1
|
Guzmán-Flores JM, Arevalo-Caro CM, Martínez-Esquivias F, Isiordia-Espinoza MA, Franco-de la Torre L. Molecular mechanism of curcumin on periodontitis: A pharmacological network study. J Oral Biosci 2023; 65:379-385. [PMID: 37595741 DOI: 10.1016/j.job.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE This study aimed to identify the molecular mechanism of curcumin on periodontitis based on a pharmacological network strategy. METHODS The potential therapeutic targets of curcumin and differentially expressed genes in periodontitis were identified. Subsequently, we extracted the molecules in common and analyzed them. A metabolic pathway enrichment and gene ontology analysis were performed and the protein-protein interaction network was inferred. These analyses allowed the identification of key proteins. Finally, a molecular docking of the main key proteins was performed with curcumin. RESULTS Our results showed that 55 genes are differentially expressed in periodontitis and are potential targets of curcumin. In addition, we observed that these genes participate in cell motility and immune response and are related to chemokine receptors (CXCRs) and enzymatic activity, such as arachidonate 5-lipoxygenase (ALOX5). We identified six key proteins, IL1B, CXCL8, CD44, MMP2, EGFR, and ITGAM; molecular docking revealed that these six proteins spontaneously bind to curcumin. CONCLUSION The results of this study helps us understand the molecular mechanism of curcumin in periodontitis. We propose that curcumin affects proinflammatory cytokines, ALOX5, and cell migration through chemokine receptors and acts on the cell membrane. Additionally, we identified six key proteins that are essential in this mechanism, all of which spontaneously bind to curcumin.
Collapse
Affiliation(s)
- Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Jalisco, Mexico.
| | - Catalina Maria Arevalo-Caro
- Grupo de Investigación en Periodoncia y Medicina Periodontal, Centro de Investigación y Extensión, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Jalisco, Mexico
| | - Mario Alberto Isiordia-Espinoza
- Instituto de Investigación en Ciencias Médicas, Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Jalisco, Mexico
| | - Lorenzo Franco-de la Torre
- Instituto de Investigación en Ciencias Médicas, Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Jalisco, Mexico
| |
Collapse
|
2
|
Mousavi SM, Hashemi SA, Ghahramani Y, Azhdari R, Yousefi K, Gholami A, Fallahi Nezhad F, Vijayakameswara Rao N, Omidifar N, Chiang WH. Antiproliferative and Apoptotic Effects of Graphene Oxide @AlFu MOF Based Saponin Natural Product on OSCC Line. Pharmaceuticals (Basel) 2022; 15:ph15091137. [PMID: 36145358 PMCID: PMC9504826 DOI: 10.3390/ph15091137] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/16/2022] Open
Abstract
The increasing rate of oral squamous cell carcinoma (OSCC) and the undesirable side effects of anticancer agents have enhanced the demand for the development of efficient, detectable, and targeted anticancer systems. Saponins are a diverse family of natural glycosides that have recently been evaluated as an effective compound for the targeted therapy of squamous cell carcinoma. Due to their porous nature and stable structure, metal–organic frameworks (MOFs) are a well-known substance form for various biological applications, such as drug delivery. In this study, we fabricated a novel hybrid, highly porous and low-toxic saponin-loaded nanostructure by modifying graphene oxide (GO)/reduced GO (rGO) with aluminum fumarate (AlFu) as MOF core–shell nanocomposite. The characterization of the nanostructures was investigated by FTIR, TEM, EDX, FESEM, and BET. MTT assay was used to investigate the anticancer activity of these compounds on OSCC and PDL normal dental cells. The effect of the