterized by focal cerebral, spinal or retinal infarction. Understanding the differences in molecular pathways in AIS and TIA has merit for deciphering the underlying cause for neuronal deficits with long-term effects and high risks of morbidity and mortality. In this study, we performed comprehensive investigations into the circulating microRNA (miRNA) profiles of AIS (n = 191) and TIA (n = 61) patients. We performed RNA-Seq on serum samples collected within 24 hrs of clinical diagnosis and randomly divided the study populations into discovery and validation cohorts. We identified a panel of 11 differentially regulated miRNAs at FDR < 0.05. Hsa-miR-548c-5p, -20a-5p, -18a-5p, -484, -652-3p, -486-3p, -24-3p, -181a-5p and -222-3p were upregulated, while hsa-miR-500a-3p and -206 were downregulated in AIS patients compared to TIA patients. We also probed the previously validated gene targets of our identified miRNA panel to highlight the molecular pathways affected in AIS. Moreover, we developed a multivariate classifier with potential utilization as a discriminative biomarker for AIS and TIA patients. The underlying molecular pathways in AIS compared to TIA may be explored further in functional studies for therapeutic targeting in clinical translation.
Collapse
|
12
|
Babkina AS, Yadgarov MY, Ostrova IV, Zakharchenko VE, Kuzovlev AN, Grechko AV, Lyubomudrov MA, Golubev AM. Serum Levels of VEGF-A and Its Receptors in Patients in Different Phases of Hemorrhagic and Ischemic Strokes. Curr Issues Mol Biol 2022; 44:4888-4901. [PMID: 36286047 PMCID: PMC9601157 DOI: 10.3390/cimb44100332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) are important regulators of angiogenesis, neuroprotection, and neurogenesis. Studies have indicated the association of VEGF dysregulation with the development of neurodegenerative and cerebrovascular diseases. We studied the changes in serum levels of VEGF-A, VEGFR-1, and VEGFR-2 in patients at various phases of ischemic and hemorrhagic strokes. Quantitative assessment of VEGF-A, VEGFR-1, and VEGFR-2 in serum of patients with hemorrhagic or ischemic stroke was performed by enzyme immunoassay in the hyper-acute (1−24 h from the onset), acute (up to 1−7 days), and early subacute (7 days to 3 months) phases of stroke, and then compared with the control group and each other. Results of our retrospective study demonstrated different levels of VEGF-A and its receptors at various phases of ischemic and hemorrhagic strokes. In ischemic stroke, increased VEGFR-2 level was found in the hyper-acute (p = 0.045) and acute phases (p = 0.024), while elevated VEGF-A and reduced VEGFR-1 levels were revealed in the early subacute phase (p = 0.048 and p = 0.012, respectively). In hemorrhagic stroke, no significant changes in levels of VEGF-A and its receptors were identified in the hyper-acute phase. In the acute and early subacute phases there was an increase in levels of VEGF-A (p < 0.001 and p = 0.006, respectively) and VEGFR-2 (p < 0.001 and p = 0.012, respectively). Serum levels of VEGF-A and its receptors in patients with hemorrhagic and ischemic stroke indicate different pathogenic pathways depending on the phase of the disease.
Collapse
|
13
|
Cun Y, Jin Y, Wu D, Zhou L, Zhang C, Zhang S, Yang X, Zuhong Wang, Zhang P. Exosome in Crosstalk between Inflammation and Angiogenesis: A Potential Therapeutic Strategy for Stroke. Mediators Inflamm 2022; 2022:7006281. [PMID: 36052309 PMCID: PMC9427301 DOI: 10.1155/2022/7006281] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The endothelial dysfunction, associated with inflammation and vascular permeability, remains the key event in the pathogenesis of cerebral ischemic stroke. Angiogenesis is essential for neuroprotection and neural repair following stroke. The neuroinflammatory reaction plays a vital role in stroke, and inhibition of inflammation contributes to establishing an appropriate external environment for angiogenesis. Exosomes are the heterogeneous population of extracellular vesicles which play critical roles in intercellular communication through transmitting various proteins and nucleic acids to nearby and distant recipient cells by body fluids and circulation. Recent reports have shown that exosomal therapy is a valuable and potential treatment strategy for stroke. In this review, we discussed the exosomes in complex interaction mechanisms of angiogenesis and inflammation following stroke as well as the challenges of exosomal studies such as secretion, uptake, modification, and application.
