1
|
Xiao W, Li P, Kong F, Kong J, Pan A, Long L, Yan X, Xiao B, Gong J, Wan L. Unraveling the Neural Circuits: Techniques, Opportunities and Challenges in Epilepsy Research. Cell Mol Neurobiol 2024; 44:27. [PMID: 38443733 PMCID: PMC10914928 DOI: 10.1007/s10571-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by high morbidity, frequent recurrence, and potential drug resistance, profoundly affects millions of people globally. Understanding the microscopic mechanisms underlying seizures is crucial for effective epilepsy treatment, and a thorough understanding of the intricate neural circuits underlying epilepsy is vital for the development of targeted therapies and the enhancement of clinical outcomes. This review begins with an exploration of the historical evolution of techniques used in studying neural circuits related to epilepsy. It then provides an extensive overview of diverse techniques employed in this domain, discussing their fundamental principles, strengths, limitations, as well as their application. Additionally, the synthesis of multiple techniques to unveil the complexity of neural circuits is summarized. Finally, this review also presents targeted drug therapies associated with epileptic neural circuits. By providing a critical assessment of methodologies used in the study of epileptic neural circuits, this review seeks to enhance the understanding of these techniques, stimulate innovative approaches for unraveling epilepsy's complexities, and ultimately facilitate improved treatment and clinical translation for epilepsy.
Collapse
Affiliation(s)
- Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Peile Li
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Fujiao Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, Hunan Province, China.
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China.
| |
Collapse
|
2
|
Ho SY, Chen IC, Tsai CW, Chang KC, Lin CJ, Chern Y, Liou HH. Anticonvulsant effect of equilibrative nucleoside transporters 1 inhibitor in a mouse model of Dravet syndrome. Hippocampus 2024; 34:7-13. [PMID: 37933097 DOI: 10.1002/hipo.23584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
There are limited therapeutic options for patients with Dravet syndrome (DS). The equilibrative nucleoside transporters 1 (ENT1) mediate both the influx and efflux of adenosine across the cell membrane exerted beneficial effects in the treatment of epilepsy. This study aimed to evaluate the anticonvulsant effect of the ENT1 inhibitor in an animal model of DS (Scn1aE1099X/+ mice). J7 (5 mg/kg) treatment was efficacious in elevating seizure threshold in Scn1aE1099X/+ mice after hyperthermia exposure. Moreover, the J7 treatment significantly reduced the frequency of spontaneous excitatory post-synaptic currents (sEPSCs, ~35% reduction) without affecting the amplitude in dentate gyrus (DG) granule cells. Pretreatment with the adenosine A1 receptor (A1R) antagonist, DPCPX, abolished the J7 effects on sEPSCs. These observations suggest that the J7 shows an anticonvulsant effect in hyperthermia-induced seizures in Scn1aE1099X/+ mice. This effect possibly acts on presynaptic A1R-mediated signaling modulation in granule cells.
Collapse
Affiliation(s)
- Shih-Yin Ho
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- Department of Neurology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei, Taiwan
| | - I-Chun Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Che-Wen Tsai
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Chieh Chang
- Department of Neurology, National Taiwan University Hospital Yunlin Branch, Douliu, Taiwan
| | - Chun-Jung Lin
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Horng-Huei Liou
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- Department of Neurology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital Yunlin Branch, Douliu, Taiwan
| |
Collapse
|
3
|
Aseyev N, Ivanova V, Balaban P, Nikitin E. Current Practice in Using Voltage Imaging to Record Fast Neuronal Activity: Successful Examples from Invertebrate to Mammalian Studies. BIOSENSORS 2023; 13:648. [PMID: 37367013 DOI: 10.3390/bios13060648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
The optical imaging of neuronal activity with potentiometric probes has been credited with being able to address key questions in neuroscience via the simultaneous recording of many neurons. This technique, which was pioneered 50 years ago, has allowed researchers to study the dynamics of neural activity, from tiny subthreshold synaptic events in the axon and dendrites at the subcellular level to the fluctuation of field potentials and how they spread across large areas of the brain. Initially, synthetic voltage-sensitive dyes (VSDs) were applied directly to brain tissue via staining, but recent advances in transgenic methods now allow the expression of genetically encoded voltage indicators (GEVIs), specifically in selected neuron types. However, voltage imaging is technically difficult and limited by several methodological constraints that determine its applicability in a given type of experiment. The prevalence of this method is far from being comparable to patch clamp voltage recording or similar routine methods in neuroscience research. There are more than twice as many studies on VSDs as there are on GEVIs. As can be seen from the majority of the papers, most of them are either methodological ones or reviews. However, potentiometric imaging is able to address key questions in neuroscience by recording most or many neurons simultaneously, thus providing unique information that cannot be obtained via other methods. Different types of optical voltage indicators have their advantages and limitations, which we focus on in detail. Here, we summarize the experience of the scientific community in the application of voltage imaging and try to evaluate the contribution of this method to neuroscience research.
