1
|
Neuroplastic alterations in cannabinoid receptors type 1 (CB1) in animal models of epileptic seizures. Neurosci Biobehav Rev 2022; 137:104675. [PMID: 35460705 DOI: 10.1016/j.neubiorev.2022.104675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/16/2022] [Accepted: 04/17/2022] [Indexed: 01/01/2023]
Abstract
Currently, there is an urgent need to better comprehend neuroplastic alterations in cannabinoid receptors type 1 (CB1) and to understand the biological meaning of these alterations in epileptic disorders. The present study reviewed neuroplastic changes in CB1 distribution, expression, and functionality in animal models of epileptic seizures. Neuroplastic alterations in CB1 were consistently observed in chemical, genetic, electrical, and febrile seizure models. Most studies assessed changes in hippocampal and cortical CB1, while thalamic, hypothalamic, and brainstem nuclei were rarely investigated. Additionally, the relationship between CB1 alteration and the control of brain excitability through modulation of specific neuronal networks, such as striatonigral, nigrotectal and thalamocortical pathways, and inhibitory projections to hippocampal pyramidal neurons, were all presented and discussed in the present review. Neuroplastic alterations in CB1 detected in animal models of epilepsy may reflect two different scenarios: (1) endogenous adaptations aimed to control neuronal hyperexcitability in epilepsy or (2) pathological alterations that facilitate neuronal hyperexcitability. Additionally, a better comprehension of neuroplastic and functional alterations in CB1 can improve pharmacological therapies for epilepsies and their comorbidities.
Collapse
|
2
|
Zaveri HP, Schelter B, Schevon CA, Jiruska P, Jefferys JGR, Worrell G, Schulze-Bonhage A, Joshi RB, Jirsa V, Goodfellow M, Meisel C, Lehnertz K. Controversies on the network theory of epilepsy: Debates held during the ICTALS 2019 conference. Seizure 2020; 78:78-85. [PMID: 32272333 DOI: 10.1016/j.seizure.2020.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/21/2022] Open
Abstract
Debates on six controversial topics on the network theory of epilepsy were held during two debate sessions, as part of the International Conference for Technology and Analysis of Seizures, 2019 (ICTALS 2019) convened at the University of Exeter, UK, September 2-5 2019. The debate topics were (1) From pathologic to physiologic: is the epileptic network part of an existing large-scale brain network? (2) Are micro scale recordings pertinent for defining the epileptic network? (3) From seconds to years: do we need all temporal scales to define an epileptic network? (4) Is it necessary to fully define the epileptic network to control it? (5) Is controlling seizures sufficient to control the epileptic network? (6) Does the epileptic network want to be controlled? This article, written by the organizing committee for the debate sessions and the debaters, summarizes the arguments presented during the debates on these six topics.
Collapse
Affiliation(s)
- Hitten P Zaveri
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Björn Schelter
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3UE, UK
| | | | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - John G R Jefferys
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Gregory Worrell
- Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Rasesh B Joshi
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| | - Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter, UK; Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, UK; EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK
| | - Christian Meisel
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA; Department of Neurology, University Clinic Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany; Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Str. 7, 53175 Bonn, Germany.
| |
Collapse
|
3
|
Chen Y, Zhu G, Shi L, Liu D, Zhang X, Liu Y, Yuan T, Du T, Zhang J. Establishment of a novel mesial temporal lobe epilepsy rhesus monkey model via intra-hippocampal and intra-amygdala kainic acid injection assisted by neurosurgical robot system. Brain Res Bull 2019; 149:32-41. [DOI: 10.1016/j.brainresbull.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 01/11/2023]
|
4
|
Neuroimaging Biomarkers of Experimental Epileptogenesis and Refractory Epilepsy. Int J Mol Sci 2019; 20:ijms20010220. [PMID: 30626103 PMCID: PMC6337422 DOI: 10.3390/ijms20010220] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 11/17/2022] Open
Abstract
This article provides an overview of neuroimaging biomarkers in experimental epileptogenesis and refractory epilepsy. Neuroimaging represents a gold standard and clinically translatable technique to identify neuropathological changes in epileptogenesis and longitudinally monitor its progression after a precipitating injury. Neuroimaging studies, along with molecular studies from animal models, have greatly improved our understanding of the neuropathology of epilepsy, such as the hallmark hippocampus sclerosis. Animal models are effective for differentiating the different stages of epileptogenesis. Neuroimaging in experimental epilepsy provides unique information about anatomic, functional, and metabolic alterations linked to epileptogenesis. Recently, several in vivo biomarkers for epileptogenesis have been investigated for characterizing neuronal loss, inflammation, blood-brain barrier alterations, changes in neurotransmitter density, neurovascular coupling, cerebral blood flow and volume, network connectivity, and metabolic activity in the brain. Magnetic resonance imaging (MRI) is a sensitive method for detecting structural and functional changes in the brain, especially to identify region-specific neuronal damage patterns in epilepsy. Positron emission tomography (PET) and single-photon emission computerized tomography are helpful to elucidate key functional alterations, especially in areas of brain metabolism and molecular patterns, and can help monitor pathology of epileptic disorders. Multimodal procedures such as PET-MRI integrated systems are desired for refractory epilepsy. Validated biomarkers are warranted for early identification of people at risk for epilepsy and monitoring of the progression of medical interventions.
