1
|
Leonard J, Wei X, Browning J, Gudenschwager-Basso EK, Li J, Harris EA, Olsen ML, Theus MH. Transcriptomic alterations in cortical astrocytes following the development of post-traumatic epilepsy. Sci Rep 2024; 14:8367. [PMID: 38600221 PMCID: PMC11006850 DOI: 10.1038/s41598-024-58904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Post-traumatic epilepsy (PTE) stands as one of the numerous debilitating consequences that follow traumatic brain injury (TBI). Despite its impact on many individuals, the current landscape offers only a limited array of reliable treatment options, and our understanding of the underlying mechanisms and susceptibility factors remains incomplete. Among the potential contributors to epileptogenesis, astrocytes, a type of glial cell, have garnered substantial attention as they are believed to promote hyperexcitability and the development of seizures in the brain following TBI. The current study evaluated the transcriptomic changes in cortical astrocytes derived from animals that developed seizures as a result of severe focal TBI. Using RNA-Seq and ingenuity pathway analysis (IPA), we unveil a distinct gene expression profile in astrocytes, including alterations in genes supporting inflammation, early response modifiers, and neuropeptide-amidating enzymes. The findings underscore the complex molecular dynamics in astrocytes during PTE development, offering insights into therapeutic targets and avenues for further exploration.
Collapse
Affiliation(s)
- John Leonard
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Xiaoran Wei
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jack Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Erwin Kristobal Gudenschwager-Basso
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Jiangtao Li
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Elizabeth A Harris
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Faculty of Health Sciences, Virginia Tech, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA.
| |
Collapse
|
2
|
Thompson SA. Kindling in humans: Does secondary epileptogenesis occur? Epilepsy Res 2023; 198:107155. [PMID: 37301727 DOI: 10.1016/j.eplepsyres.2023.107155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/01/2022] [Accepted: 04/25/2023] [Indexed: 06/12/2023]
Abstract
The relevance of secondary epileptogenesis for human epilepsy remains a controversial subject decades after it was first described in animal models. Whether or not a previously normal brain region can become independently epileptogenic through a kindling-like process has not, and cannot, be definitely proven in humans. Rather than reliance on direct experimental evidence, attempts to answering this question must depend on observational data. In this review, observations based largely upon contemporary surgical series will advance the case for secondary epileptogenesis in humans. As will be argued, hypothalamic hamartoma-related epilepsy provides the strongest case for this process; all the stages of secondary epileptogenesis can be observed. Hippocampal sclerosis (HS) is another pathology where the question of secondary epileptogenesis frequently arises, and observations from bitemporal and dual pathology series are explored. The verdict here is far more difficult to reach, in large part because of the scarcity of longitudinal cohorts; moreover, recent experimental data have challenged the claim that HS is acquired consequent to recurrent seizures. Synaptic plasticity more than seizure-induced neuronal injury is the likely mechanism of secondary epileptogenesis. Postoperative running-down phenomenon provides the best evidence that a kindling-like process occurs in some patients, evidenced by its reversal. Finally, a network perspective of secondary epileptogenesis is considered, as well as the possible role for subcortical surgical interventions.
Collapse
Affiliation(s)
- Stephen A Thompson
- Department of Medicine (Neurology), McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
3
|
Abdulrazeq HF, Kimata AR, Shao B, Svokos K, Ayub N, Nie D, Asaad WF. Laser amygdalohippocampotomy reduces contralateral hippocampal sub-clinical activity in bitemporal epilepsy: A case illustration of responsive neurostimulator ambulatory recordings. Epilepsy Behav Rep 2023; 25:100636. [PMID: 38162813 PMCID: PMC10755529 DOI: 10.1016/j.ebr.2023.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Responsive neurostimulation (RNS) is a valuable tool in the diagnosis and treatment of medication refractory epilepsy (MRE) and provides clinicians with better insights into patients' seizure patterns. In this case illustration, we present a patient with bilateral hippocampal RNS for presumed bilateral mesial temporal lobe epilepsy. The patient subsequently underwent a right sided LITT amygdalohippocampotomy based upon chronic RNS data revealing predominance of seizures from that side. Analyzing electrocorticography (ECOG) from the RNS system, we identified the frequency of high amplitude discharges recorded from the left hippocampal lead pre- and post- right LITT amygdalohippocampotomy. A reduction in contralateral interictal epileptiform activity was observed through RNS recordings over a two-year period, suggesting the potential dependency of the contralateral activity on the primary epileptogenic zone. These findings suggest that early targeted surgical resection or laser ablation by leveraging RNS data can potentially impede the progression of dependent epileptiform activity and may aid in preserving neurocognitive networks. RNS recordings are essential in shaping further management decisions for our patient with a presumed bitemporal epilepsy.
