1
|
Takebayashi Y, Neshige S, Shishido T, Hayashi Y, Segawa A, Nakamori M, Nezu T, Aoki S, Yamazaki Y, Ueno H, Ohshita T, Iida K, Maruyama H. Paradoxical effects of levetiracetam in people with epilepsy with rhythmic epileptiform discharges. Epilepsy Behav 2023; 143:109225. [PMID: 37130461 DOI: 10.1016/j.yebeh.2023.109225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
OBJECTIVE To elucidate the incidence and risk factors for paradoxical effects (i.e., increased seizure frequency, increased seizure severity, or onset of new seizure types) of levetiracetam (LEV) in people with epilepsy (PWE) and identify the usefulness of electroencephalography (EEG) in predicting these effects. METHODS We examined data for consecutive PWE treated with LEV. All PWE underwent EEG and magnetic resonance imaging (MRI) before LEV administration. We also evaluated the incidence of paradoxical LEV effects and conducted multivariate logistic regression analyses to identify the associated factors. RESULTS In total, 210 (66.2%) of 317 PWEs treated in our department had a history of LEV use. The incidence of paradoxical LEV effects was 5.2% (n = 11) and was significantly associated with a high LEV dose (p = 0.029), high seizure frequency (p = 0.005), temporal lobe epilepsy (p = 0.004), focal awareness seizure (p = 0.004), focal impaired awareness seizure (p = 0.007), spike (p = 0.015), rhythmic epileptiform discharges (REDs; p = 0.003), and MRI-identified focal cortical dysplasia (FCD; p < 0.0001). Multivariate analyses revealed that REDs (odds ratio [OR] = 5.35, p = 0.048, 95% confidence interval [CI]: 1.01-28.21) were independently associated with paradoxical LEV effects. CONCLUSIONS Paradoxical LEV effects occurred in PWE, particularly in those with drug-resistant focal epilepsy. Furthermore, the occurrence of REDs in EEG was an independent factor associated with the paradoxical effects of LEV in PWE.
Collapse
Affiliation(s)
- Yoshiko Takebayashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan
| | - Shuichiro Neshige
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan; Epilepsy Center, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan.
| | - Takeo Shishido
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan
| | - Yuki Hayashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan
| | - Akiko Segawa
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan
| | - Masahiro Nakamori
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan
| | - Tomohisa Nezu
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan
| | - Shiro Aoki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan
| | - Yu Yamazaki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan
| | - Hiroki Ueno
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan
| | - Tomohiko Ohshita
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan
| | - Koji Iida
- Epilepsy Center, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan; Department of Neurosurgery, Hiroshima University, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan; Epilepsy Center, Hiroshima University Hospital, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8551, Japan
| |
Collapse
|
2
|
Costa B, Vale N. Understanding Lamotrigine's Role in the CNS and Possible Future Evolution. Int J Mol Sci 2023; 24:ijms24076050. [PMID: 37047022 PMCID: PMC10093959 DOI: 10.3390/ijms24076050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The anti-epileptic drug lamotrigine (LTG) has been widely used to treat various neurological disorders, including epilepsy and bipolar disorder. However, its precise mechanism of action in the central nervous system (CNS) still needs to be determined. Recent studies have highlighted the involvement of LTG in modulating the activity of voltage-gated ion channels, particularly those related to the inhibition of neuronal excitability. Additionally, LTG has been found to have neuroprotective effects, potentially through the inhibition of glutamate release and the enhancement of GABAergic neurotransmission. LTG's unique mechanism of action compared to other anti-epileptic drugs has led to the investigation of its use in treating other CNS disorders, such as neuropathic pain, PTSD, and major depressive disorder. Furthermore, the drug has been combined with other anti-epileptic drugs and mood stabilizers, which may enhance its therapeutic effects. In conclusion, LTG's potential to modulate multiple neurotransmitters and ion channels in the CNS makes it a promising drug for treating various neurological disorders. As our understanding of its mechanism of action in the CNS continues to evolve, the potential for the drug to be used in new indications will also be explored.