Collapse
|
5
|
Resting state connectivity in neocortical epilepsy: The epilepsy network as a patient-specific biomarker. Clin Neurophysiol 2018; 130:280-288. [PMID: 30605890 DOI: 10.1016/j.clinph.2018.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/04/2018] [Accepted: 11/03/2018] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Localization related epilepsy (LRE) is increasingly accepted as a network disorder. To better understand the network specific characteristics of LRE, we defined individual epilepsy networks and compared them across patients. METHODS The epilepsy network was defined in the slow cortical potential frequency band in 10 patients using intracranial EEG data obtained during interictal periods. Cortical regions were included in the epilepsy network if their connectivity pattern was similar to the connectivity pattern of the seizure onset electrode contact. Patients were subdivided into frontal, temporal, and posterior quadrant cohorts according to the anatomic location of seizure onset. Jaccard similarity was calculated within each cohort to assess for similarity of the epilepsy network between patients within each cohort. RESULTS All patients exhibited an epilepsy network in the slow cortical potential frequency band. The topographic distribution of this correlated network activity was found to be unique at the single subject level. CONCLUSIONS The epilepsy network was unique at the single patient level, even between patients with similar seizure onset locations. SIGNIFICANCE We demonstrated that the epilepsy network is patient-specific. This is in keeping with our current understanding of brain networks and identifies the patient-specific epilepsy network as a possible biomarker in LRE.
Collapse
|
6
|
Lieb A, Qiu Y, Dixon CL, Heller JP, Walker MC, Schorge S, Kullmann DM. Biochemical autoregulatory gene therapy for focal epilepsy. Nat Med 2018; 24:1324-1329. [PMID: 29988123 PMCID: PMC6152911 DOI: 10.1038/s41591-018-0103-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 05/17/2018] [Indexed: 11/14/2022]
Abstract
Despite the introduction of more than one dozen new antiepileptic drugs in the past 20 years, approximately one-third of people who develop epilepsy continue to have seizures on mono- or polytherapy1. Viral-vector-mediated gene transfer offers the opportunity to design a rational treatment that builds on mechanistic understanding of seizure generation and that can be targeted to specific neuronal populations in epileptogenic foci2. Several such strategies have shown encouraging results in different animal models, although clinical translation is limited by possible effects on circuits underlying cognitive, mnemonic, sensory or motor function. Here, we describe an autoregulatory antiepileptic gene therapy, which relies on neuronal inhibition in response to elevations in extracellular glutamate. It is effective in a rodent model of focal epilepsy and is well tolerated, thus lowering the barrier to clinical translation.
Collapse
Affiliation(s)
- Andreas Lieb
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK.
| | - Yichen Qiu
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Christine L Dixon
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Janosch P Heller
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK.