Collapse
Affiliation(s)
- Nikolay Aseyev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Violetta Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Pavel Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Evgeny Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| |
Collapse
|
4
|
Zhao J, Wang C, Sun W, Li C. Tailoring Materials for Epilepsy Imaging: From Biomarkers to Imaging Probes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203667. [PMID: 35735191 DOI: 10.1002/adma.202203667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Excising epileptic foci (EF) is the most efficient approach for treating drug-resistant epilepsy (DRE). However, owing to the vast heterogeneity of epilepsies, EF in one-third of patients cannot be accurately located, even after exhausting all current diagnostic strategies. Therefore, identifying biomarkers that truly represent the status of epilepsy and fabricating probes with high targeting specificity are prerequisites for identifying the "concealed" EF. However, no systematic summary of this topic has been published. Herein, the potential biomarkers of EF are first summarized and classified into three categories: functional, molecular, and structural aberrances during epileptogenesis, a procedure of nonepileptic brain biasing toward epileptic tissue. The materials used to fabricate these imaging probes and their performance in defining the EF in preclinical and clinical studies are highlighted. Finally, perspectives for developing the next generation of probes and their challenges in clinical translation are discussed. In general, this review can be helpful in guiding the development of imaging probes defining EF with improved accuracy and holds promise for increasing the number of DRE patients who are eligible for surgical intervention.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
| | - Cong Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
- Academy for Engineering and Technology, Fudan University, 20 Handan Road, Yangpu District, Shanghai, 200433, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 200031, China
| | - Wanbing Sun
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
- State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
5
|
Mattis J, Somarowthu A, Goff KM, Jiang E, Yom J, Sotuyo N, Mcgarry LM, Feng H, Kaneko K, Goldberg EM. Corticohippocampal circuit dysfunction in a mouse model of Dravet syndrome. eLife 2022; 11:e69293. [PMID: 35212623 PMCID: PMC8920506 DOI: 10.7554/elife.69293] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Dravet syndrome (DS) is a neurodevelopmental disorder due to pathogenic variants in SCN1A encoding the Nav1.1 sodium channel subunit, characterized by treatment-resistant epilepsy, temperature-sensitive seizures, developmental delay/intellectual disability with features of autism spectrum disorder, and increased risk of sudden death. Convergent data suggest hippocampal dentate gyrus (DG) pathology in DS (Scn1a+/-) mice. We performed two-photon calcium imaging in brain slice to uncover a profound dysfunction of filtering of perforant path input by DG in young adult Scn1a+/- mice. This was not due to dysfunction of DG parvalbumin inhibitory interneurons (PV-INs), which were only mildly impaired at this timepoint; however, we identified enhanced excitatory input to granule cells, suggesting that circuit dysfunction is due to excessive excitation rather than impaired inhibition. We confirmed that both optogenetic stimulation of entorhinal cortex and selective chemogenetic inhibition of DG PV-INs lowered seizure threshold in vivo in young adult Scn1a+/- mice. Optogenetic activation of PV-INs, on the other hand, normalized evoked responses in granule cells in vitro. These results establish the corticohippocampal circuit as a key locus of pathology in Scn1a+/- mice and suggest that PV-INs retain powerful inhibitory function and may be harnessed as a potential therapeutic approach toward seizure modulation.