Collapse
Affiliation(s)
- Hael F. Abdulrazeq
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, United States
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Anna R. Kimata
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, United States
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Belinda Shao
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, United States
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Konstantina Svokos
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, United States
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
- Norman Prince Neurosciences Institute, Rhode Island Hospital & Hasbro Children’s Hospital, Providence, RI, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Neishay Ayub
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
- Norman Prince Neurosciences Institute, Rhode Island Hospital & Hasbro Children’s Hospital, Providence, RI, United States
- Department of Neurology, Rhode Island Hospital, Providence, RI, United States
| | - Duyu Nie
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
- Norman Prince Neurosciences Institute, Rhode Island Hospital & Hasbro Children’s Hospital, Providence, RI, United States
- Department of Neurology, Rhode Island Hospital, Providence, RI, United States
| | - Wael F. Asaad
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, United States
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
- Norman Prince Neurosciences Institute, Rhode Island Hospital & Hasbro Children’s Hospital, Providence, RI, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
| |
Collapse
|
4
|
Husari KS, Solnes L, Cervenka MC, Venkatesan A, Probasco J, Ritzl EK, Johnson EL. EEG Correlates of Qualitative Hypermetabolic FDG-PET in Patients With Neurologic Disorders. Neurol Clin Pract 2023; 13:e200135. [PMID: 36936394 PMCID: PMC10022725 DOI: 10.1212/cpj.0000000000200135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/28/2022] [Indexed: 03/16/2023]
Abstract
Background and Objectives Case reports and case series have described fluorodeoxyglucose (FDG)-PET findings in critically ill patients with rhythmic or periodic EEG patterns, with one reporting that metabolic activity increases with increasing lateralized periodic discharge (LPD) frequency. However, larger studies examining the relationship between FDG-PET hypermetabolism and rhythmic or periodic EEG patterns are lacking. The goal of this study was to investigate the association of FDG-PET hypermetabolism with electroencephalographic features in patients with neurologic disorders. Methods This was a single-center, retrospective study of adult patients admitted with acute neurologic symptoms who underwent FDG-PET imaging and EEG monitoring within 24 hours. Subjects were divided into 2 groups based on their FDG-PET metabolism pattern: hypermetabolic activity vs hypometabolic or normal metabolic activity. Chi-square tests and logistic regression were used to determine the relationship of FDG-PET metabolism and EEG findings. Results Sixty patients met the inclusion criteria and underwent 63 FDG-PET studies and EEGs. Twenty-seven studies (43%) showed hypermetabolism while 36 studies (57%) showed either hypometabolism or no abnormalities on FDG-PET. Subjects with hypermetabolic FDG-PET were more likely to have electrographic seizures (44% vs 8%, p = 0.001) and LPDs with/without seizures (44% vs 14%, p = 0.007), but not other rhythmic or periodic EEG patterns (lateralized rhythmic delta activity, generalized periodic discharges, or generalized rhythmic delta activity). Subjects with hypermetabolism and LPDs were more likely to have concurrent electrographic seizures (58% vs 0%, p = 0.03), fast activity associated with the discharges (67% vs 0, p = 0.01), or spike morphology (67% vs 0, p = 0.03), compared with subjects with hypometabolic FDG-PET and LPDs. Discussion Adults admitted with acute neurologic symptoms who had hypermetabolic FDG-PET were more likely to show electrographic seizures and LPDs, but not other rhythmic or periodic EEG patterns, compared with those with hypometabolic FDG-PET. Subjects with hypermetabolic FDG-PET and LPDs were more likely to have LPDs with concurrent electrographic seizures, LPDs with a spike morphology, and LPDs +F, compared with subjects with hypometabolic FDG-PET.
Collapse
Affiliation(s)
- Khalil S Husari
- Department of Neurology (KSH, MCC, EKR, ELJ), Comprehensive Epilepsy Center, Department of Radiology and Radiological Science (LS), Division of Neuroimmunology and Neurological Infections (AV), and Division of Advanced Clinical Neurology (JP), Department of Neurology, and Department of Anesthesiology and Critical Care Medicine (EKR), Johns Hopkins University, Baltimore, MD
| | - Lilja Solnes
- Department of Neurology (KSH, MCC, EKR, ELJ), Comprehensive Epilepsy Center, Department of Radiology and Radiological Science (LS), Division of Neuroimmunology and Neurological Infections (AV), and Division of Advanced Clinical Neurology (JP), Department of Neurology, and Department of Anesthesiology and Critical Care Medicine (EKR), Johns Hopkins University, Baltimore, MD
| | - Mackenzie C Cervenka
- Department of Neurology (KSH, MCC, EKR, ELJ), Comprehensive Epilepsy Center, Department of Radiology and Radiological Science (LS), Division of Neuroimmunology and Neurological Infections (AV), and Division of Advanced Clinical Neurology (JP), Department of Neurology, and Department of Anesthesiology and Critical Care Medicine (EKR), Johns Hopkins University, Baltimore, MD
| | - Arun Venkatesan
- Department of Neurology (KSH, MCC, EKR, ELJ), Comprehensive Epilepsy Center, Department of Radiology and Radiological Science (LS), Division of Neuroimmunology and Neurological Infections (AV), and Division of Advanced Clinical Neurology (JP), Department of Neurology, and Department of Anesthesiology and Critical Care Medicine (EKR), Johns Hopkins University, Baltimore, MD
| | - John Probasco
- Department of Neurology (KSH, MCC, EKR, ELJ), Comprehensive Epilepsy Center, Department of Radiology and Radiological Science (LS), Division of Neuroimmunology and Neurological Infections (AV), and Division of Advanced Clinical Neurology (JP), Department of Neurology, and Department of Anesthesiology and Critical Care Medicine (EKR), Johns Hopkins University, Baltimore, MD