Collapse
Affiliation(s)
- Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| |
Collapse
|
3
|
Bhandari S, Siwakoti S, Shrestha S, Gautam K, Bhandari S. Drug-Induced Gum Overgrowth With Low-Dose Amlodipine: A Case Report. Cureus 2022; 14:e25220. [PMID: 35755542 PMCID: PMC9217670 DOI: 10.7759/cureus.25220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 11/19/2022] Open
Abstract
Drug-induced gingival overgrowth is an adverse effect of certain drugs, including amlodipine, in genetically susceptible individuals. Although the exact mechanism of gingival hypertrophy remains unclear, a unifying multifactorial hypothesis has been constructed. Gingival hypertrophy causes difficulty in speech and mastication, poor oral hygiene, and poor aesthetic appearance. Here, we present the case of a 49-year-old woman who developed gum hypertrophy following amlodipine use for two years. Maintenance of oral hygiene and substitution of offending agent is commonly the first step in management.
Collapse
|
4
|
Tejada J, Roque AC. Conductance-based models and the fragmentation problem: A case study based on hippocampal CA1 pyramidal cell models and epilepsy. Epilepsy Behav 2021; 121:106841. [PMID: 31864945 DOI: 10.1016/j.yebeh.2019.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Epilepsy has been a central topic in computational neuroscience, and in silico models have shown to be excellent tools to integrate and evaluate findings from animal and clinical settings. Among the different languages and tools for computational modeling development, NEURON stands out as one of the most used and mature neurosimulators. However, despite the vast quantity of models developed with NEURON, a fragmentation problem is evident in the great majority of models related to the same type of cell or cell properties. This fragmentation causes a lack of interoperability between the models because of differences in parameters. The problem is not related to the neurosimulator, which is prepared to reuse elements of other models, but related to decisions made during the model development, when it is not uncommon to adjust parameter values according to the necessities of the study. Here, this problem is presented by studying computational models related to temporal lobe epilepsy and the definitions of hippocampal CA1 pyramidal cells. The current assessment aims to highlight the implications of fragmentation for reliable modeling and the need to adopt a framework that allows a better interoperability between different models. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Julian Tejada
- Departamento de Psicologia, DPS, Universidade Federal de Sergipe, SE 49100-000, Brazil; Facultad de Psicología, Fundación Universitaria Konrad Lorenz, Bogotá, Colombia.
| | - Antonio C Roque
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|
5
|
Cannabidiol modifies the seizure expression and effects of antiseizure drugs in a rat model of recurrent severe seizures. Seizure 2021; 90:67-73. [DOI: 10.1016/j.seizure.2021.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/28/2022] Open
|
6
|
A Network Model Reveals That the Experimentally Observed Switch of the Granule Cell Phenotype During Epilepsy Can Maintain the Pattern Separation Function of the Dentate Gyrus. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-319-99103-0_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Odawara A, Matsuda N, Ishibashi Y, Yokoi R, Suzuki I. Toxicological evaluation of convulsant and anticonvulsant drugs in human induced pluripotent stem cell-derived cortical neuronal networks using an MEA system. Sci Rep 2018; 8:10416. [PMID: 29991696 PMCID: PMC6039442 DOI: 10.1038/s41598-018-28835-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Functional evaluation assays using human induced pluripotent stem cell (hiPSC)-derived neurons can predict the convulsion toxicity of new drugs and the neurological effects of antiepileptic drugs. However, differences in responsiveness depending on convulsant type and antiepileptic drugs, and an evaluation index capable of comparing in vitro responses with in vivo responses are not well known. We observed the difference in synchronized burst patterns in the epileptiform activities induced by pentylentetrazole (PTZ) and 4-aminopryridine (4-AP) with different action mechanisms using multi-electrode arrays (MEAs); we also observed that 100 µM of the antiepileptic drug phenytoin suppressed epileptiform activities induced by PTZ, but increased those induced by 4-AP. To compare in vitro results with in vivo convulsive responses, frequency analysis of below 250 Hz, excluding the spike component, was performed. The in vivo convulsive firing enhancement of the high γ wave and β wave component were observed remarkably in in vitro hiPSC-derived neurons with astrocytes in co-culture. MEA measurement of hiPSC-derived neurons in co-culture with astrocytes and our analysis methods, including frequency analysis, appear effective for predicting convulsion toxicity, side effects, and their mechanism of action as well as the comparison of convulsions induced in vivo.
