1
|
Liu Q, Feng NN, Chen LJ. Genetic analysis of a child with SATB2‑associated syndrome and literature study. Exp Ther Med 2023; 26:372. [PMID: 37415841 PMCID: PMC10320656 DOI: 10.3892/etm.2023.12071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 02/23/2023] [Indexed: 07/08/2023] Open
Abstract
The present study aimed to investigate clinical phenotype and genotype characteristics of a male child with SATB2-associated syndrome (SAS) and analyzed the relationship between these characteristics and the possible underlying genetic mechanism. His clinical phenotype was analyzed. Using a high-throughput sequencing platform, his DNA samples were subjected to medical exome sequencing, screened for suspected variant loci and analyzed for chromosomal copy number variations. The suspected pathogenic loci were verified by Sanger sequencing. He presented with phenotypic anomalies of delayed growth, delayed speech and mental development, facial dysmorphism showing the typical manifestation of SAS and motor retardation symptoms. Gene sequencing result analyses revealed a de novo heterozygous repeat insertion shift mutation in the SATB2 gene (NM_015265.3) c.771dupT (p.Met258Tyrfs*46), resulting in a frameshift mutation from methionine to tyrosine at the amino acid site 258 and a truncated protein with 46 amino acids missing. The parents showed no mutation at this locus. This mutation was identified as the nosogenesis of this syndrome in children. To the best of the authors' knowledge, this is the first report on this mutation. The clinical manifestations and gene variation characteristics of 39 previously reported SAS cases were analyzed together with this case. The findings of the present study suggested severely impaired language development, facial dysmorphism and varying degrees of delayed intellectual development as the characteristic clinical manifestations of SAS.
Collapse
Affiliation(s)
- Qian Liu
- Center for Reproductive Medicine, Center for Prenatal Genetics, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Nan-Nan Feng
- Center for Reproductive Medicine, Center for Prenatal Genetics, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lin-Jiao Chen
- Center for Reproductive Medicine, Center for Prenatal Genetics, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
2
|
Bone Tissue and the Nervous System: What Do They Have in Common? Cells 2022; 12:cells12010051. [PMID: 36611845 PMCID: PMC9818711 DOI: 10.3390/cells12010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
Degenerative diseases affecting bone tissues and the brain represent important problems with high socio-economic impact. Certain bone diseases, such as osteoporosis, are considered risk factors for the progression of neurological disorders. Often, patients with neurodegenerative diseases have bone fractures or reduced mobility linked to osteoarthritis. The bone is a dynamic tissue involved not only in movement but also in the maintenance of mineral metabolism. Bone is also associated with the generation of both hematopoietic stem cells (HSCs), and thus the generation of the immune system, and mesenchymal stem cells (MSCs). Bone marrow is a lymphoid organ and contains MSCs and HSCs, both of which are involved in brain health via the production of cytokines with endocrine functions. Hence, it seems clear that bone is involved in the regulation of the neuronal system and vice versa. This review summarizes the recent knowledge on the interactions between the nervous system and bone and highlights the importance of the interaction between nerve and bone cells. In addition, experimental models that study the interaction between nerve and skeletal cells are discussed, and innovative models are suggested to better evaluate the molecular interactions between these two cell types.
Collapse
|
3
|
Zhu Y, Ortiz A, Costa M. Wrong place, wrong time: Runt-related transcription factor 2/SATB2 pathway in bone development and carcinogenesis. J Carcinog 2021; 20:2. [PMID: 34211338 PMCID: PMC8202446 DOI: 10.4103/jcar.jcar_22_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/03/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
Upregulation or aberrant expression of genes such as special AT-rich sequence-binding protein 2 (SATB2) is necessary for normal cell differentiation and tissue development and is often associated with carcinogenesis and metastatic progression. SATB2 is a critical transcription factor for biological development of various specialized cell lineages, such as osteoblasts and neurons. The dysregulation of SATB2 expression has recently been associated with various types of cancer, while the mechanisms and pathways by which it mediates tumorigenesis are not well elucidated. Runt-related transcription factor 2 (RUNX2) is a master regulator for osteogenesis, and it shares common pathways with SATB2 to regulate bone development. Interestingly, these two transcription factors co-occur in several epithelial and mesenchymal cancers and are linked by multiple cancer-related proteins and microRNAs. This review examines the interactions between RUNX2 and SATB2 in a network necessary for normal bone development and the circumstances in which the expression of RUNX2 and SATB2 in the wrong place and time leads to carcinogenesis.