| |
Collapse
|
7
|
Cleeren E, Casteels C, Goffin K, Koole M, Van Laere K, Janssen P, Van Paesschen W. Positron emission tomography imaging of cerebral glucose metabolism and type 1 cannabinoid receptor availability during temporal lobe epileptogenesis in the amygdala kindling model in rhesus monkeys. Epilepsia 2018; 59:959-970. [DOI: 10.1111/epi.14059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Evy Cleeren
- Laboratory for Neuro‐ and Psychophysiology KU Leuven Leuven Belgium
- Laboratory for Epilepsy Research KU Leuven Leuven Belgium
| | - Cindy Casteels
- Nuclear Medicine & Molecular Imaging Department of Imaging and Pathology KU Leuven Leuven Belgium
- Molecular Small Animal Imaging Center (MoSAIC) KU Leuven Leuven Belgium
| | - Karolien Goffin
- Nuclear Medicine & Molecular Imaging Department of Imaging and Pathology KU Leuven Leuven Belgium
- Molecular Small Animal Imaging Center (MoSAIC) KU Leuven Leuven Belgium
| | - Michel Koole
- Nuclear Medicine & Molecular Imaging Department of Imaging and Pathology KU Leuven Leuven Belgium
- Molecular Small Animal Imaging Center (MoSAIC) KU Leuven Leuven Belgium
| | - Koen Van Laere
- Nuclear Medicine & Molecular Imaging Department of Imaging and Pathology KU Leuven Leuven Belgium
- Molecular Small Animal Imaging Center (MoSAIC) KU Leuven Leuven Belgium
| | - Peter Janssen
- Laboratory for Neuro‐ and Psychophysiology KU Leuven Leuven Belgium
| | | |
Collapse
|
8
|
Chi Y, Wu B, Guan J, Xiao K, Lu Z, Li X, Xu Y, Xue S, Xu Q, Rao J, Guo Y. Establishment of a rhesus monkey model of chronic temporal lobe epilepsy using repetitive unilateral intra-amygdala kainic acid injections. Brain Res Bull 2017; 134:273-282. [PMID: 28842304 DOI: 10.1016/j.brainresbull.2017.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 08/09/2017] [Accepted: 08/18/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is a common type of acquired epilepsy refractory to medical treatment. As such, establishing animal models of this disease is critical to developing new and effective treatment modalities. Because of their small head size, rodents are not suitable for comprehensive electroencephalography (EEG) evaluation via scalp or subdural electrodes. Therefore, a larger primate model that closely recapitulates signs of TLE is needed; here we describe a rhesus monkey model resembling chronic TLE. METHODS Eight monkeys were divided into two groups: kainic acid (KA) group (n=6) and saline control group (n=2). Intra-amygdala KA injections were performed biweekly via an Ommaya device until obvious epileptiform discharges were recorded. Video-EEG recording was conducted intermittently throughout the experiment using both scalp and subdural electrodes. Brains were then analyzed for Nissl and glial fibrillary acid protein (GFAP) immunostaining. RESULTS After 2-4 injections of KA (approximately 1.2-2.4mg, 0.12-0.24mg/kg), interictal epileptiform discharges (IEDs) were recorded in all KA-treated animals. Spontaneous recurrent seizures (SRSs) accompanied by symptoms mimicking temporal lobe absence (undetectable without EEG recording), but few mild motor signs, were recorded in 66.7% (four of six) KA-treated animals. Both IEDs and seizures indicated a primary epileptic zone in the right temporal region and contralateral discharges were later detected. Segmental pyramidal cell loss and gliosis were detected in the brain of a KA-treated monkey. CONCLUSIONS Through a modified protocol of unilateral repetitive intra-amygdala KA injections, a rhesus monkey model with similar behavioral and brain electrical features as TLE was developed.
Collapse
Affiliation(s)
- Yajie Chi
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China; Department of Neurosurgery, Shunde Hospital of Southern Medical University, Foshan, 528300, China
| | - Bolin Wu
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jianwei Guan
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Kuntai Xiao
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Ziming Lu
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xiao Li
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuting Xu
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Shan Xue
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Qiang Xu
- Department of Neurosurgery, Affiliated Shunde Heping Surgical Hospital of GUCM, Foshan, 528308, China.
| | - Junhua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510282, China.