Collapse
Affiliation(s)
- A Odawara
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan.,Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 982-8577, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - N Matsuda
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Y Ishibashi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - R Yokoi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - I Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan. .,iPS-non-Clinical Experiments for Nervous System (iNCENS) Project, Kanagawa, Japan. .,Consortium for Safety Assessment using Human iPS Cells (CSAHi), Kanagawa, Japan.
| |
Collapse
|
8
|
Feyissa AM, Lamb C, Pittock SJ, Gadoth A, McKeon A, Klein CJ, Britton JW. Antiepileptic drug therapy in autoimmune epilepsy associated with antibodies targeting the leucine-rich glioma-inactivated protein 1. Epilepsia Open 2018; 3:348-356. [PMID: 30187005 PMCID: PMC6119747 DOI: 10.1002/epi4.12226] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2018] [Indexed: 01/17/2023] Open
Abstract
Objective To characterize seizure semiology and the utility of antiepileptic drug (AED) therapy in leucine‐rich glioma inactivated‐1 ( LGI1‐Ab) autoimmune epilepsy (AE). Methods Patients with voltage‐gated potassium channel complex (VGKCc) titers higher than 0.02 nmol/L who were evaluated between May 2008 and June 2016 at the 3 Mayo Clinic sites (Arizona, Florida, or Minnesota) were identified. We then performed a retrospective review of those who were LGI1‐Ab positive and were treated for seizures. Results A total of 1,095 patients with VGKCc titers higher than 0.02 nmol/L were identified, in which 77 were LGI1 positive. Of these, 56 patients with seizures were included in the analysis. Mean age at symptom onset was 62.9 years; 66% (n = 37) were male. The most common seizure semiology was focal faciobrachial dystonic seizures with preserved awareness (FBDS) (n = 35, 63%), followed by focal with impaired awareness (FIA) (n = 29, 52%), generalized tonic–clonic (GTCs) (n = 28, 50%), and focal non‐motor seizures with preserved awareness (n = 28, 50%). The majority had more than one seizure type (n = 49, 88%; median = 2.5). Thirty‐eight patients (68%) became seizure free: 29 (76%) with immunotherapy, 3 (5%) with AEDs alone, 2 (3%) with AEDs before any immunotherapy, and 4 (7%) with AEDs after immunotherapy. Levetiracetam (n = 47, 84%) and valproic acid (n = 21, 38%) were the most commonly used AEDs, but neither were associated with seizure freedom. Sodium channel blocking (NCB) AEDs were associated with seizure freedom in 4 patients compared to none treated with non‐NCB AEDs. Regardless of class, AEDs prior to or apart from immunotherapy were associated with seizure freedom in only five patients (9%). In patients with FBDS, seizure freedom was more often associated with immunotherapy than AEDs (20/30 vs. 3/34, p = 0.001). Significance Although FBDS are the most characteristic seizure type seen in LGI1‐Ab AE, other seizure types including FIA and GTCs also occur. Immunotherapy was the treatment most frequently associated with seizure freedom in LGI1‐Ab AE. In general, AEDs seemed to confer a very low chance for seizure freedom, although AEDs with NCB‐blocking properties were associated with seizure freedom in a limited number. Levetiracetam in particular appears to be ineffective in this patient population.
Collapse
Affiliation(s)
| | | | - Sean J Pittock
- Department of Neurology Mayo Clinic Rochester Minnesota U.S.A.,Department of Laboratory Medicine and Pathology Mayo Clinic Rochester Minnesota U.S.A
| | - Avi Gadoth
- Department of Neurology Mayo Clinic Rochester Minnesota U.S.A.,Department of Laboratory Medicine and Pathology Mayo Clinic Rochester Minnesota U.S.A
| | - Andrew McKeon
- Department of Neurology Mayo Clinic Rochester Minnesota U.S.A.,Department of Laboratory Medicine and Pathology Mayo Clinic Rochester Minnesota U.S.A
| | - Christopher J Klein
- Department of Neurology Mayo Clinic Rochester Minnesota U.S.A.,Department of Laboratory Medicine and Pathology Mayo Clinic Rochester Minnesota U.S.A
| | | |
Collapse
|
9
|