Collapse
Affiliation(s)
- Yusha Zhu
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Angelica Ortiz
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Ryu J, Ahn Y, Kook H, Kim YK. The roles of non-coding RNAs in vascular calcification and opportunities as therapeutic targets. Pharmacol Ther 2020; 218:107675. [PMID: 32910935 DOI: 10.1016/j.pharmthera.2020.107675] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Vascular calcification (VC) is characterized by an accumulation of calcium phosphate crystals inside the vessel wall. VC is often associated with diabetes, chronic kidney disease (CKD), atherosclerosis, and cardiovascular disease (CVD). Even though the number of patients with VC remains prevalent, there are still no approved therapies for the treatment of VC. Since the pathogenesis of VC is diverse and involves multiple factors and mechanisms, it is critical to reveal the novel mechanisms involved in VC. Although protein-coding RNAs involved in VC have been extensively studied, the roles of non-coding RNAs (ncRNAs) are not yet fully understood. The field of ncRNAs has recently received attention, and accumulating evidence from studies in VC suggests that ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play an important role in the regulation of VC. NcRNAs can modulate VC by acting as promoters or inhibitors and may be useful in the clinical diagnosis and treatment of VC. In this article, we review and discuss ncRNAs that regulate VC and present the therapeutic implications of these ncRNAs.
Collapse
Affiliation(s)
- Juhee Ryu
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Youngkeun Ahn
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| | - Young-Kook Kim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| |
Collapse
|
5
|
Cheng Q, Lin J, Chen Q, Zheng L, Tang Y, Wang F, Huang X, Zhang Y, Li S, Yang Z, Zhou P, He TC, Luo W, Zhang H. Role of Special AT-Rich Sequence-Binding Protein 2 in the Osteogenesis of Human Dental Mesenchymal Stem Cells. Stem Cells Dev 2020; 29:1059-1072. [PMID: 32484035 DOI: 10.1089/scd.2020.0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Dental mesenchymal stem cells (MSCs) are recognized as a critical factor in repair of defective craniofacial bone owing to the multiple differentiation potential, the ability to regenerate distinct tissues, and the advantage that they can be easily obtained by relatively noninvasive procedures. Special AT-rich sequence-binding protein 2 (SATB2) is a nuclear matrix protein, involved in chromatin remodeling and transcriptional regulation, and has been reported to be as a positive regulator of osteoblast differentiation, bone formation, and bone regeneration in MSCs. In this study, we systematically investigated the capability of SATB2 to promote the osteogenic differentiation of periodontal ligament stem cells (PDLSCs), dental pulp stem cells (DPSCs), and stem cells from human exfoliated deciduous teeth (SHED). RNA-seq analysis and quantitative real-time PCR (RT-PCR) revealed that genes regulating osteogenic differentiation were differentially expressed among three cell types and SATB2 was found to be expressed at a relatively high level. When the three cell types overexpressed SATB2 with AdSATB2 infection, alkaline phosphatase (ALP) staining, ALP activity, Alizarin Red S staining, and quantification tended to increase with an increasing infection rate. It showed opposite results after infection with AdsiSATB2. RNA-seq analysis indicated that the expression of downstream osteogenic genes was affected by AdSATB2 infection and quantitative RT-PCR confirmed that nine osteogenic genes (Spp1, Sema7a, Atf4, Ibsp, Col1a1, Sp7, Igfbp3, Dlx3, and Alpl) were upregulated, to various extents, following SATB2 overexpression. In addition, quantitative PCR results indicated that SATB2 affected the expression of MSC markers. These results suggested an important role of SATB2 in the osteogenesis of PDLSCs, DPSCs, and SHED. Further research is warranted to investigate SATB2-mediated regulation of osteogenic differentiation and to evaluate the therapeutic use of SATB2 for the regeneration of defective craniofacial bone tissue.