Collapse
Affiliation(s)
- Joanna Mattis
- Department of Neurology, The Perelman School of Medicine at The University of PennsylvaniaPhiladelphiaUnited States
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Kevin M Goff
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Evan Jiang
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Jina Yom
- College of Arts and Sciences, The University of PennsylvaniaPhiladelphiaUnited States
| | - Nathaniel Sotuyo
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Laura M Mcgarry
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Huijie Feng
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Keisuke Kaneko
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Ethan M Goldberg
- Department of Neurology, The Perelman School of Medicine at The University of PennsylvaniaPhiladelphiaUnited States
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Neuroscience, The Perelman School of Medicine at The University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
6
|
Uchino K, Kawano H, Tanaka Y, Adaniya Y, Asahara A, Deshimaru M, Kubota K, Watanabe T, Katsurabayashi S, Iwasaki K, Hirose S. Inhibitory synaptic transmission is impaired at higher extracellular Ca 2+ concentrations in Scn1a +/- mouse model of Dravet syndrome. Sci Rep 2021; 11:10634. [PMID: 34017040 PMCID: PMC8137694 DOI: 10.1038/s41598-021-90224-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Dravet syndrome (DS) is an intractable form of childhood epilepsy that occurs in infancy. More than 80% of all patients have a heterozygous abnormality in the SCN1A gene, which encodes a subunit of Na+ channels in the brain. However, the detailed pathogenesis of DS remains unclear. This study investigated the synaptic pathogenesis of this disease in terms of excitatory/inhibitory balance using a mouse model of DS. We show that excitatory postsynaptic currents were similar between Scn1a knock-in neurons (Scn1a+/- neurons) and wild-type neurons, but inhibitory postsynaptic currents were significantly lower in Scn1a+/- neurons. Moreover, both the vesicular release probability and the number of inhibitory synapses were significantly lower in Scn1a+/- neurons compared with wild-type neurons. There was no proportional increase in inhibitory postsynaptic current amplitude in response to increased extracellular Ca2+ concentrations. Our study revealed that the number of inhibitory synapses is significantly reduced in Scn1a+/- neurons, while the sensitivity of inhibitory synapses to extracellular Ca2+ concentrations is markedly increased. These data suggest that Ca2+ tethering in inhibitory nerve terminals may be disturbed following the synaptic burst, likely leading to epileptic symptoms.
Collapse
Affiliation(s)
- Kouya Uchino
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Hiroyuki Kawano
- Research Institute for the Molecular Pathogeneses of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Yasuyoshi Tanaka
- Research Institute for the Molecular Pathogeneses of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Yuna Adaniya
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Ai Asahara
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Masanobu Deshimaru
- Research Institute for the Molecular Pathogeneses of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Kaori Kubota
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
- Research Institute for the Molecular Pathogeneses of Epilepsy, Fukuoka University, Fukuoka, Japan.