Huang X, Zhou C, Tian M, Kang JQ, Shen W, Verdier K, Pimenta A, MacDonald RL. Overexpressing wild-type γ2 subunits rescued the seizure phenotype in Gabrg2 +/Q390X Dravet syndrome mice. Epilepsia 2017; 58:1451-1461. [PMID: 28586508 DOI: 10.1111/epi.13810] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2017] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The mutant γ-aminobutyric acid type A (GABAA ) receptor γ2(Q390X) subunit (Q351X in the mature peptide) has been associated with the epileptic encephalopathy, Dravet syndrome, and the epilepsy syndrome genetic epilepsy with febrile seizures plus (GEFS+). The mutation generates a premature stop codon that results in translation of a stable truncated and misfolded γ2 subunit that accumulates in neurons, forms intracellular aggregates, disrupts incorporation of γ2 subunits into GABAA receptors, and affects trafficking of partnering α and β subunits. Heterozygous Gabrg2+/Q390X knock-in (KI) mice had reduced cortical inhibition, spike wave discharges on electroencephalography (EEG), a lower seizure threshold to the convulsant drug pentylenetetrazol (PTZ), and spontaneous generalized tonic-clonic seizures. In this proof-of-principal study, we attempted to rescue these deficits in KI mice using a γ2 subunit gene (GABRG2) replacement therapy. METHODS We introduced the GABRG2 allele by crossing Gabrg2+/Q390X KI mice with bacterial artificial chromosome (BAC) transgenic mice overexpressing HA (hemagglutinin)-tagged human γ2HA subunits, and compared GABAA receptor subunit expression by Western blot and immunohistochemical staining, seizure threshold by monitoring mouse behavior after PTZ-injection, and thalamocortical inhibition and network oscillation by slice recording. RESULTS Compared to KI mice, adult mice carrying both mutant allele and transgene had increased wild-type γ2 and partnering α1 and β2/3 subunits, increased miniature inhibitory postsynaptic current (mIPSC) amplitudes recorded from layer VI cortical neurons, reduced thalamocortical network oscillations, and higher PTZ seizure threshold. SIGNIFICANCE Based on these results we suggest that seizures in a genetic epilepsy syndrome caused by epilepsy mutant γ2(Q390X) subunits with dominant negative effects could be rescued potentially by overexpression of wild-type γ2 subunits.
Collapse
Affiliation(s)
- Xuan Huang
- The Graduate Program of Neuroscience, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A.,Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Mengnan Tian
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Kelienne Verdier
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Aurea Pimenta
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Robert L MacDonald
- The Graduate Program of Neuroscience, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A.,Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| |
Collapse
|
10
|
Activity Clamp Provides Insights into Paradoxical Effects of the Anti-Seizure Drug Carbamazepine. J Neurosci 2017; 37:5484-5495. [PMID: 28473648 PMCID: PMC5452340 DOI: 10.1523/jneurosci.3697-16.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/04/2017] [Accepted: 04/09/2017] [Indexed: 11/21/2022] Open
Abstract
A major challenge in experimental epilepsy research is to reconcile the effects of anti-epileptic drugs (AEDs) on individual neurons with their network-level actions. Highlighting this difficulty, it is unclear why carbamazepine (CBZ), a frontline AED with a known molecular mechanism, has been reported to increase epileptiform activity in several clinical and experimental studies. We confirmed in an in vitro mouse model (in both sexes) that the frequency of interictal bursts increased after CBZ perfusion. To address the underlying mechanisms, we developed a method, activity clamp, to distinguish the response of individual neurons from network-level actions of CBZ. We first recorded barrages of synaptic conductances from neurons during epileptiform activity and then replayed them in pharmacologically isolated neurons under control conditions and in the presence of CBZ. CBZ consistently decreased the reliability of the second action potential in each burst of activity. Conventional current-clamp recordings using excitatory ramp or square-step current injections failed to reveal this effect. Network modeling showed that a CBZ-induced decrease of neuron recruitment during epileptic bursts can lead to an increase in burst frequency at the network level by reducing the refractoriness of excitatory transmission. By combining activity clamp with computer simulations, the present study provides a potential explanation for the paradoxical effects of CBZ on epileptiform activity. SIGNIFICANCE STATEMENT The effects of anti-epileptic drugs on individual neurons are difficult to separate from their network-level actions. Although carbamazepine (CBZ) has a known anti-epileptic mechanism, paradoxically, it has also been reported to increase epileptiform activity in clinical and experimental studies. To investigate this paradox during realistic neuronal epileptiform activity, we developed a method, activity clamp, to distinguish the effects of CBZ on individual neurons from network-level actions. We demonstrate that CBZ consistently decreases the reliability of the second action potential in each burst of epileptiform activity. Network modeling shows that this effect on individual neuronal responses could explain the paradoxical effect of CBZ at the network level.