Collapse
Affiliation(s)
- Qianyu Cheng
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Juhong Lin
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Qiuman Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Liwen Zheng
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Yingying Tang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Feilong Wang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Xia Huang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuxin Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Shuang Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Zhuohui Yang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Pengfei Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tong-Chuan He
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Wenping Luo
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China.,Department of Pediatric Dentistry, The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Long non-coding RNA H19 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by regulating microRNA-140-5p/SATB2 axis. J Biosci 2020. [DOI: 10.1007/s12038-020-0024-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Li ZH, Hu H, Zhang XY, Liu GD, Ran B, Zhang PG, Liao MM, Wu YC. MiR-291a-3p regulates the BMSCs differentiation via targeting DKK1 in dexamethasone-induced osteoporosis. Kaohsiung J Med Sci 2019; 36:35-42. [PMID: 31729834 DOI: 10.1002/kjm2.12134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 09/08/2019] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis is a skeleton disease affecting 55% of people over age 60, and the number is still increasing due to an ageing population. One method to prevent osteoporosis is to increase the formation of new bone while preventing the resorption of older bone. Thus, osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is of great importance in improving the treatment of osteoporosis. On the other hand, glucocorticoids (GCs) are widely used to treat the chronic inflammatory disorders, but long-term exposure to GCs can induce osteoporosis. In present study, we treated BMSCs with dexamethasone (DEX) to simulate GC-induced osteoporosis. MTT assay, ALP activity, and Alizarin Red were used to evaluate the role miRNA-291a-3p in the DEX-induced osteogenic differentiation suppression. Further, we used qPCR and western blot to investigate the mechanisms of miRNA-291a-3p affecting BMSCs differentiation. The results showed that miRNA-291a-3p could improve the cell viability, osteogenic differentiation, and ALP activity, which are suppressed by DEX in BMSCs. Furthermore, we found that the osteogenesis genes Runx2, DMP1, and ALP were upregulated whereas the lipogenic genes C/EBPα and PPARγ were downregulated when miRNA-291a-3p mimics were transfected. Additionally, we demonstrated that miRNA-291a-3p promoted BMSCs' osteogenic differentiation by directly suppressing DKK1 mRNA and protein expression and subsequently activating Wnt/β-catenin signaling pathway. Our study suggests that miR-291a-3p plays an important role in preventing osteoporosis and may serve as a potential miRNA osteoporosis biomarker.
Collapse
Affiliation(s)
- Zhe-Hai Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, P.R. China.,Inner Mongolia Medical University, Hohhot, China
| | - He Hu
- Department of Orthopedics, The Inner Mongolia People's Hospital, Hohhot, China
| | - Xiao-Yan Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, China
| | - Guo-Dong Liu
- Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, China
| | - Bo Ran
- Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, China
| | - Pei-Guang Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, China
| | - Ming-Mei Liao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Chi Wu
- Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, China
| |
Collapse
|
8
|
Dowrey T, Schwager EE, Duong J, Merkuri F, Zarate YA, Fish JL. Satb2 regulates proliferation and nuclear integrity of pre-osteoblasts. Bone 2019; 127:488-498. [PMID: 31325654 PMCID: PMC6708767 DOI: 10.1016/j.bone.2019.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/08/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
Special AT-rich sequence binding protein 2 (Satb2) is a matrix attachment region (MAR) binding protein. Satb2 impacts skeletal development by regulating gene transcription required for osteogenic differentiation. Although its role as a high-order transcription factor is well supported, other roles for Satb2 in skeletal development remain unclear. In particular, the impact of dosage sensitivity (heterozygous mutations) and variance on phenotypic severity is still not well understood. To further investigate molecular and cellular mechanisms of Satb2-mediated skeletal defects, we used the CRISPR/Cas9 system to generate Satb2 mutations in MC3T3-E1 cells. Our data suggest that, in addition to its role in differentiation, Satb2 regulates progenitor proliferation. We also find that mutations in Satb2 cause chromatin defects including nuclear blebbing and donut-shaped nuclei. These defects may contribute to a slight increase in apoptosis in mutant cells, but apoptosis is insufficient to explain the proliferation defects. Satb2 expression exhibits population-level variation and is most highly expressed from late G1 to late G2. Based on these data, we hypothesize that Satb2 may regulate proliferation through two separate mechanisms. First, Satb2 may regulate the expression of genes necessary for cell cycle progression in pre-osteoblasts. Second, similar to other MAR-binding proteins, Satb2 may participate in DNA replication. We also hypothesize that variation in the severity or penetrance of Satb2-mediated proliferation defects is due to stochastic variation in Satb2 binding to DNA, which may be buffered in some genetic backgrounds. Further elucidation of the role of Satb2 in proliferation has potential impacts on our understanding of both skeletal defects and cancer.