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Shinichi Hirose
- Research Institute for the Molecular Pathogeneses of Epilepsy, Fukuoka University, Fukuoka, Japan
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
7
|
The adenosine A1 receptor agonist WAG 994 suppresses acute kainic acid-induced status epilepticus in vivo. Neuropharmacology 2020; 176:108213. [PMID: 32615188 DOI: 10.1016/j.neuropharm.2020.108213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022]
Abstract
Status epilepticus (SE) is a neurological emergency characterized by continuous seizure activity lasting longer than 5 min, often with no recovery between seizures (Trinka et al., 2015). SE is refractory to benzodiazepine and second-line treatments in about 30% cases. Novel treatment approaches are urgently needed as refractory SE is associated with mortality rates of up to 70%. Robust adenosinergic anticonvulsant effects have been known for decades, but translation into seizure treatments was hampered by cardiovascular side effects. However, the selective adenosine A1 receptor agonist SDZ WAG 994 (WAG) displays diminished cardiovascular side effects compared to classic A1R agonists and was safely administered systemically in human clinical trials. Here, we investigate the anticonvulsant efficacy of WAG in vitro and in vivo. WAG robustly inhibited high-K+-induced continuous epileptiform activity in rat hippocampal slices (IC50 = 52.5 nM). Importantly, WAG acutely suppressed SE in vivo induced by kainic acid (20 mg/kg i.p.) in mice. After SE was established, mice received three i.p. injections of WAG or diazepam (DIA, 5 mg/kg). Interestingly, DIA did not attenuate SE while the majority of WAG-treated mice (1 mg/kg) were seizure-free after three injections. Anticonvulsant effects were retained when a lower dose of WAG (0.3 mg/kg) was used. Importantly, all WAG-treated mice survived kainic acid induced SE. In summary, we report for the first time that an A1R agonist with an acceptable human side-effect profile can acutely suppress established SE in vivo. Our results suggest that WAG stops or vastly attenuates SE while DIA fails to mitigate SE in this model.
Collapse
|
8
|
Zhu L, Chen L, Xu P, Lu D, Dai S, Zhong L, Han Y, Zhang M, Xiao B, Chang L, Wu Q. Genetic and molecular basis of epilepsy-related cognitive dysfunction. Epilepsy Behav 2020; 104:106848. [PMID: 32028124 DOI: 10.1016/j.yebeh.2019.106848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
Epilepsy is a common neurological disease characterized by recurrent seizures. About 70 million people were affected by epilepsy or epileptic seizures. Epilepsy is a complicated complex or symptomatic syndromes induced by structural, functional, and genetic causes. Meanwhile, several comorbidities are accompanied by epileptic seizures. Cognitive dysfunction is a long-standing complication associated with epileptic seizures, which severely impairs quality of life. Although the definitive pathogenic mechanisms underlying epilepsy-related cognitive dysfunction remain unclear, accumulating evidence indicates that multiple risk factors are probably involved in the development and progression of cognitive dysfunction in patients with epilepsy. These factors include the underlying etiology, recurrent seizures or status epilepticus, structural damage that induced secondary epilepsy, genetic variants, and molecular alterations. In this review, we summarize several theories that may explain the genetic and molecular basis of epilepsy-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Puying Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Di Lu
- Biomedicine Engineering Research Center, Kunming Medical University, 1168 Chun Rong West Road, Kunming, Yunnan 650500, PR China
| | - Shujuan Dai
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lianmei Zhong
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
9
|
Adenosine A1 receptor: A neuroprotective target in light induced retinal degeneration. PLoS One 2018; 13:e0198838. [PMID: 29912966 PMCID: PMC6005487 DOI: 10.1371/journal.pone.0198838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/25/2018] [Indexed: 02/04/2023] Open
Abstract
Light induced retinal degeneration (LIRD) is a useful model that resembles human retinal degenerative diseases. The modulation of adenosine A1 receptor is neuroprotective in different models of retinal injury. The aim of this work was to evaluate the potential neuroprotective effect of the modulation of A1 receptor in LIRD. The eyes of rats intravitreally injected with N6-cyclopentyladenosine (CPA), an A1 agonist, which were later subjected to continuous illumination (CI) for 24 h, showed retinas with a lower number of apoptotic nuclei and a decrease of Glial Fibrillary Acidic Protein (GFAP) immunoreactive area than controls. Lower levels of activated Caspase 3 and GFAP were demonstrated by Western Blot (WB) in treated animals. Also a decrease of iNOS, TNFα and GFAP mRNA was demonstrated by RT-PCR. A decrease of Iba 1+/MHC-II+ reactive microglial cells was shown by immunohistochemistry. Electroretinograms (ERG) showed higher amplitudes of a-wave, b-wave and oscillatory potentials after CI compared to controls. Conversely, the eyes of rats intravitreally injected with dipropylcyclopentylxanthine (DPCPX), an A1 antagonist, and subjected to CI for 24 h, showed retinas with a higher number of apoptotic nuclei and an increase of GFAP immunoreactive area compared to controls. Also, higher levels of activated Caspase 3 and GFAP were demonstrated by Western Blot. The mRNA levels of iNOS, nNOS and inflammatory cytokines (IL-1β and TNFα) were not modified by DPCPX treatment. An increase of Iba 1+/MHC-II+ reactive microglial cells was shown by immunohistochemistry. ERG showed that the amplitudes of a-wave, b-wave, and oscillatory potentials after CI were similar to control values. A single pharmacological intervention prior illumination stress was able to swing retinal fate in opposite directions: CPA was neuroprotective, while DPCPX worsened retinal damage. In summary, A1 receptor agonism is a plausible neuroprotective strategy in LIRD.