Collapse
Affiliation(s)
- Yongdan Cun
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Li Zhou
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Chengcai Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Simei Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Xicheng Yang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Zuhong Wang
- Acupuncture Department, Kunming Traditional Chinese Medicine Hospital, Kunming 650500, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| |
Collapse
|
14
|
Torres-Vergara P, Rivera R, Escudero C. How Soluble Fms-Like Tyrosine Kinase 1 Could Contribute to Blood-Brain Barrier Dysfunction in Preeclampsia? Front Physiol 2022; 12:805082. [PMID: 35211027 PMCID: PMC8862682 DOI: 10.3389/fphys.2021.805082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Preeclampsia is a pregnancy-related syndrome that courses with severe cerebrovascular complications if not properly managed. Findings from pre-clinical and clinical studies have proposed that the imbalance between pro- and anti-angiogenic factors exhibited in preeclampsia is a major component of its pathophysiology. In this regard, measurement of circulating levels of soluble tyrosine kinase-1 similar to fms (sFlt-1), a decoy receptor for vascular endothelial growth factor (VEGF), is a moderately reliable biomarker for the diagnosis of preeclampsia. However, few studies have established a mechanistic approach to determine how the high levels of sFlt-1 are responsible for the endothelial dysfunction, and even less is known about its effects at the blood-brain barrier (BBB). Since the expression pattern of VEGF receptors type 1 and 2 in brain endothelial cells differs from the observed in peripheral endothelial cells, and components of the neurovascular unit of the BBB provide paracrine secretion of VEGF, this compartmentalization of VEGF signaling could help to see in a different viewpoint the role of sFlt-1 in the development of endothelial dysfunction. In this article, we provide a hypothesis of how sFlt-1 could eventually be a protective factor for brain endothelial cells of the BBB under preeclampsia.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Department of Pharmacy, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Robin Rivera
- Department of Pharmacy, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.,Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| |
Collapse
|
15
|
Dammak A, Huete-Toral F, Carpena-Torres C, Martin-Gil A, Pastrana C, Carracedo G. From Oxidative Stress to Inflammation in the Posterior Ocular Diseases: Diagnosis and Treatment. Pharmaceutics 2021; 13:1376. [PMID: 34575451 PMCID: PMC8467715 DOI: 10.3390/pharmaceutics13091376] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Most irreversible blindness observed with glaucoma and retina-related ocular diseases, including age-related macular degeneration and diabetic retinopathy, have their origin in the posterior segment of the eye, making their physiopathology both complex and interconnected. In addition to the age factor, these diseases share the same mechanism disorder based essentially on oxidative stress. In this context, the imbalance between the production of reactive oxygen species (ROS) mainly by mitochondria and their elimination by protective mechanisms leads to chronic inflammation. Oxidative stress and inflammation share a close pathophysiological process, appearing simultaneously and suggesting a relationship between both mechanisms. The biochemical end point of these two biological alarming systems is the release of different biomarkers that can be used in the diagnosis. Furthermore, oxidative stress, initiating in the vulnerable tissue of the posterior segment, is closely related to mitochondrial dysfunction, apoptosis, autophagy dysfunction, and inflammation, which are involved in each disease progression. In this review, we have analyzed (1) the oxidative stress and inflammatory processes in the back of the eye, (2) the importance of biomarkers, detected in systemic or ocular fluids, for the diagnosis of eye diseases based on recent studies, and (3) the treatment of posterior ocular diseases, based on long-term clinical studies.
Collapse
Affiliation(s)
- Azza Dammak
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Fernando Huete-Toral
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Carlos Carpena-Torres
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Alba Martin-Gil
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Cristina Pastrana
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
| | - Gonzalo Carracedo
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain; (A.D.); (F.H.-T.); (C.C.-T.); (A.M.-G.); (C.P.)
- Department of Optometry and Vsiion, Faculty of Optic and Optometry, University Complutense of Madrid, C/Arcos del Jalon 118, 28037 Madrid, Spain
| |
Collapse
|
16
|
COVID-19 and neurological disorders: are neurodegenerative or neuroimmunological diseases more vulnerable? J Neurol 2020; 268:409-419. [PMID: 32696341 PMCID: PMC7372546 DOI: 10.1007/s00415-020-10070-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Neurological disorders and coronavirus 2019 (COVID-19) pandemic are two conditions with a recent well-documented association. Intriguing evidences showed that COVID-19 infection can modify clinical spectrum of manifested neurological disorders but also it plays a crucial role in the development of future diseases as long-tem consequences. In this viewpoint review, we aimed to assess the vulnerability to SARS-CoV-2 infection and development of COVID-19 among neurological disorders. With this in mind, we tested the hypothesis that age rather than neuropathology itself could be decisive in neurodegenerative diseases such as Parkinson’s disease, whereas neuropathology rather than age may be critical in neuroimmunological diseases such as Multiple Sclerosis. Highlighting the role of potential susceptibility or protection factors from this disastrous infection, we also stratify the risk for future neurodegeneration.
Collapse
|