Collapse
Affiliation(s)
- Todd Dowrey
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Evelyn E Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Julieann Duong
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Fjodor Merkuri
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America.
| |
Collapse
|
9
|
Shen H, Lu C, Shi J, Li H, Si J, Shen G. Satb2 expression in Foxc1-promoted osteogenic differentiation of MC3T3-E1 cells is negatively regulated by microRNA-103-3p. Acta Biochim Biophys Sin (Shanghai) 2019; 51:588-597. [PMID: 31089719 DOI: 10.1093/abbs/gmz037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Indexed: 12/12/2022] Open
Abstract
The forkhead transcription factor C1 (Foxc1) is a cell-fate-determining factor that controls cranial bone development and osteogenic differentiation. Previously, it was demonstrated that various microRNAs (miRNAs) play important roles in osteogenesis and regulate the complex process of osteogenic differentiation. However, it remains unclear how miRNA expression changes during Foxc1-promoted osteogenic differentiation. In this study, we successfully overexpressed the Foxc1 gene in MC3T3-E1 cells and investigated the alterations in the miRNA expression profile on day 3 after osteogenic induction by using a miRNA microarray. Nine downregulated miRNAs and eight upregulated miRNAs were found to be differentially expressed. Among these miRNAs, miR-103-3p was consistently downregulated in the Foxc1-overexpressing MC3T3-E1 cells and was identified as a negative regulator of osteogenic differentiation by using a gain- and lose-of-function assay. The special AT-rich sequence-binding protein 2 (Satb2), a pivotal osteogenic transcription factor, was identified as the miR-103-3p targeting gene and was verified by real-time polymerase chain reaction, western blot analysis, and luciferase assay. Overexpression of miR-103-3p markedly inhibited the expression of Satb2 and attenuated Foxc1-promoted osteogenic differentiation. Taken together, our results elucidated the miRNA expression profiles of MC3T3-E1 cells in the early stage of Foxc1-promoted osteogenic differentiation and suggested that miR-103-3p acts as a negative regulator of the osteogenic differentiation of MC3T3-E1 cells by directly targeting Satb2.
Collapse
Affiliation(s)
- Hongzhou Shen
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chenpei Lu
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jun Shi
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongliang Li
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiawen Si
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Guofang Shen
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
10
|
Zarate YA, Steinraths M, Matthews A, Smith WE, Sun A, Wilson LC, Brain C, Allgove J, Jacobs B, Fish JL, Powell CM, Wasserman WW, van Karnebeek CD, Wakeling EL, Ma NS. Bone health and SATB2-associated syndrome. Clin Genet 2017; 93:588-594. [PMID: 28787087 DOI: 10.1111/cge.13121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/27/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022]
Abstract
SATB2-associated syndrome (SAS) is a rare disorder caused by alterations in the special AT-rich sequence-binding protein 2 (SATB2). Skeletal abnormalities such as tibial bowing, osteomalacia, osteopenia or osteoporosis have been reported suggesting a higher frequency of skeletal complications in SAS. The optimal timing, necessity, and methodology for routine assessment of bone health in individuals with SAS, however, remain unclear. We report molecular and phenotypic features of 7 individuals with SAS documented to have low bone mineral density (BMD) ascertained by dual-energy X-ray absorptiometry (DXA), often preceded by tibial bowing. The lowest BMD Z-scores ranged -2.3 to -5.6. In 4 individuals, total alkaline phosphatase levels were elevated (2 with elevated bone fraction) around the time of low BMD documentation. A clinically significant fracture history and a diagnosis of pediatric osteoporosis were present in 4 individuals. Pamidronate treatment in 2 children improved BMD. In conclusion, low BMD, fractures, and tibial bowing are relatively common skeletal complications in individuals with SAS. DXA is a useful tool when evaluating a child with SAS suspected to have low BMD and the results might alter clinical management.