Collapse
|
11
|
Paradoxical Effect of Levetiracetam in Newly Diagnosed Type II Focal Cortical Dysplasia. Clin Neuropharmacol 2016; 39:265-8. [PMID: 27404737 DOI: 10.1097/wnf.0000000000000171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A paradoxical effect of antiepileptic drugs was defined as an increased seizure frequency or severity occurring shortly after introducing a drug considered effective for that kind of epilepsy. In addition, this effect should occur at nontoxic drug serum levels. So far, pathophysiological mechanisms underlying this phenomenon have not been clarified. Recent evidence suggests that the variability of drug effects may depend on precise intrinsic properties of dynamic networks involving the drug and its binding site. Although several reports of paradoxical seizure exacerbation have been reported for levetiracetam (LEV), a possible association with focal cortical dysplasia has never been described nor investigated. In this report, we document a paradoxical effect induced by LEV monotherapy in a patient with type II focal cortical dysplasia at LEV serum levels within the therapeutic range. A hint of pathophysiological hypothesis underlying this potential relationship will be also suggested.
Collapse
|
12
|
Abstract
Voltage-gated sodium channels (VGSCs) are fundamentally important for the generation and coordinated transmission of action potentials throughout the nervous system. It is, therefore, unsurprising that they have been shown to play a central role in the genesis and alleviation of epilepsy. Genetic studies on patients with epilepsy have identified more than 700 mutations among the genes that encode for VGSCs attesting to their role in pathogenesis. Further, many common antiepileptic drugs act on VGSCs to suppress seizure activity. Here, we present an account of the role of VGSCs in epilepsy, both through their pathogenic dysfunction and as targets for pharmacotherapy.
Collapse
|
13
|
van Veenendaal TM, IJff DM, Aldenkamp AP, Hofman PAM, Vlooswijk MCG, Rouhl RPW, de Louw AJ, Backes WH, Jansen JFA. Metabolic and functional MR biomarkers of antiepileptic drug effectiveness: A review. Neurosci Biobehav Rev 2015; 59:92-9. [PMID: 26475992 DOI: 10.1016/j.neubiorev.2015.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022]
Abstract
As a large number of patients with epilepsy do not respond favorably to antiepileptic drugs (AEDs), a better understanding of treatment failure and the cause of adverse side effects is required. The working mechanisms of AEDs also alter neurotransmitter concentrations and brain activity, which can be measured using MR spectroscopy and functional MR imaging, respectively. This review presents an overview of clinical research of MR spectroscopy and functional MR imaging studies to the effects of AEDs on the brain. Despite the scarcity of studies associating MR findings to the effectiveness of AEDs, the current research shows clear potential regarding this matter. Several GABAergic AEDs have been shown to increase the GABA concentration, which was related to seizure reductions, while language problems due to topiramate have been associated with altered activation patterns measured with functional MR imaging. MR spectroscopy and functional MR imaging provide biomarkers that may predict individual treatment outcomes, and enable the assessment of mechanisms of treatment failure and cognitive side effects.
Collapse
Affiliation(s)
- Tamar M van Veenendaal
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Dominique M IJff
- School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands
| | - Albert P Aldenkamp
- School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands; Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; Department of Neurology, Gent University Hospital, De Pintelaan 185, 9000 Gent, Belgium; Faculty of Electrical Engineering, University of Technology Eindhoven, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Paul A M Hofman
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands
| | - Marielle C G Vlooswijk
- School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands; Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Rob P W Rouhl
- School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands; Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Anton J de Louw
- Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands; Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; Faculty of Electrical Engineering, University of Technology Eindhoven, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Walter H Backes
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Jacobus F A Jansen
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
14
|
Yoshimatsu M, Tanaka M, Fujimura Y, Ito Y, Goto Y, Kobayashi Y, Wasada H, Hatae N, Tanabe G, Muraoka O. Synthesis of Azepines via a [6 + 1] Annulation of Ynenitriles with Reformatsky Reagents. J Org Chem 2015; 80:9480-94. [DOI: 10.1021/acs.joc.5b01397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Noriyuki Hatae
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Osamu Muraoka
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| |
Collapse
|
15
|
Tejada J, Roque AC. Computational models of dentate gyrus with epilepsy-induced morphological alterations in granule cells. Epilepsy Behav 2014; 38:63-70. [PMID: 24613760 DOI: 10.1016/j.yebeh.2014.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 01/24/2023]
Abstract
Temporal lobe epilepsy provokes a number of different morphological alterations in granule cells of the hippocampus dentate gyrus. These alterations may be associated with the hyperactivity and hypersynchrony found in the epileptic dentate gyrus, and their study requires the use of different kinds of approaches including computational modeling. Conductance-based models of both normal and epilepsy-induced morphologically altered granule cells have been used in the construction of network models of dentate gyrus to study the effects of these alterations on epilepsy. Here, we review these models and discuss their contributions to the understanding of the association between alterations in neuronal morphology and epilepsy in the dentate gyrus.