Collapse
|
10
|
Hübel N, Hosseini-Zare MS, Žiburkus J, Ullah G. The role of glutamate in neuronal ion homeostasis: A case study of spreading depolarization. PLoS Comput Biol 2017; 13:e1005804. [PMID: 29023523 PMCID: PMC5655358 DOI: 10.1371/journal.pcbi.1005804] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/24/2017] [Accepted: 09/30/2017] [Indexed: 01/30/2023] Open
Abstract
Simultaneous changes in ion concentrations, glutamate, and cell volume together with exchange of matter between cell network and vasculature are ubiquitous in numerous brain pathologies. A complete understanding of pathological conditions as well as normal brain function, therefore, hinges on elucidating the molecular and cellular pathways involved in these mostly interdependent variations. In this paper, we develop the first computational framework that combines the Hodgkin-Huxley type spiking dynamics, dynamic ion concentrations and glutamate homeostasis, neuronal and astroglial volume changes, and ion exchange with vasculature into a comprehensive model to elucidate the role of glutamate uptake in the dynamics of spreading depolarization (SD)-the electrophysiological event underlying numerous pathologies including migraine, ischemic stroke, aneurysmal subarachnoid hemorrhage, intracerebral hematoma, and trauma. We are particularly interested in investigating the role of glutamate in the duration and termination of SD caused by K+ perfusion and oxygen-glucose deprivation. Our results demonstrate that glutamate signaling plays a key role in the dynamics of SD, and that impaired glutamate uptake leads to recovery failure of neurons from SD. We confirm predictions from our model experimentally by showing that inhibiting astrocytic glutamate uptake using TFB-TBOA nearly quadruples the duration of SD in layers 2-3 of visual cortical slices from juvenile rats. The model equations are either derived purely from first physical principles of electroneutrality, osmosis, and conservation of particles or a combination of these principles and known physiological facts. Accordingly, we claim that our approach can be used as a future guide to investigate the role of glutamate, ion concentrations, and dynamics cell volume in other brain pathologies and normal brain function.
Collapse
Affiliation(s)
- Niklas Hübel
- Department of Physics, University of South Florida, Tampa, Florida, United States of America
| | - Mahshid S. Hosseini-Zare
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Jokūbas Žiburkus
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
11
|
Effects of experimental traumatic brain injury and impaired glutamate transport on cortical spreading depression. Exp Neurol 2017; 295:155-161. [DOI: 10.1016/j.expneurol.2017.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 04/14/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022]
|
12
|
Dulla CG, Coulter DA, Ziburkus J. From Molecular Circuit Dysfunction to Disease: Case Studies in Epilepsy, Traumatic Brain Injury, and Alzheimer's Disease. Neuroscientist 2016; 22:295-312. [PMID: 25948650 PMCID: PMC4641826 DOI: 10.1177/1073858415585108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer's disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction.