Collapse
Affiliation(s)
- Y A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - M Steinraths
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - A Matthews
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - W E Smith
- Department of Pediatrics, The Barbara Bush Children's Hospital, Maine Medical Center, Portland, Maine
| | - A Sun
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - L C Wilson
- Department of Genetics, Great Ormond Street for Children NHS Foundation Trust, London, UK
| | - C Brain
- Department of Endocrinology, Great Ormond Street for Children NHS Foundation Trust, London, UK
| | - J Allgove
- Department of Endocrinology, Great Ormond Street for Children NHS Foundation Trust, London, UK
| | - B Jacobs
- Department of Pediatrics, Royal National Orthopaedic Hospital NHS Trust, London, UK
| | - J L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| | - C M Powell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - W W Wasserman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - C D van Karnebeek
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada.,Department of Pediatrics and Clinical Genetics, Emma Children's Hospital, Academic Medical Centre, Amsterdam, The Netherlands
| | - E L Wakeling
- North West Thames Regional Genetics Service, London North West Healthcare NHS Trust, Harrow, UK
| | - N S Ma
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Zuo C, Zhao X, Shi Y, Wu W, Zhang N, Xu J, Wang C, Hu G, Zhang X. TNF-α inhibits SATB2 expression and osteoblast differentiation through NF-κB and MAPK pathways. Oncotarget 2017; 9:4833-4850. [PMID: 29435145 PMCID: PMC5797016 DOI: 10.18632/oncotarget.23373] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/04/2017] [Indexed: 11/25/2022] Open
Abstract
Although the mechanisms of Tumor necrosis factor alpha (TNF-α) on facilitating osteoclast differentiation and bone resorption is well known, the mechanisms behind the suppression of the osteoblast differentiation from mesenchymal stem cells (MSCs) are still poorly understood. In this study, we observed a negative correlation between TNF-α levels and the expression of special AT-rich sequence-binding protein 2 (SATB2), a critical osteoblastogenesis transcription factor, in ovariectomy (OVX)-induced bone loss and IL-1-induced arthritis animal model. We found that TNF-α treatment inhibited mesenchymal cell line C2C12 osteoblast differentiation and sharply decreased BMP2-induced SATB2 expression. Upon TNF-α treatment, the activity of smad1/5/8 was inhibited, by contrast, extracellular signal-regulated kinase-1/2 (ERK1/2) and P38 was increased in C2C12 cells, the inhibitor of ERK1/2 (U0126) was found to abrogate the TNF-α inhibition of SATB2 expression. Furthermore, the NF-κB signaling pathway in C2C12 cells was significantly activated by the treatment of TNF-α, and TNF-α induced NF-κB directly binds to SATB2 promoter to suppress its expression. These results suggest that TNF-α suppresses SATB2 expression through activating NF-κB and MAPK signaling and depressing smad1/5/8 signaling, which contributes to the inhibition of osteoblast differentiation and might be potential therapeutic targets for inflammation-induced bone loss.
Collapse
Affiliation(s)
- Chijian Zuo
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.,The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Xiaoying Zhao
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yu Shi
- The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Wen Wu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ning Zhang
- The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Guoli Hu
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.,The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| |
Collapse
|
12
|
He L, Liu H, Shi L, Pan S, Yang X, Zhang L, Niu Y. Expression and localization of special AT-rich sequence binding protein 2 in murine molar development and the pulp-dentin complex of human healthy teeth and teeth with pulpitis. Exp Ther Med 2017; 14:3507-3512. [PMID: 29042940 PMCID: PMC5639343 DOI: 10.3892/etm.2017.4980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 06/13/2017] [Indexed: 12/17/2022] Open
Abstract
Special AT-rich sequence binding protein 2 (SATB2) is a member of the special family of AT-rich binding transcription factors and has a critical role in osteoblast differentiation and craniofacial patterning. However, the expression and distribution of SATB2 in tooth development is largely unknown. The aim of the present study was to detect the expression and distribution of SATB2 during murine molar development and, in human healthy teeth and teeth with pulpitis using immunohistochemistry. Molars were obtained from Kunming mice at embryonic day (E) 13.5, E14.5, E16.5 and E18.5, and postnatal day (P) 1, P5 and P7. In addition, 20 human teeth (10 healthy and 10 teeth with pulpitis) were obtained from young adult patients (age, 24.90±1.65 years) who were scheduled for routine extraction. Immunohistochemical analyses were performed to detect the expression and distribution of SATB2. The present results revealed that SATB2 exhibits a spatiotemporal expression pattern in murine molar development and was expressed in odontoblasts, predentin, dental pulp cells and the blood vessels in human teeth. These findings suggested that SATB2 may have an important role in odontoblast differentiation and dentin matrix mineralization during tooth development.