nanocomposites on OSCC was then investigated by studying apoptosis and necrosis using flow cytometry. The GO/rGO was decorated with a saponin–AlFu mixture to further investigate cytotoxicity. The results of the MTT assay showed that PDL cells treated with AlFu–GO–saponin at a concentration of 250 μg/mL had a viability of 74.46 ± 16.02%, while OSCC cells treated with this sample at a similar concentration had a viability of only 38.35 ± 19.9%. The anticancer effect of this nanostructure on OSCC was clearly demonstrated. Moreover, the number of apoptotic cells in the AlFu–GO–saponin and AlFu–rGO–saponin groups was 10.98 ± 2.36%–26.90 ± 3.24% and 15.9 ± 4.08%–29.88 ± 0.41%, respectively, compared with 2.52 ± 0.78%–1.31 ± 0.62% in the untreated group. This significant increase in apoptotic effect observed with AlFu–rGO–saponin was also reflected in the significant anticancer effect of saponin-loaded nanostructures. Therefore, this study suggests that an effective saponin delivery system protocol for the precise design and fabrication of anticancer nanostructures for OSCC therapy should be performed prior to in vivo evaluations.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Yasmin Ghahramani
- Department of Endodontics, Shiraz University of Medical Sciences, Shiraz 71956-15787, Iran
| | - Rouhollah Azhdari
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Khadijeh Yousefi
- Department of Dental Materials and Biomaterials Research Centre, Shiraz Dental School, Shiraz University of Medical Sciences, Shiraz 71956-15787, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Fatemeh Fallahi Nezhad
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| |
Collapse
|
3
|
Solomon SM, Stafie CS, Sufaru IG, Teslaru S, Ghiciuc CM, Petrariu FD, Tanculescu O. Curcumin as a Natural Approach of Periodontal Adjunctive Treatment and Its Immunological Implications: A Narrative Review. Pharmaceutics 2022. [DOI: https:/doi.org/10.3390/pharmaceutics14050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Scaling and root planing represent the gold standard in the treatment of periodontal disease, but these therapeutic methods cannot eliminate the remaining periodontopathogenic bacteria in cement, tubules, and periodontal soft tissue. Thus, a number of additional therapeutic means have been adopted, including local and systemic antibiotic therapy, as well as the use of photodynamic therapy techniques. Recently, special attention has been paid to potential phytotherapeutic means in the treatment of periodontal disease. In this review, we aim to present the effects generated by the extract of Curcuma longa, the various forms of application of turmeric as an additional therapeutic means, as well as the aspects related to its biotolerance.
Collapse
|
4
|
Curcumin as a Natural Approach of Periodontal Adjunctive Treatment and Its Immunological Implications: A Narrative Review. Pharmaceutics 2022; 14:pharmaceutics14050982. [PMID: 35631567 PMCID: PMC9143680 DOI: 10.3390/pharmaceutics14050982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022] Open
Abstract
Scaling and root planing represent the gold standard in the treatment of periodontal disease, but these therapeutic methods cannot eliminate the remaining periodontopathogenic bacteria in cement, tubules, and periodontal soft tissue. Thus, a number of additional therapeutic means have been adopted, including local and systemic antibiotic therapy, as well as the use of photodynamic therapy techniques. Recently, special attention has been paid to potential phytotherapeutic means in the treatment of periodontal disease. In this review, we aim to present the effects generated by the extract of Curcuma longa, the various forms of application of turmeric as an additional therapeutic means, as well as the aspects related to its biotolerance.