| | - Eva K Ritzl
- Department of Neurology (KSH, MCC, EKR, ELJ), Comprehensive Epilepsy Center, Department of Radiology and Radiological Science (LS), Division of Neuroimmunology and Neurological Infections (AV), and Division of Advanced Clinical Neurology (JP), Department of Neurology, and Department of Anesthesiology and Critical Care Medicine (EKR), Johns Hopkins University, Baltimore, MD
| | - Emily L Johnson
- Department of Neurology (KSH, MCC, EKR, ELJ), Comprehensive Epilepsy Center, Department of Radiology and Radiological Science (LS), Division of Neuroimmunology and Neurological Infections (AV), and Division of Advanced Clinical Neurology (JP), Department of Neurology, and Department of Anesthesiology and Critical Care Medicine (EKR), Johns Hopkins University, Baltimore, MD
| |
Collapse
|
5
|
Hinds W, Modi S, Ankeeta A, Sperling MR, Pustina D, Tracy JI. Pre-surgical features of intrinsic brain networks predict single and joint epilepsy surgery outcomes. Neuroimage Clin 2023; 38:103387. [PMID: 37023491 PMCID: PMC10122017 DOI: 10.1016/j.nicl.2023.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Despite the effectiveness of surgical interventions for the treatment of intractable focal temporal lobe epilepsy (TLE), the substrates that support good outcomes are poorly understood. While algorithms have been developed for the prediction of either seizure or cognitive/psychiatric outcomes alone, no study has reported on the functional and structural architecture that supports joint outcomes. We measured key aspects of pre-surgical whole brain functional/structural network architecture and evaluated their ability to predict post-operative seizure control in combination with cognitive/psychiatric outcomes. Pre-surgically, we identified the intrinsic connectivity networks (ICNs) unique to each person through independent component analysis (ICA), and computed: (1) the spatial-temporal match between each person's ICA components and established, canonical ICNs, (2) the connectivity strength within each identified person-specific ICN, (3) the gray matter (GM) volume underlying the person-specific ICNs, and (4) the amount of variance not explained by the canonical ICNs for each person. Post-surgical seizure control and reliable change indices of change (for language [naming, phonemic fluency], verbal episodic memory, and depression) served as binary outcome responses in random forest (RF) models. The above functional and structural measures served as input predictors. Our empirically derived ICN-based measures customized to the individual showed that good joint seizure and cognitive/psychiatric outcomes depended upon higher levels of brain reserve (GM volume) in specific networks. In contrast, singular outcomes relied on systematic, idiosyncratic variance in the case of seizure control, and the weakened pre-surgical presence of functional ICNs that encompassed the ictal temporal lobe in the case of cognitive/psychiatric outcomes. Our data made clear that the ICNs differed in their propensity to provide reserve for adaptive outcomes, with some providing structural (brain), and others functional (cognitive) reserve. Our customized methodology demonstrated that when substantial unique, patient-specific ICNs are present prior to surgery there is a reliable association with poor post-surgical seizure control. These ICNs are idiosyncratic in that they did not match the canonical, normative ICNs and, therefore, could not be defined functionally, with their location likely varying by patient. This important finding suggested the level of highly individualized ICN's in the epileptic brain may signal the emergence of epileptogenic activity after surgery.
Collapse
Affiliation(s)
- Walter Hinds
- Thomas Jefferson University, Department of Neurology, and Vicky and Jack Farber Institute for Neuroscience, USA
| | - Shilpi Modi
- Thomas Jefferson University, Department of Neurology, and Vicky and Jack Farber Institute for Neuroscience, USA
| | - Ankeeta Ankeeta
- Thomas Jefferson University, Department of Neurology, and Vicky and Jack Farber Institute for Neuroscience, USA
| | - Michael R Sperling
- Thomas Jefferson University, Department of Neurology, and Vicky and Jack Farber Institute for Neuroscience, USA
| | | | - Joseph I Tracy
- Thomas Jefferson University, Department of Neurology, and Vicky and Jack Farber Institute for Neuroscience, USA.
| |
Collapse
|
6
|
The connectivity-based parcellation of the angular gyrus: fiber dissection and MR tractography study. Brain Struct Funct 2023; 228:121-130. [PMID: 36056938 DOI: 10.1007/s00429-022-02555-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/14/2022] [Indexed: 01/07/2023]
Abstract
The angular gyrus (AG) wraps the posterior end of the superior temporal sulcus (STS), so it is considered a continuation of the superior temporal gyrus (STG)/ middle temporal gyrus (MTG) and forms the inferior parietal lobule (IPL) with the supramarginal gyrus (SMG). The AG was functionally divided in the literature, but there is no fiber dissection study in this context. This study divided AG into superior (sAG) and inferior (iAG) parts by focusing on STS. Red, blue silicone-injected eight and four non-silicone-injected human cadaveric cerebrums were dissected via the Klingler method focusing on the AG. White matter (WM) tracts identified during dissection were then reconstructed on the Human Connectome Project 1065 individual template for validation. According to this study, superior longitudinal fasciculus (SLF) II and middle longitudinal fasciculus (MdLF) are associated with sAG; the anterior commissure (AC), optic radiation (OR) with iAG; the arcuate fasciculus (AF), inferior frontooccipital fasciculus (IFOF), and tapetum (Tp) with both parts. In cortical parcellation of AG based on STS, sAG and iAG were associated with different fiber tracts. Although it has been shown in previous studies that there are functionally different subunits with AG parcellation, here, for the first time, other functions of the subunits have been revealed with cadaveric dissection and tractography images.