Collapse
Affiliation(s)
- Lina He
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Huimei Liu
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lei Shi
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shuang Pan
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xu Yang
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lin Zhang
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yumei Niu
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
13
|
Zheng B, Jiang J, Chen Y, Lin M, Du Z, Xiao Y, Luo K, Yan F. Leptin Overexpression in Bone Marrow Stromal Cells Promotes Periodontal Regeneration in a Rat Model of Osteoporosis. J Periodontol 2017; 88:808-818. [PMID: 28440742 DOI: 10.1902/jop.2017.170042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Osteoporosis is associated with widespread periodontitis and impaired periodontal healing. However, there is a lack of information about the outcomes of regenerative approaches under the influence of osteoporosis. This study investigates the effect of leptin (LEP) overexpression on the regenerative potential of bone marrow stromal cells (BMSCs) in an osteoporotic rat periodontal fenestration defect model. METHODS Rat BMSCs were transfected with adenoviruses harboring the human (h)LEP gene. Cell proliferation and osteogenic differentiation were evaluated. A β-tricalcium phosphate scaffold seeded with transfected cells was implanted into nude mice to investigate ectopic osteogenesis and into an osteoporotic rat defect to study periodontal regeneration. Regenerated periodontal and bone-like tissues were analyzed by histologic methods. RESULTS hLEP overexpression induced osteogenic differentiation of BMSCs as evidenced by the upregulation of osteogenesis-related genes such as Runt-related transcription factor 2, alkaline phosphatase (ALP), and collagen Type I, as well as increased ALP activity and enhanced mineralization. Mice implanted with hLEP-BMSC-containing scaffolds showed more extensive formation of bone-like tissue than those in other groups. Periodontal defects were also filled to a greater degree when treated with hLEP-BMSCs and contained cementum and a well-organized periodontal ligament after 10 and 28 days. CONCLUSION hLEP overexpression in BMSCs can stimulate periodontal regeneration in osteoporotic conditions and might be a promising strategy for periodontal regeneration in patients with osteoporosis.
Collapse
Affiliation(s)
- Baoyu Zheng
- Department of Periodontology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jun Jiang
- Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yuling Chen
- Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Minkui Lin
- Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhibin Du
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kai Luo
- Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Zarate YA, Fish JL. SATB2-associated syndrome: Mechanisms, phenotype, and practical recommendations. Am J Med Genet A 2016; 173:327-337. [PMID: 27774744 PMCID: PMC5297989 DOI: 10.1002/ajmg.a.38022] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022]
Abstract
The SATB2‐associated syndrome is a recently described syndrome characterized by developmental delay/intellectual disability with absent or limited speech development, craniofacial abnormalities, behavioral problems, dysmorphic features, and palatal and dental abnormalities. Alterations of the SATB2 gene can result from a variety of different mechanisms that include contiguous deletions, intragenic deletions and duplications, translocations with secondary gene disruption, and point mutations. The multisystemic nature of this syndrome demands a multisystemic approach and we propose evaluation and management guidelines. The SATB2‐associated syndrome registry has now been started and that will allow gathering further clinical information and refining the provided surveillance recommendations. © 2016 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts
| |
Collapse
|
15
|
MicroRNA-34b/c inhibits aldosterone-induced vascular smooth muscle cell calcification via a SATB2/Runx2 pathway. Cell Tissue Res 2016; 366:733-746. [PMID: 27503378 DOI: 10.1007/s00441-016-2469-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/04/2016] [Indexed: 01/15/2023]
Abstract
Increasing evidence shows that aldosterone and specific microRNAs (miRs) contribute to vascular smooth muscle cell (VSMC) calcification. In this study, we aim to explore the mechanistic links between miR-34b/c and aldosterone in VSMC calcification. VSMC calcification models were established both in vitro and in vivo. First, the levels of aldosterone, miR-34b/c and special AT-rich sequence-binding protein 2 (SATB2) were measured. Then, miR-34b/c mimics or inhibitors were transfected into VSMCs to evaluate the function of miR-34b/c. Luciferase reporter assays were used to demonstrate whether SATB2 was a direct target of miR-34b/c. Aldosterone and SATB2 were found to be markedly upregulated during VSMC calcification, whereas miR-34b/c expression was downregulated. Treatment with the mineralocorticoid receptor (MR) antagonist eplerenone inhibited VSMC calcification. In aldosterone-induced VSMC calcification, miR-34b/c levels were downregulated and SATB2 protein was upregulated. Furthermore, miR-34b/c overexpression alleviated aldosterone-induced VSMC calcification as well as inhibited the expression of SATB2 protein, whereas miR-34b/c inhibition markedly enhanced VSMC calcification and upregulated SATB2 protein. In addition, luciferase reporter assays showed that SATB2 is a direct target of miR-34b/c in VSMCs. Overexpression of SATB2 induced Runx2 overproduction and VSMC calcification. Therefore, miR-34b/c participates in aldosterone-induced VSMC calcification via a SATB2/Runx2 pathway. As miR-34b/c appears to be a negative regulator, it has potential as a therapeutic target of VSMC calcification.