Collapse
|
5
|
Girisa S, Kumar A, Rana V, Parama D, Daimary UD, Warnakulasuriya S, Kumar AP, Kunnumakkara AB. From Simple Mouth Cavities to Complex Oral Mucosal Disorders-Curcuminoids as a Promising Therapeutic Approach. ACS Pharmacol Transl Sci 2021; 4:647-665. [PMID: 33860191 PMCID: PMC8033761 DOI: 10.1021/acsptsci.1c00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 02/08/2023]
Abstract
Oral diseases are among the most common encountered health issues worldwide, which are usually associated with anomalies of the oral cavity, jaws, and salivary glands. Despite the availability of numerous treatment modalities for oral disorders, a limited clinical response has been observed because of the inefficacy of the drugs and countless adverse side effects. Therefore, the development of safe, efficacious, and wide-spectrum therapeutics is imperative in the battle against oral diseases. Curcumin, extracted from the golden spice turmeric, is a well-known natural polyphenol that has been extensively studied for its broad pleiotropic attributes and its ability to modulate multiple biological processes. It is well-documented to target pro-inflammatory mediators like NF-κB, ROS, COX-2, IL-1, IL-2, TGF-β, growth factors, apoptotic proteins, receptors, and various kinases. These properties make curcumin a promising nutraceutical in the treatment of many oral diseases like oral submucous fibrosis, oral mucositis, oral leukoplakia, oral erythroplakia, oral candidiasis, aphthous stomatitis, oral lichen planus, dental caries, periodontitis, and gingivitis. Numerous in vitro and in vivo studies have shown that curcumin alleviates the symptoms of most of the oral complications, including the inhibition of the progression of oral cancer. In this regard, many clinical trials have been completed, and many are ongoing to investigate the "curcumin effect" in oral maladies. Therefore, the current review delineates the mechanistic framework of curcumin's propensity in curbing oral diseases and present outcomes of the clinical trials of curcumin-based therapeutics that can provide a breakthrough in the clinical management of these diseases.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Aviral Kumar
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Uzini Devi Daimary
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Saman Warnakulasuriya
- Department
of Oral Medicine, King’s College
London and WHO Collaborating Centre for Oral Cancer and Precancer, London WC2R 2LS, United Kingdom
| | - Alan Prem Kumar
- Medical
Science Cluster, Cancer Translational Research Programme, Yong Loo
Lin School of Medicine, National University
of Singapore, Singapore 117600, Singapore
- Cancer
Science Institute of Singapore, National
University of Singapore, Singapore 117600, Singapore
- National
University Cancer Institute, National University
Health Systems, Singapore 117600, Singapore
| | - Ajaikumar B. Kunnumakkara
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
6
|
Molnar E, Gal E, Gaina L, Cristea C, Fischer-Fodor E, Perde-Schrepler M, Achimas-Cadariu P, Focsan M, Silaghi-Dumitrescu L. Novel Phenothiazine-Bridged Porphyrin-(Hetero)aryl dyads: Synthesis, Optical Properties, In Vitro Cytotoxicity and Staining of Human Ovarian Tumor Cell Lines. Int J Mol Sci 2020; 21:ijms21093178. [PMID: 32365924 PMCID: PMC7246510 DOI: 10.3390/ijms21093178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 01/28/2023] Open
Abstract
We report here the synthetic procedure applied for the preparation of new AB3-type and trans-A2B2 type meso-halogenophenothiazinyl-phenyl-porphyrin derivatives, their metal core complexation and their peripheral modification using Suzuki-Miyaura cross coupling reactions with various (hetero)aryl (phenothiazinyl, 7-formyl-phenothiazinyl, (9-carbazolyl)-phenyl and 4-formyl-phenyl, phenyl) boronic acid derivatives. The meso-phenothiazinyl-phenyl-porphyrin (MPP) dyes family was thus extended by a series of novel phenothiazine-bridged porphyrin-(hetero)aryl dyads characterized by UV-Vis absorption/emission properties typical to the porphyrin chromophore, slightly modulated by increasing the size of peripheral substituents. Three phenothiazine-bridged porphyrin-heteroaryl dyads with fluorescence emission above 655 nm were selected as fluorophores in red spectral region for applications in cellular staining of human ovarian tumors. In vitro experiments of cell metabolic activity displayed a moderate toxicity on human ovarian tumor cell lines (OVCAR-3, cisplatin-sensitive A2780 and cisplatin-resistant A2780cis respectively). Visualization of the stained living cells was performed both by fluorescence microscopy imaging and by fluorescence lifetime imaging under two photon excitation (TPE-FLIM), confirming their cellular uptake and the capability of staining the cell nucleus.