Collapse
|
7
|
Shen Y, Gong Y, Ruan Y, Chen Z, Xu C. Secondary Epileptogenesis: Common to See, but Possible to Treat? Front Neurol 2021; 12:747372. [PMID: 34938259 PMCID: PMC8686764 DOI: 10.3389/fneur.2021.747372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023] Open
Abstract
Secondary epileptogenesis is a common phenomenon in epilepsy, characterized by epileptiform discharges from the regions outside the primary focus. It is one of the major reasons for pharmacoresistance and surgical failure. Compared with primary epileptogenesis, the mechanism of secondary epileptogenesis is usually more complex and diverse. In this review, we aim to summarize the characteristics of secondary epileptogenesis from both clinical and laboratory studies in a historical view. Mechanisms of secondary epileptogenesis in molecular, cellular, and circuity levels are further presented. Potential treatments targeting the process are discussed as well. At last, we highlight the importance of circuitry studies, which would further illustrate precise treatments of secondary epileptogenesis in the future.
Collapse
Affiliation(s)
- Yujia Shen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Egemen E, Celtikci P, Dogruel Y, Yakar F, Sahinoglu D, Farouk M, Adiguzel E, Ugur HC, Coskun E, Güngör A. Microsurgical and Tractographic Anatomical Study of Transtemporal-Transchoroidal Fissure Approaches to the Ambient Cistern. Oper Neurosurg (Hagerstown) 2021; 20:189-197. [PMID: 33313862 DOI: 10.1093/ons/opaa272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/28/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Approaching ambient cistern lesions is still a challenge because of deep location and related white matter tracts (WMTs) and neural structures. OBJECTIVE To investigate the white matter anatomy in the course of 3 types of transtemporal-transchoroidal fissure approaches (TTcFA) to ambient cistern by using fiber dissection technique with translumination and magnetic resonance imaging fiber tractography. METHODS Eight formalin-fixed cerebral hemispheres were dissected on surgical corridor from the temporal cortex to the ambient cistern by using Klingler's method. The trans-middle temporal gyrus, trans-inferior temporal sulcus (TITS), and trans-inferior temporal gyrus (TITG) approaches were evaluated. WMTs that were identified during dissection were then reconstructed on the Human Connectome Project 1021 individual template for validation. RESULTS The trans-middle gyrus approach interrupted the U fibers, arcuate fasciculus (AF), the ventral segment of inferior frontoocipital fasciculus (IFOF), the temporal extensions of the anterior commissure (AC) posterior crura, the tapetum (Tp) fibers, and the anterior loop of the optic radiation (OR). The TITS approach interrupted U fibers, inferior longitudinal fasciculus (ILF), IFOF, and OR. The TITG approach interrupted the U fibers, ILF, and OR. The middle longitudinal fasciculus, ILF, and uncinate fasciculus (UF) were not interrupted in the trans-middle gyrus approach and the AF, UF, AC, and Tp fibers were not interrupted in the TITS/gyrus approaches. CONCLUSION Surgical planning of the ambient cistern lesions requires detailed knowledge about WMTs. Fiber dissection and tractography techniques improve the orientation during surgery and may help decrease surgical complications.
Collapse
Affiliation(s)
- Emrah Egemen
- Department of Neurosurgery, Pamukkale University School of Medicine, Denizli, Turkey
| | - Pinar Celtikci
- Department of Radiology, Baskent University, Ankara, Turkey
| | - Yücel Dogruel
- Department of Neurosurgery, Pamukkale University School of Medicine, Denizli, Turkey
| | - Fatih Yakar
- Department of Neurosurgery, Pamukkale University School of Medicine, Denizli, Turkey
| | - Defne Sahinoglu
- Department of Neurosurgery, Pamukkale University School of Medicine, Denizli, Turkey
| | - Mohamed Farouk
- Department of Neurosurgery, Mansoura University, Mansoura, Egypt
| | - Esat Adiguzel
- Department of Anatomy, Pamukkale University School of Medicine, Denizli, Turkey
| | - Hasan Caglar Ugur
- Department of Neurosurgery, Ankara University School of Medicine, Ibni Sina Hospital, Ankara, Turkey
| | - Erdal Coskun
- Department of Neurosurgery, Pamukkale University School of Medicine, Denizli, Turkey
| | - Abuzer Güngör
- Department of Neurosurgery, Neurosurgery Laboratory, Yeditepe University School of Medicine, Istanbul, Turkey
| |
Collapse
|
9
|
Factors affecting interictal unilateral and bilateral discharges and ictal diffusion patterns of scalp electroencephalogram in temporal lobe epilepsy. Neurol Sci 2021; 43:507-515. [PMID: 33942172 DOI: 10.1007/s10072-021-05293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The interictal discharges of temporal lobe epilepsy (TLE) can be unilateral or bilateral. In addition, the ictal electroencephalogram (EEG) showed the discharges also tend to spread to the contralateral brain in TLE. OBJECTIVE The factors influencing unilateral and bilateral interictal discharges in TLE as well as ictal diffusion patterns in scalp EEG during onset of seizure were evaluated in the present study. MATERIALS AND METHODS This was a retrospective analysis of 129 patients with TLE. Cases were classified into unilateral and bilateral discharge groups based on interictal discharge patterns in the EEG. Differences between the two groups in age, gender, disease duration, seizure frequency, magnetic resonance imaging (MRI) findings, origin of TLE, antiepileptic drug (AED) administration, and ictal diffusion patterns during seizures were statistically analyzed. In addition, the differences in ictal diffusion patterns between left and right TLE were statistically analyzed. RESULTS Statistically significant differences were not observed in gender, disease duration, seizure frequency, MRI findings, administration of AEDs, and ictal diffusion patterns between interictal unilateral and bilateral discharge groups but with statistically significant differences in age and side of origin of the TLE. In addition, whether the EEG-recorded diffusion pattern was confined to the same hemisphere or spread to both hemispheres was investigated and shown statistically significant differences between the left and right temporal lobes. CONCLUSIONS Age and side of origin of TLE affects the TLE interictal discharge patterns. Older patients are more prone to bilateral discharges. Bilateral discharges are more common in right TLE, and the onset of EEG more likely to bilateral diffusion in right TLE.