Collapse
|
16
|
Gong Y, Lu J, Yu X, Yu Y. Expression of Sp7 in Satb2-induced osteogenic differentiation of mouse bone marrow stromal cells is regulated by microRNA-27a. Mol Cell Biochem 2016; 417:7-16. [PMID: 27142530 DOI: 10.1007/s11010-016-2709-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/19/2016] [Indexed: 11/28/2022]
Abstract
Satb2 is a special AT-rich binding transcription factor essential for osteoblast differentiation and bone formation. Specific microRNAs (miRNAs) have been identified to regulate the complex process of osteogenic differentiation. It remains unclear how miRNA expressions is changed in the Satb2-induced osteogenic differentiation of bone marrow stromal cells (BMSCs). From the miRNA expression profile data collected by us from Satb2-induced osteogenic differentiation of mouse BMSCs, we found that miR-27a was significantly down-regulated relative to non-treated cells 7 days post induction. By in silico analysis, we identified Sp7 as a miR-27a targeting gene and verified the findings by Western blot analysis, qRT-PCR, and luciferase reporter assays. We also analyzed the function of miR-27a in osteogenic differentiation by transfection of exogenous miR-27a into BMSCs. Overexpression of miR-27a remarkably inhibited the expression of Sp7 and attenuated Satb2-induced osteogenic differentiation. Our results suggest that expression of Sp7 during the early stage of Satb2-induced osteogenic differentiation of BMSCs is regulated by miR-27a.
Collapse
Affiliation(s)
- Yiming Gong
- Department of Stomatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Jing Lu
- Shanghai Key Laboratory of Stomatology, Department of Orthodontics, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| |
Collapse
|
17
|
Wu L, Chen J, Qin Y, Mo X, Huang M, Ru H, Yang Y, Liu J, Lin Y. SATB2 suppresses gastric cancer cell proliferation and migration. Tumour Biol 2015; 37:4597-602. [PMID: 26508023 DOI: 10.1007/s13277-015-4282-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/19/2015] [Indexed: 02/01/2023] Open
Abstract
Gastric cancer is one of the death-related malignant tumors worldwide. It remains a challenge for the diagnosis and treatment of gastric cancer. Special AT-rich sequence-binding protein 2 (SATB2) is a new tumor suppressive gene and plays important roles in many cancers. However, the role of SATB2 in gastric cancer is still unknown. In the present study, we demonstrated that downregulation of SATB2 was associated with shortened survival in patients with gastric cancer. Ectopic expression of SATB2 inhibited gastric cancer cell proliferation, colony formation, and migration. Overexpression of SATB2 repressed the expression of extracellular signal-regulated kinase 5 (ERK5), and activation of ERK5 restored the SATB2-induced inhibition of proliferation and migration in gastric cancer. This study provided evidence that SATB2 acted as a tumor suppressive gene gastric cancer, serving as a potential therapeutic target.
Collapse
Affiliation(s)
- Liucheng Wu
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China.
| | - Jiansi Chen
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Yuzhou Qin
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Xianwei Mo
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Minwei Huang
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Haiming Ru
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Yang Yang
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Jungang Liu
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Yuan Lin
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China
| |
Collapse
|
18
|
Ren D, Wei F, Hu L, Yang S, Wang C, Yuan X. Phosphorylation of Runx2, induced by cyclic mechanical tension via ERK1/2 pathway, contributes to osteodifferentiation of human periodontal ligament fibroblasts. J Cell Physiol 2015; 230:2426-36. [PMID: 25740112 DOI: 10.1002/jcp.24972] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/24/2015] [Indexed: 12/18/2022]
Abstract
Occlusal force is an important stimulus for maintaining periodontal homeostasis. This is attributed to the quality of human periodontal ligament fibroblasts (hPDLFs) that could transfer occlusal force into biological signals modulating osteoblst differentiation. However, few studies investigated the mechanism of occlusal force-induced osteodifferentiation of hPDLFs. In our study, we used the cyclic mechanical tension (CMT) at 10% elongation with 0.5 Hz to mimic occlusal force, and explored its effects on osteogenesis of hPDLFs. Firstly, elevated expressions of several osteoblast marker genes (Runx2, ATF4, SP7, OCN, and BSP), as well as activated ERK1/2 pathway were detected during CMT loading for 1, 3, 6, 12, 18, and 24 h. To gain further insight into how CMT contributed to those effects, we focused on the classic ERK1/2-Runx2 pathway by inhibiting ERK1/2 and overexpressing Runx2. Our results reflected that Runx2 overexpression alone could induce osteodifferentiation of hPDLFs. Meanwhile, CMT loading could intensify while combined ERK1/2 blockage could weaken this process. Furthermore, we found that CMT promoted Runx2 transcription and phosphorylation via ERK1/2; protein level of phospho-Runx2 (p-Runx2), rather than Runx2, was in parallel with mRNA expressions of SP7, OCN, and BSP. Taken together, our study proved that p-Runx2, elevated by CMT via ERK1/2 pathway, is the predominate factor in promoting osteoblast differentiation of hPDLFs.