Collapse
Affiliation(s)
- Eva Molnar
- The Research Center on Fundamental and Applied Heterochemistry, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos street, RO-400028 Cluj-Napoca, Romania; (E.M.); (E.G.); (L.G.); (L.S.-D.)
| | - Emese Gal
- The Research Center on Fundamental and Applied Heterochemistry, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos street, RO-400028 Cluj-Napoca, Romania; (E.M.); (E.G.); (L.G.); (L.S.-D.)
| | - Luiza Gaina
- The Research Center on Fundamental and Applied Heterochemistry, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos street, RO-400028 Cluj-Napoca, Romania; (E.M.); (E.G.); (L.G.); (L.S.-D.)
| | - Castelia Cristea
- The Research Center on Fundamental and Applied Heterochemistry, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos street, RO-400028 Cluj-Napoca, Romania; (E.M.); (E.G.); (L.G.); (L.S.-D.)
- Correspondence: ; Tel.: +40-264-593833
| | - Eva Fischer-Fodor
- Department of Radiobiology and Tumor Biology, Institute of Oncology “Prof.Dr. Ion Chiricuta”, 34-36 Republicii street, RO-400015 Cluj-Napoca, Romania; (E.F.-F.); (M.P.-S.)
- Medfuture Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, 8 Babes street, RO-400012 Cluj-Napoca, Romania
| | - Maria Perde-Schrepler
- Department of Radiobiology and Tumor Biology, Institute of Oncology “Prof.Dr. Ion Chiricuta”, 34-36 Republicii street, RO-400015 Cluj-Napoca, Romania; (E.F.-F.); (M.P.-S.)
| | - Patriciu Achimas-Cadariu
- Department of Surgery, Institute of Oncology “Prof.Dr. Ion Chiricuta”, 34-36 Republicii street, 400015 Cluj-Napoca, Romania;
- Department of Surgery and Gynecological Oncology, University of Medicine and Pharmacy Iuliu Hatieganu, 23 Marinescu street, 400337 Cluj-Napoca, Romania
| | - Monica Focsan
- Institute for Interdisciplinary Experimental Research in Bionanoscience, Nanobiophotonics Laboratory, Babeş-Bolyai University, 42 Laurian street, 400271 Cluj-Napoca, Romania;
| | - Luminita Silaghi-Dumitrescu
- The Research Center on Fundamental and Applied Heterochemistry, Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos street, RO-400028 Cluj-Napoca, Romania; (E.M.); (E.G.); (L.G.); (L.S.-D.)
| |
Collapse
|
7
|
The Impact of Curcumin on Bone Osteogenic Promotion of MC3T3 Cells under High Glucose Conditions and Enhanced Bone Formation in Diabetic Mice. COATINGS 2020. [DOI: 10.3390/coatings10030258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diabetic osteoporosis (DOP) is characterized by impaired bone microstructure and reduced bone density resulting from high glucose levels. Curcumin (CURC) is extensively applied in the treatment of inflammation-associated diseases. However, the effect of curcumin on bone metabolism in diabetic osteoporosis is unclear. Therefore, this study investigated the optimal concentration of curcumin on enhancing osteogenesis in diabetic osteoporosis. Osteoblasts were treated with a high or low concentration of curcumin under a series of concentrations of high-glucose conditions. Type 2 diabetic mice were intervened with curcumin. Cell proliferation, apoptosis, and osteogenesis-related gene expressions were evaluated by CCK-8, flow cytometry, and real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Bone formation was evaluated by histological staining. The findings revealed that curcumin suppressed apoptosis and enhanced proliferation and osteogenesis-related gene expressions of osteoblasts under high glucose concentrations (p < 0.05). The histological sections displayed reduced bone destruction and increased the growth rate of trabecular bone and the bone density of diabetic mice treated with curcumin, compared to diabetic mice. These results showed that curcumin could reverse the harmful effects of diabetic osteoporosis in a dose-dependent manner, and 10 μmol/L was regarded as the optimal concentration, which supports the potential use of curcumin for bone regeneration under high glucose concentrations.
Collapse
|