Collapse
|
10
|
Thams S, Islam M, Lindefeldt M, Nordgren A, Granberg T, Tesi B, Barbany G, Nilsson D, Paucar M. Heterozygous variants in DCC: Beyond congenital mirror movements. NEUROLOGY-GENETICS 2020; 6:e526. [PMID: 33209984 PMCID: PMC7670573 DOI: 10.1212/nxg.0000000000000526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/31/2020] [Indexed: 11/18/2022]
Abstract
Objective To perform a comprehensive characterization of a cohort of patients with congenital mirror movements (CMMs) in Sweden. Methods Clinical examination with the Woods and Teuber scale for mirror movements (MMs), neuroimaging, navigated transcranial magnetic stimulation (nTMS), and massive parallel sequencing (MPS) were applied. Results The cohort is ethnically diverse and includes a total of 7 patients distributed in 2 families and 2 sporadic cases. The degree of MMs was variable in this cohort. MPS revealed 2 novel heterozygous frameshift variants in DCC netrin 1 receptor (DCC). Two siblings harboring the pathogenic variant in c.1466_1476del display a complex syndrome featuring MMs and in 1 case receptive-expressive language disorder, chorea, epilepsy, and agenesis of the corpus callosum. The second DCC variant, c.1729delG, was associated with a typical benign CMM phenotype. No variants in DCC, NTN1, RAD51, or DNAL4 were found for the 2 sporadic CMM cases. However, one of these sporadic cases had concomitant high-risk myelodysplastic syndrome and a homozygous variant in ERCC excision repair like 2 (ERCC6L2). Reorganized corticospinal projection patterns to upper extremities were demonstrated with nTMS. Conclusions The presence of chorea expands the clinical spectrum of syndromes associated with variants in DCC. Biallelic pathogenic variants in ERCC6L2 cause bone marrow failure, but a potential association with CMM remains to be studied in larger cohorts.
Collapse
Affiliation(s)
- Sebastian Thams
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Mominul Islam
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Marie Lindefeldt
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| | - Martin Paucar
- Department of Clinical Neuroscience (S.T., T.G., M.P.), Karolinska Institutet; Department of Neurology (S.T., M.P.), Karolinska University Hospital; Department of Neurophysiology (M.I.), Karolinska University Hospital; Department of Pediatric Neurology (M.L.), Astrid Lindgren's Hospital; Department of Clinical Genetics (A.N., B.T., G.B.), Karolinska University Hospital; Department of Molecular Medicine and Surgery (A.N., B.T., G.B., D.N.), Karolinska Institutet; and Department of Neuroradiology (T.G.), Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Lyon M, Welton T, Varda A, Maller JJ, Broadhouse K, Korgaonkar MS, Koslow SH, Williams LM, Gordon E, Rush AJ, Grieve SM. Gender-specific structural abnormalities in major depressive disorder revealed by fixel-based analysis. NEUROIMAGE-CLINICAL 2019; 21:101668. [PMID: 30690418 PMCID: PMC6356005 DOI: 10.1016/j.nicl.2019.101668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/23/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a chronic disease with a large global impact. There are currently no clinically useful predictors of treatment outcome, and the development of biomarkers to inform clinical treatment decisions is highly desirable. METHODS In this exploratory study we performed fixel-based analysis of diffusion MRI data from the International Study to Predict Optimized Treatment in Depression with the aim of identifying novel biomarkers at baseline that may relate to diagnosis and outcome to treatment with antidepressant medications. Analyses used MR data from individuals with MDD (n = 221) and healthy controls (n = 67). RESULTS We show focal, gender-specific differences in the anterior limb of the internal capsule (males) and bilaterally in the genu of the corpus callosum (females) associated with diagnosis. Lower fibre cross-section in the tapetum, the conduit between the right and left hippocampi, were also associated with a decreased probability of remission. Analysis of conventional fractional anisotropy showed scattered abnormalities in the corona radiata, cerebral peduncles and mid-brain which were much lower in total volume compared to fixel-based analysis. CONCLUSIONS Fixel-based analysis appeared to identify different underlying abnormalities than conventional tensor-based metrics, with almost no overlap between significant regions. We show that MDD is associated with gender specific abnormalities in the genu of the corpus callosum (females) and in the anterior limb of the internal capsule (males), as well as gender-independent differences in the tapetum that predict remission. Diffusion MRI may play a key role in future guidance of clinical decision-making for MDD.