| | - Yanwu Guo
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
9
|
Neuroimaging in animal models of epilepsy. Neuroscience 2017; 358:277-299. [DOI: 10.1016/j.neuroscience.2017.06.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
|
10
|
Vuong J, Devergnas A. The role of the basal ganglia in the control of seizure. J Neural Transm (Vienna) 2017; 125:531-545. [PMID: 28766041 DOI: 10.1007/s00702-017-1768-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/23/2017] [Indexed: 12/19/2022]
Abstract
Epilepsy is a network disorder and each type of seizure involves distinct cortical and subcortical network, differently implicated in the control and propagation of the ictal activity. The role of the basal ganglia has been revealed in several cases of focal and generalized seizures. Here, we review the data that show the implication of the basal ganglia in absence, temporal lobe, and neocortical seizures in animal models (rodent, cat, and non-human primate) and in human. Based on these results and the advancement of deep brain stimulation for Parkinson's disease, basal ganglia neuromodulation has been tested with some success that can be equally seen as promising or disappointing. The effect of deep brain stimulation can be considered promising with a 76% in seizure reduction in temporal lobe epilepsy patients, but also disappointing, since only few patients have become seizure free and the antiepileptic effects have been highly variable among patients. This variability could probably be explained by the heterogeneity among the patients included in these clinical studies. To illustrate the importance of specific network identification, electrophysiological activity of the putamen and caudate nucleus has been recorded during penicillin-induced pre-frontal and motor seizures in one monkey. While an increase of the firing rate was found in putamen and caudate nucleus during pre-frontal seizures, only the activity of the putamen cells was increased during motor seizures. These preliminary results demonstrate the implication of the basal ganglia in two types of neocortical seizures and the necessity of studying the network to identify the important nodes implicated in the propagation and control of each type of seizure.
Collapse
Affiliation(s)
- J Vuong
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA
| | - Annaelle Devergnas
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA. .,Department of Neurology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Cleeren E, Premereur E, Casteels C, Goffin K, Janssen P, Van Paesschen W. The effective connectivity of the seizure onset zone and ictal perfusion changes in amygdala kindled rhesus monkeys. NEUROIMAGE-CLINICAL 2016; 12:252-61. [PMID: 27489773 PMCID: PMC4959940 DOI: 10.1016/j.nicl.2016.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/04/2016] [Accepted: 05/31/2016] [Indexed: 12/22/2022]
Abstract
Epileptic seizures are network-level phenomena. Hence, epilepsy may be regarded as a circuit-level disorder that cannot be understood outside this context. Better insight into the effective connectivity of the seizure onset zone and the manner in which seizure activity spreads could lead to specifically-tailored therapies for epilepsy. We applied the electrical amygdala kindling model in two rhesus monkeys until these animals displayed consistent stage IV seizures. At this stage, we investigated the effective connectivity of the amygdala by means of electrical microstimulation during fMRI (EM-fMRI). In addition, we imaged changes in perfusion during a seizure using ictal SPECT perfusion imaging. The spatial overlap between the connectivity network and the ictal perfusion network was assessed both at the regional level, by calculating Dice coefficients using anatomically defined regions of interest, and at the voxel level. The kindled amygdala was extensively connected to bilateral cortical and subcortical structures, which in many cases were connected multisynaptically to the amygdala. At the regional level, the spatial extents of many of these fMRI activations and deactivations corresponded to the respective increases and decreases in perfusion imaged during a stage IV seizure. At the voxel level, however, some regions showed residual seizure-specific activity (not overlapping with the EM-fMRI activations) or fMRI-specific activation (not overlapping with the ictal SPECT activations), indicating that frequently, only a part of a region anatomically connected to the seizure onset zone participated in seizure propagation. Thus, EM-fMRI in the amygdala of electrically-kindled monkeys reveals widespread areas that are often connected multisynaptically to the seizure focus. Seizure activity appears to spread, to a large extent, via these connected areas.
Collapse
Affiliation(s)
- Evy Cleeren
- Laboratory for Neuro- and Psychophysiology, KU Leuven, O&N II Herestraat 49 - bus 1021, 3000 Leuven, Belgium; Laboratory for Epilepsy Research, KU Leuven, UZ Herestraat 49 - bus 7003 48, 3000 Leuven, Belgium
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, KU Leuven, O&N II Herestraat 49 - bus 1021, 3000 Leuven, Belgium
| | - Cindy Casteels
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, UZ Herestraat 49 - bus 7003 59, 3000 Leuven, Belgium; Molecular Small Animal Imaging Center (MoSAIC), O&N I Herestraat 49 - bus 505, 3000 Leuven, Belgium
| | - Karolien Goffin
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, UZ Herestraat 49 - bus 7003 59, 3000 Leuven, Belgium
| | - Peter Janssen
- Laboratory for Neuro- and Psychophysiology, KU Leuven, O&N II Herestraat 49 - bus 1021, 3000 Leuven, Belgium
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven, UZ Herestraat 49 - bus 7003 48, 3000 Leuven, Belgium
| |
Collapse
|