Collapse
Affiliation(s)
- Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Douglas A Coulter
- Department of Pediatrics and Neuroscience, University of Pennsylvania Perleman School of Medicine, Philadelphia, PA, USA Division of Neurology and the Research Institute of Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jokubas Ziburkus
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
13
|
De Stasi AM, Farisello P, Marcon I, Cavallari S, Forli A, Vecchia D, Losi G, Mantegazza M, Panzeri S, Carmignoto G, Bacci A, Fellin T. Unaltered Network Activity and Interneuronal Firing During Spontaneous Cortical Dynamics In Vivo in a Mouse Model of Severe Myoclonic Epilepsy of Infancy. Cereb Cortex 2016; 26:1778-94. [PMID: 26819275 PMCID: PMC4785957 DOI: 10.1093/cercor/bhw002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Severe myoclonic epilepsy of infancy (SMEI) is associated with loss of function of the SCN1A gene encoding the NaV1.1 sodium channel isoform. Previous studies in Scn1a−/+ mice during the pre-epileptic period reported selective reduction in interneuron excitability and proposed this as the main pathological mechanism underlying SMEI. Yet, the functional consequences of this interneuronal dysfunction at the circuit level in vivo are unknown. Here, we investigated whether Scn1a−/+ mice showed alterations in cortical network function. We found that various forms of spontaneous network activity were similar in Scn1a−/+ during the pre-epileptic period compared with wild-type (WT) in vivo. Importantly, in brain slices from Scn1a−/+ mice, the excitability of parvalbumin (PV) and somatostatin (SST) interneurons was reduced, epileptiform activity propagated more rapidly, and complex synaptic changes were observed. However, in vivo, optogenetic reduction of firing in PV or SST cells in WT mice modified ongoing network activities, and juxtasomal recordings from identified PV and SST interneurons showed unaffected interneuronal firing during spontaneous cortical dynamics in Scn1a−/+ compared with WT. These results demonstrate that interneuronal hypoexcitability is not observed in Scn1a−/+ mice during spontaneous activities in vivo and suggest that additional mechanisms may contribute to homeostatic rearrangements and the pathogenesis of SMEI.
Collapse
Affiliation(s)
- Angela Michela De Stasi
- Optical Approaches to Brain Function Laboratory Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Pasqualina Farisello
- Optical Approaches to Brain Function Laboratory Fondazione EBRI "Rita Levi-Montalcini", Roma, Italy
| | - Iacopo Marcon
- CNR Neuroscience Institute and University of Padova, Padova, Italy
| | - Stefano Cavallari
- Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Angelo Forli
- Optical Approaches to Brain Function Laboratory Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Gabriele Losi
- CNR Neuroscience Institute and University of Padova, Padova, Italy
| | - Massimo Mantegazza
- Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275 and University of Nice-Sophia Antipolis, Valbonne, France
| | - Stefano Panzeri
- Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | | | - Alberto Bacci
- Fondazione EBRI "Rita Levi-Montalcini", Roma, Italy Sorbonne Universités UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Paris, France ICM-Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
14
|
Lillis KP, Dulla C, Maheshwari A, Coulter D, Mody I, Heinemann U, Armbruster M, Žiburkus J. WONOEP appraisal: molecular and cellular imaging in epilepsy. Epilepsia 2015; 56:505-13. [PMID: 25779014 PMCID: PMC4397142 DOI: 10.1111/epi.12939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
Great advancements have been made in understanding the basic mechanisms of ictogenesis using single-cell electrophysiology (e.g., patch clamp, sharp electrode), large-scale electrophysiology (e.g., electroencephalography [EEG], field potential recording), and large-scale imaging (magnetic resonance imaging [MRI], positron emission tomography [PET], calcium imaging of acetoxymethyl ester [AM] dye-loaded tissue). Until recently, it has been challenging to study experimentally how population rhythms emerge from cellular activity. Newly developed optical imaging technologies hold promise for bridging this gap by making it possible to simultaneously record the many cellular elements that comprise a neural circuit. Furthermore, easily accessible genetic technologies for targeting expression of fluorescent protein-based indicators make it possible to study, in animal models of epilepsy, epileptogenic changes to neural circuits over long periods. In this review, we summarize some of the latest imaging tools (fluorescent probes, gene delivery methods, and microscopy techniques) that can lead to the advancement of cell- and circuit-level understanding of epilepsy, which in turn may inform and improve development of next generation antiepileptic and antiepileptogenic drugs.