Collapse
Affiliation(s)
- Matt Lyon
- Sydney Translational Imaging Laboratory, Heart Research Institute & Charles Perkins Centre, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Thomas Welton
- Sydney Translational Imaging Laboratory, Heart Research Institute & Charles Perkins Centre, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Adrina Varda
- Sydney Translational Imaging Laboratory, Heart Research Institute & Charles Perkins Centre, Sydney Medical School, University of Sydney, NSW 2006, Australia; School of Medicine, University of Notre Dame, Sydney, Australia
| | - Jerome J Maller
- Sydney Translational Imaging Laboratory, Heart Research Institute & Charles Perkins Centre, Sydney Medical School, University of Sydney, NSW 2006, Australia; General Electric Healthcare, Richmond, Victoria, Australia
| | - Kathryn Broadhouse
- Sydney Translational Imaging Laboratory, Heart Research Institute & Charles Perkins Centre, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Mayuresh S Korgaonkar
- The Brain Dynamics Centre, Westmead Millennium Institute and Sydney Medical School, Sydney, NSW, Australia
| | - Stephen H Koslow
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Leanne M Williams
- The Brain Dynamics Centre, Westmead Millennium Institute and Sydney Medical School, Sydney, NSW, Australia; Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC) Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Evian Gordon
- Sydney Translational Imaging Laboratory, Heart Research Institute & Charles Perkins Centre, Sydney Medical School, University of Sydney, NSW 2006, Australia; Brain Resource Ltd, San Francisco, CA, USA
| | - A John Rush
- Duke-National University of Singapore, Singapore; Department of Psychiatry, Duke Medical School, Durham, NC, USA; Texas Tech University-Health Sciences Center, Permian Basin, TX, USA
| | - Stuart M Grieve
- Sydney Translational Imaging Laboratory, Heart Research Institute & Charles Perkins Centre, Sydney Medical School, University of Sydney, NSW 2006, Australia; Department of Radiology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW 2006, Australia.
| |
Collapse
|
12
|
Schmeiser B, Zentner J, Steinhoff B, Brandt A, Schulze-Bonhage A, Kogias E, Hammen T. The role of presurgical EEG parameters and of reoperation for seizure outcome in temporal lobe epilepsy. Seizure 2017; 51:174-179. [DOI: 10.1016/j.seizure.2017.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/13/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022] Open
|
13
|
Chi Y, Wu B, Guan J, Xiao K, Lu Z, Li X, Xu Y, Xue S, Xu Q, Rao J, Guo Y. Establishment of a rhesus monkey model of chronic temporal lobe epilepsy using repetitive unilateral intra-amygdala kainic acid injections. Brain Res Bull 2017; 134:273-282. [PMID: 28842304 DOI: 10.1016/j.brainresbull.2017.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 08/09/2017] [Accepted: 08/18/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is a common type of acquired epilepsy refractory to medical treatment. As such, establishing animal models of this disease is critical to developing new and effective treatment modalities. Because of their small head size, rodents are not suitable for comprehensive electroencephalography (EEG) evaluation via scalp or subdural electrodes. Therefore, a larger primate model that closely recapitulates signs of TLE is needed; here we describe a rhesus monkey model resembling chronic TLE. METHODS Eight monkeys were divided into two groups: kainic acid (KA) group (n=6) and saline control group (n=2). Intra-amygdala KA injections were performed biweekly via an Ommaya device until obvious epileptiform discharges were recorded. Video-EEG recording was conducted intermittently throughout the experiment using both scalp and subdural electrodes. Brains were then analyzed for Nissl and glial fibrillary acid protein (GFAP) immunostaining. RESULTS After 2-4 injections of KA (approximately 1.2-2.4mg, 0.12-0.24mg/kg), interictal epileptiform discharges (IEDs) were recorded in all KA-treated animals. Spontaneous recurrent seizures (SRSs) accompanied by symptoms mimicking temporal lobe absence (undetectable without EEG recording), but few mild motor signs, were recorded in 66.7% (four of six) KA-treated animals. Both IEDs and seizures indicated a primary epileptic zone in the right temporal region and contralateral discharges were later detected. Segmental pyramidal cell loss and gliosis were detected in the brain of a KA-treated monkey. CONCLUSIONS Through a modified protocol of unilateral repetitive intra-amygdala KA injections, a rhesus monkey model with similar behavioral and brain electrical features as TLE was developed.
Collapse
Affiliation(s)
- Yajie Chi
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China; Department of Neurosurgery, Shunde Hospital of Southern Medical University, Foshan, 528300, China
| | - Bolin Wu
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jianwei Guan
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Kuntai Xiao
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Ziming Lu
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xiao Li
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuting Xu
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Shan Xue
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Qiang Xu
- Department of Neurosurgery, Affiliated Shunde Heping Surgical Hospital of GUCM, Foshan, 528308, China.
| | - Junhua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510282, China.
| | - Yanwu Guo
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
14
|
Gollwitzer S, Scott CA, Farrell F, Bell GS, de Tisi J, Walker MC, Wehner T, Sander JW, Hamer HM, Diehl B. The long-term course of temporal lobe epilepsy: From unilateral to bilateral interictal epileptiform discharges in repeated video-EEG monitorings. Epilepsy Behav 2017; 68:17-21. [PMID: 28109984 DOI: 10.1016/j.yebeh.2016.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Bilateral interictal epileptiform discharges (IED) and ictal patterns are common in temporal lobe epilepsy (TLE) and have been associated with decreased chances of seizure freedom after epilepsy surgery. It is unclear whether secondary epileptogenesis, although demonstrated in experimental models, exists in humans and may account for progression of epilepsy. MATERIAL AND METHODS We reviewed consecutive video-EEG recordings from 1992 to 2014 repeated at least two years apart (mean interval 6.14years) in 100 people diagnosed with TLE. RESULTS Ictal EEG patterns and IED remained restricted to one hemisphere in 36 people (group 1), 46 exhibited bilateral abnormalities from the first recording (group 2), 18 progressed from unilateral to bilateral EEG pathology over time (group 3). No significant differences between the three groups were seen with respect to age at epilepsy onset, duration, or underlying pathology. Extra-temporal IED during the first EEG recording were associated with an increased risk of developing bilateral epileptiform changes over time (hazard ratio 3.67; 95% CI 1.4, 9.4). CONCLUSION Our findings provide some support of progression in TLE and raise the possibility of secondary epileptogenesis in humans. The development of an independent contra-lateral epileptogenic focus is known to be associated with a less favorable surgical outcome. We defined reliable EEG markers for an increased risk of progression to more widespread or independent bitemporal epileptogenicity at an early stage, thus allowing for individualized pre-surgical counselling.