Collapse
Affiliation(s)
- Julian Tejada
- Departamento de Física, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto, SP 14040-901, Brazil; Departamento de Psicologia, DPS, Universidade Federal de Sergipe, SE 49100-000, Brazil.
| | - Antonio C Roque
- Departamento de Física, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto, SP 14040-901, Brazil
| |
Collapse
|
16
|
Brown RS, Arany PR. Mechanism of drug-induced gingival overgrowth revisited: a unifying hypothesis. Oral Dis 2014; 21:e51-61. [PMID: 24893951 DOI: 10.1111/odi.12264] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 04/27/2014] [Accepted: 05/28/2014] [Indexed: 12/26/2022]
Abstract
Drug-induced gingival overgrowth (DIGO) is a disfiguring side effect of anti-convulsants, calcineurin inhibitors, and calcium channel blocking agents. A unifying hypothesis has been constructed which begins with cation flux inhibition induced by all three of these drug categories. Decreased cation influx of folic acid active transport within gingival fibroblasts leads to decreased cellular folate uptake, which in turn leads to changes in matrix metalloproteinases metabolism and the failure to activate collagenase. Decreased availability of activated collagenase results in decreased degradation of accumulated connective tissue which presents as DIGO. Studies supporting this hypothesis are discussed.
Collapse
Affiliation(s)
- R S Brown
- Division of Oral Diagnosis, Department of Comprehensive Dentistry, Howard University College of Dentistry, Washington, DC, USA; Department of Otolaryngology, Georgetown University Medical Center, Washington, DC, USA; Hematology Branch, NHLBI/NIH, Bethesda, MD, USA
| | | |
Collapse
|
17
|
Chou MY, Lee CY, Liou HH, Pan CY. Phenytoin attenuates the hyper-exciting neurotransmission in cultured embryonic cortical neurons. Neuropharmacology 2014; 83:54-61. [PMID: 24721626 DOI: 10.1016/j.neuropharm.2014.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 03/17/2014] [Accepted: 03/22/2014] [Indexed: 11/26/2022]
Abstract
Phenytoin is an effective anti-epileptic drug that inhibits Na(+) channel activities; however, how phenytoin modulates synaptic transmission to soothe epileptic symptoms is not clear. To characterize the effects of phenytoin regulation on neurotransmission, we studied the electrophysical properties of cultured embryonic cortical neurons. Phenytoin inhibited the inward Na(+) current in a dose-dependent manner with an IC50 of 16.8 μM, and at 100 μM, the inhibitory effect of phenytoin on the Na(+) current was proportional to the frequency applied. In cultured neurons, phenytoin significantly decreased the action potential firing rate and the peak potential. To study the effect of phenytoin in neurotransmission, we measured the Ca(2+) responses from stimulated target neurons and their neighboring neurons. Phenytoin significantly suppressed the Ca(2+) responses evoked by strong stimulations in the target and neighboring neurons, and exerted a decreased inhibitory effect under moderate stimulation. Picrotoxin, a GABAA receptor antagonist, enhanced the recorded spontaneous excitatory postsynaptic current activities. After picrotoxin-induced enhancement, phenytoin had a more pronounced effect on the suppression of the spontaneous hyper-exciting excitatory postsynaptic current (>100 pA), but it only mildly inhibited the general excitatory postsynaptic current. Our results demonstrate that phenytoin suppresses the efficacy of neurotransmission especially for the high-frequency stimulation by reducing the Na(+) channel activity and can potentially alleviate epileptiform activity.
Collapse
Affiliation(s)
- Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chun-Yao Lee
- Department of Pharmacology and Neurology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Horng-Huei Liou
- Department of Pharmacology and Neurology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chien-Yuan Pan
- Department of Life Science, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
18
|
|