Collapse
Affiliation(s)
- Dapeng Ren
- Department of Orthodontics, Shandong University, Jinan, China
| | - Fulan Wei
- Department of Orthodontics, Qingdao Municipal Hospital, Qingdao University, the 4th Military Medical University, Qingdao, China
| | - Lihua Hu
- Department of Orthodontics, Qingdao Municipal Hospital, Qingdao University, the 4th Military Medical University, Qingdao, China
| | - Shuangyan Yang
- Department of Orthodontics, Qingdao Municipal Hospital, Qingdao University, the 4th Military Medical University, Qingdao, China
| | - Chunling Wang
- Department of Orthodontics, Shandong University, Jinan, China
| | - Xiao Yuan
- Department of Orthodontics, Qingdao Municipal Hospital, Qingdao University, the 4th Military Medical University, Qingdao, China
| |
Collapse
|
19
|
Boeckx C, Benítez-Burraco A. Osteogenesis and neurogenesis: a robust link also for language evolution. Front Cell Neurosci 2015; 9:291. [PMID: 26283924 PMCID: PMC4516893 DOI: 10.3389/fncel.2015.00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/15/2015] [Indexed: 12/30/2022] Open
Affiliation(s)
- Cedric Boeckx
- Catalan Institute for Advanced Studies and Research Barcelona, Spain ; Linguistics, Universitat de Barcelona Barcelona, Spain
| | | |
Collapse
|
20
|
Benítez-Burraco A, Boeckx C. Possible functional links among brain- and skull-related genes selected in modern humans. Front Psychol 2015; 6:794. [PMID: 26136701 PMCID: PMC4468360 DOI: 10.3389/fpsyg.2015.00794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022] Open
Abstract
The sequencing of the genomes from extinct hominins has revealed that changes in some brain-related genes have been selected after the split between anatomically-modern humans and Neanderthals/Denisovans. To date, no coherent view of these changes has been provided. Following a line of research we initiated in Boeckx and Benítez-Burraco (2014a), we hypothesize functional links among most of these genes and their products, based on the existing literature for each of the gene discussed. The genes we focus on are found mutated in different cognitive disorders affecting modern populations and their products are involved in skull and brain morphology, and neural connectivity. If our hypothesis turns out to be on the right track, it means that the changes affecting most of these proteins resulted in a more globular brain and ultimately brought about modern cognition, with its characteristic generativity and capacity to form and exploit cross-modular concepts, properties most clearly manifested in language.
Collapse
Affiliation(s)
| | - Cedric Boeckx
- Catalan Institute for Research and Advanced Studies , Barcelona, Spain ; Department of Linguistics, Universitat de Barcelona , Barcelona, Spain
| |
Collapse
|
21
|
Increased osteogenesis in osteoporotic bone marrow stromal cells by overexpression of leptin. Cell Tissue Res 2015; 361:845-56. [PMID: 25832621 DOI: 10.1007/s00441-015-2167-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 03/04/2015] [Indexed: 12/24/2022]
Abstract
Osteoporosis leads to increased bone fractures and net bone loss, in part because of the dysfunction of bone marrow stromal cells (BMSCs). Leptin is an adipokine that plays important roles in many biological processes, including the regulation of the actions of mesenchymal stem cells. Our aim is to investigate the osteogenic effects of leptin in osteoporotic BMSCs in vitro and in vivo. The leptin gene was transferred into BMSCs isolated from osteoporotic rats by using recombinant adenoviruses. Once the gene and protein expression of leptin had been confirmed, MTT assays were performed; leptin overexpression was confirmed not to affect the viability of osteoporotic BMSCs. However, alkaline phosphatase (ALP) activity measurements, Alizarin red staining and analyses by quantitative real-time reverse transcription with the polymerase chain reaction revealed that leptin upregulated ALP activity, mineral deposition and the mRNA levels of runt-related transcription factor 2, ALP and collagen type І. Lastly, the effects of leptin on osteogenic differentiation were assessed in vivo. Cells transfected with leptin exhibited increased osteogenic differentiation and enhanced formation of bone-like structures. This study thus reveals, for the first time, that the overexpression of leptin in osteoporotic BMSCs (1) enhances their capacity to differentiate into osteoblasts and to form bone-like tissue and (2) might be a useful skeletal regenerative therapy in osteoporotic patients.
Collapse
|