Collapse
Affiliation(s)
- Stephanie Gollwitzer
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom; Epilepsy Center, Department of Neurology, University Hospital Erlangen, Erlangen, Germany.
| | - Catherine A Scott
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Fiona Farrell
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom; Epilepsy Society, Chalfont St Peter SL9 0RJ, United Kingdom
| | - Gail S Bell
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom; Epilepsy Society, Chalfont St Peter SL9 0RJ, United Kingdom
| | - Jane de Tisi
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Matthew C Walker
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Tim Wehner
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom; Epilepsy Society, Chalfont St Peter SL9 0RJ, United Kingdom; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Hajo M Hamer
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Beate Diehl
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
15
|
Tract-specific atrophy in focal epilepsy: Disease, genetics, or seizures? Ann Neurol 2017; 81:240-250. [DOI: 10.1002/ana.24848] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/29/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022]
|
16
|
Warbrick T, Rosenberg J, Shah NJ. The relationship between BOLD fMRI response and the underlying white matter as measured by fractional anisotropy (FA): A systematic review. Neuroimage 2017; 153:369-381. [PMID: 28082105 DOI: 10.1016/j.neuroimage.2016.12.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/19/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022] Open
Abstract
Despite the relationship between brain structure and function being of fundamental interest in cognitive neuroscience, the relationship between the brain's white matter, measured using fractional anisotropy (FA), and the functional magnetic resonance imaging (fMRI) blood oxygen level dependent (BOLD) response is poorly understood. A systematic review of literature investigating the association between FA and fMRI BOLD response was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The PubMed and Web of Knowledge databases were searched up until 22.04.2016 using a predetermined set of search criteria. The search identified 363 papers, 28 of which met the specified inclusion criteria. Positive relationships were mainly observed in studies investigating the primary sensory and motor systems and in resting state data. Both positive and negative relationships were seen in studies using cognitive tasks. This systematic review suggests that there is a relationship between FA and the fMRI BOLD response and that the relationship is task and region dependent. Behavioural and/or clinical variables were shown to be essential in interpreting the relationships between imaging measures. The results highlight the heterogeneity in the methods used across papers in terms of fMRI task, population investigated and data analysis techniques. Further investigation and replication of current findings are required before definitive conclusions can be drawn.
Collapse
Affiliation(s)
- Tracy Warbrick
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Jülich, Jülich, Germany
| | - Jessica Rosenberg
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Jülich, Jülich, Germany; Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA - BRAIN - Translational Medicine, Germany.
| | - N J Shah
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Jülich, Jülich, Germany; Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA - BRAIN - Translational Medicine, Germany; Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Doucet GE, He X, Sperling M, Sharan A, Tracy JI. Gray Matter Abnormalities in Temporal Lobe Epilepsy: Relationships with Resting-State Functional Connectivity and Episodic Memory Performance. PLoS One 2016; 11:e0154660. [PMID: 27171178 PMCID: PMC4865085 DOI: 10.1371/journal.pone.0154660] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/15/2016] [Indexed: 11/19/2022] Open
Abstract
Temporal lobe epilepsy (TLE) affects multiple brain regions through evidence from both structural (gray matter; GM) and functional connectivity (FC) studies. We tested whether these structural abnormalities were associated with FC abnormalities, and assessed the ability of these measures to explain episodic memory impairments in this population. A resting-state and T1 sequences were acquired on 94 (45 with mesial temporal pathology) TLE patients and 50 controls, using magnetic resonance imaging (MRI) technique. A voxel-based morphometry analysis was computed to determine the GM volume differences between groups (right, left TLE, controls). Resting-state FC between the abnormal GM volume regions was computed, and compared between groups. Finally, we investigated the relation between EM, GM and FC findings. Patients with and without temporal pathology were analyzed separately. The results revealed reduced GM volume in multiple regions in the patients relative to the controls. Using FC, we found the abnormal GM regions did not display abnormal functional connectivity. Lastly, we found in left TLE patients, verbal episodic memory was associated with abnormal left posterior hippocampus volume, while in right TLE, non-verbal episodic memory was better predicted by resting-state FC measures. This study investigated TLE abnormalities using a multi-modal approach combining GM, FC and neurocognitive measures. We did not find that the GM abnormalities were functionally or abnormally connected during an inter-ictal resting state, which may reflect a weak sensitivity of functional connectivity to the epileptic network. We provided evidence that verbal and non-verbal episodic memory in left and right TLE patients may have distinct relationships with structural and functional measures. Lastly, we provide data suggesting that in the setting of occult, non-lesional right TLE pathology, a coupling of structural and functional abnormalities in extra-temporal/non-ictal regions is necessary to produce reductions in episodic memory recall. The latter, in particular, demonstrates the complex structure/function interactions at work when trying to understand cognition in TLE, suggesting that subtle network effects can emerge bearing specific relationships to hemisphere and the type of pathology.