Collapse
Affiliation(s)
- Kyle P Lillis
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A; Harvard Medical School, Boston, Massachusetts, U.S.A
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Functional and structural deficits of the dentate gyrus network coincide with emerging spontaneous seizures in an Scn1a mutant Dravet Syndrome model during development. Neurobiol Dis 2015; 77:35-48. [PMID: 25725421 DOI: 10.1016/j.nbd.2015.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/03/2015] [Accepted: 02/16/2015] [Indexed: 12/27/2022] Open
Abstract
Dravet syndrome (DS) is characterized by severe infant-onset myoclonic epilepsy along with delayed psychomotor development and heightened premature mortality. A primary monogenic cause is mutation of the SCN1A gene, which encodes the voltage-gated sodium channel subunit Nav1.1. The nature and timing of changes caused by SCN1A mutation in the hippocampal dentate gyrus (DG) network, a core area for gating major excitatory input to hippocampus and a classic epileptogenic zone, are not well known. In particularly, it is still not clear whether the developmental deficit of this epileptogenic neural network temporally matches with the progress of seizure development. Here, we investigated the emerging functional and structural deficits of the DG network in a novel mouse model (Scn1a(E1099X/+)) that mimics the genetic deficit of human DS. Scn1a(E1099X/+) (Het) mice, similarly to human DS patients, exhibited early spontaneous seizures and were more susceptible to hyperthermia-induced seizures starting at postnatal week (PW) 3, with seizures peaking at PW4. During the same period, the Het DG exhibited a greater reduction of Nav1.1-expressing GABAergic neurons compared to other hippocampal areas. Het DG GABAergic neurons showed altered action potential kinetics, reduced excitability, and generated fewer spontaneous inhibitory inputs into DG granule cells. The effect of reduced inhibitory input to DG granule cells was exacerbated by heightened spontaneous excitatory transmission and elevated excitatory release probability in these cells. In addition to electrophysiological deficit, we observed emerging morphological abnormalities of DG granule cells. Het granule cells exhibited progressively reduced dendritic arborization and excessive spines, which coincided with imbalanced network activity and the developmental onset of spontaneous seizures. Taken together, our results establish the existence of significant structural and functional developmental deficits of the DG network and the temporal correlation between emergence of these deficits and the onset of seizures in Het animals. Most importantly, our results uncover the developmental deficits of neural connectivity in Het mice. Such structural abnormalities likely further exacerbate network instability and compromise higher-order cognitive processing later in development, and thus highlight the multifaceted impacts of Scn1a deficiency on neural development.
Collapse
|
16
|
Dravet in the dish: mechanisms of hyperexcitability. Epilepsy Curr 2014; 14:279-80. [PMID: 25346639 DOI: 10.5698/1535-7597-14.5.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Masino SA, Kawamura M, Ruskin DN. Adenosine receptors and epilepsy: current evidence and future potential. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:233-55. [PMID: 25175969 PMCID: PMC6026023 DOI: 10.1016/b978-0-12-801022-8.00011-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adenosine receptors are a powerful therapeutic target for regulating epileptic seizures. As a homeostatic bioenergetic network regulator, adenosine is perfectly suited to establish or restore an ongoing balance between excitation and inhibition, and its anticonvulsant efficacy is well established. There is evidence for the involvement of multiple adenosine receptor subtypes in epilepsy, but in particular the adenosine A1 receptor subtype can powerfully and bidirectionally regulate seizure activity. Mechanisms that regulate adenosine itself are increasingly appreciated as targets to thus influence receptor activity and seizure propensity. Taken together, established evidence for the powerful potential of adenosine-based epilepsy therapies and new strategies to influence receptor activity can combine to capitalize on this endogenous homeostatic neuromodulator.
Collapse
Affiliation(s)
- Susan A Masino
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, Connecticut, USA.
| | - Masahito Kawamura
- Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - David N Ruskin
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, Connecticut, USA
| |
Collapse
|