Collapse
Affiliation(s)
- Gaelle E. Doucet
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Xiaosong He
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Michael Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Joseph I. Tracy
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
18
|
Pustina D, Avants B, Sperling M, Gorniak R, He X, Doucet G, Barnett P, Mintzer S, Sharan A, Tracy J. Predicting the laterality of temporal lobe epilepsy from PET, MRI, and DTI: A multimodal study. Neuroimage Clin 2015; 9:20-31. [PMID: 26288753 PMCID: PMC4536304 DOI: 10.1016/j.nicl.2015.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/11/2015] [Accepted: 07/19/2015] [Indexed: 01/09/2023]
Abstract
Pre-surgical evaluation of patients with temporal lobe epilepsy (TLE) relies on information obtained from multiple neuroimaging modalities. The relationship between modalities and their combined power in predicting the seizure focus is currently unknown. We investigated asymmetries from three different modalities, PET (glucose metabolism), MRI (cortical thickness), and diffusion tensor imaging (DTI; white matter anisotropy) in 28 left and 30 right TLE patients (LTLE and RTLE). Stepwise logistic regression models were built from each modality separately and from all three combined, while bootstrapped methods and split-sample validation verified the robustness of predictions. Among all multimodal asymmetries, three PET asymmetries formed the best predictive model (100% success in full sample, >95% success in split-sample validation). The combinations of PET with other modalities did not perform better than PET alone. Probabilistic classifications were obtained for new clinical cases, which showed correct lateralization for 7/7 new TLE patients (100%) and for 4/5 operated patients with discordant or non-informative PET reports (80%). Metabolism showed closer relationship with white matter in LTLE and closer relationship with gray matter in RTLE. Our data suggest that metabolism is a powerful modality that can predict seizure laterality with high accuracy, and offers high value for automated predictive models. The side of epileptogenic focus can affect the relationship of metabolism with brain structure. The data and tools necessary to obtain classifications for new TLE patients are made publicly available.
Collapse
Affiliation(s)
- Dorian Pustina
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Brian Avants
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Michael Sperling
- Department of Neurology, Thomas Jefferson University/Sidney Kimmel Medical College, Philadelphia, PA 19107, USA
| | - Richard Gorniak
- Department of Radiology, Thomas Jefferson University/Sidney Kimmel Medical College, Philadelphia, PA 19107, USA
| | - Xiaosong He
- Department of Neurology, Thomas Jefferson University/Sidney Kimmel Medical College, Philadelphia, PA 19107, USA
| | - Gaelle Doucet
- Department of Neurology, Thomas Jefferson University/Sidney Kimmel Medical College, Philadelphia, PA 19107, USA
| | - Paul Barnett
- Department of Neurology, Thomas Jefferson University/Sidney Kimmel Medical College, Philadelphia, PA 19107, USA
| | - Scott Mintzer
- Department of Neurology, Thomas Jefferson University/Sidney Kimmel Medical College, Philadelphia, PA 19107, USA
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, USA
| | - Joseph Tracy
- Department of Neurology, Thomas Jefferson University/Sidney Kimmel Medical College, Philadelphia, PA 19107, USA
- Department of Radiology, Thomas Jefferson University/Sidney Kimmel Medical College, Philadelphia, PA 19107, USA
| |
Collapse
|
19
|
Rodríguez-Cruces R, Concha L. White matter in temporal lobe epilepsy: clinico-pathological correlates of water diffusion abnormalities. Quant Imaging Med Surg 2015; 5:264-78. [PMID: 25853084 DOI: 10.3978/j.issn.2223-4292.2015.02.06] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/14/2015] [Indexed: 02/05/2023]
Abstract
Using magnetic resonance imaging, it is possible to measure the behavior of diffusing water molecules, and the metrics derived can be used as indirect markers of tissue micro-architectural properties. Numerous reports have demonstrated that patients with temporal lobe epilepsy (TLE) have water diffusion abnormalities in several white matter structures located within and beyond the epileptogenic temporal lobe, showing that TLE is not a focal disorder, but rather a brain network disease. Differences in severity and spatial extent between patients with or without mesial temporal sclerosis (MTS), as well as differences related to hemispheric seizure onset, are suggestive of different pathophysiological mechanisms behind different forms of TLE, which in turn result in specific cognitive disabilities. The biological interpretation of diffusion abnormalities is based on a wealth of information from animal models of white matter damage, and is supported by recent reports that directly correlate diffusion metrics with histological characteristics of surgical specimens of TLE patients. Thus, there is now more evidence showing that the increased mean diffusivity (MD) and concomitant reductions of diffusion anisotropy that are frequently observed in several white matter bundles in TLE patients reflect reduced axonal density (increased extra-axonal space) due to smaller-caliber axons, and abnormalities in the myelin sheaths of the remaining axons. Whether these histological and diffusion features are a predisposing factor for epilepsy or secondary to seizures is still uncertain; some reports suggest the latter. This article summarizes recent findings in this field and provides a synopsis of the histological features seen most frequently in post-surgical specimens of TLE patients in an effort to aid the interpretation of white matter diffusion abnormalities.
Collapse
Affiliation(s)
- Raúl Rodríguez-Cruces
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|