1
|
Valente D, Serra O, Carolino N, Gomes J, Coelho AC, Espadinha P, Pais J, Carolino I. A Genome-Wide Association Study for Resistance to Tropical Theileriosis in Two Bovine Portuguese Autochthonous Breeds. Pathogens 2024; 13:71. [PMID: 38251378 PMCID: PMC10819359 DOI: 10.3390/pathogens13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The control of Tropical Theileriosis, a tick-borne disease with a strong impact on cattle breeding, can be facilitated using marker-assisted selection in breeding programs. Genome-wide association studies (GWAS) using high-density arrays are extremely important for the ongoing process of identifying genomic variants associated with resistance to Theileria annulata infection. In this work, single-nucleotide polymorphisms (SNPs) were analyzed in the Portuguese autochthonous cattle breeds Alentejana and Mertolenga. In total, 24 SNPs suggestive of significance (p ≤ 10-4) were identified for Alentejana cattle and 20 SNPs were identified for Mertolenga cattle. The genomic regions around these SNPs were further investigated for annotated genes and quantitative trait loci (QTLs) previously described by other authors. Regarding the Alentejana breed, the MAP3K1, CMTM7, SSFA2, and ATG13 genes are located near suggestive SNPs and appear as candidate genes for resistance to Tropical Theileriosis, considering its action in the immune response and resistance to other diseases. On the other hand, in the Mertolenga breed, the UOX gene is also a candidate gene due to its apparent link to the pathogenesis of the disease. These results may represent a first step toward the possibility of including genetic markers for resistance to Tropical Theileriosis in current breed selection programs.
Collapse
Affiliation(s)
- Diana Valente
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal; (N.C.); (I.C.)
- Escola de Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
- Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Octávio Serra
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Banco Português de Germoplasma Vegetal, Quinta de S. José, S. Pedro de Merelim, 4700-859 Braga, Portugal;
| | - Nuno Carolino
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal; (N.C.); (I.C.)
- Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação da Fonte Boa—Estação Zootécnica Nacional, 2005-424 Santarém, Portugal
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Jacinto Gomes
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Escola Superior Agrária de Elvas, Instituto Politécnico de Portalegre, 7350-092 Elvas, Portugal
| | - Ana Cláudia Coelho
- Escola de Ciências Agrárias e Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
- Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Laboratório Associado para a Ciência Animal e Veterinária, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Pedro Espadinha
- Associação de Criadores de Bovinos da Raça Alentejana, Monforte Herdade da Coutada Real-Assumar, 7450-051 Assumar, Portugal
| | - José Pais
- Associação de Criadores de Bovinos Mertolengos, 7006-806 Évora, Portugal;
| | - Inês Carolino
- Centro de Investigação Vasco da Gama, Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal; (N.C.); (I.C.)
- Instituto Nacional de Investigação Agrária e Veterinária, Polo de Inovação da Fonte Boa—Estação Zootécnica Nacional, 2005-424 Santarém, Portugal
- Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| |
Collapse
|
2
|
Chen Y, Holland KD, Shertzer HG, Nebert DW, Dalton TP. Fatal Epileptic Seizures in Mice Having Compromised Glutathione and Ascorbic Acid Biosynthesis. Antioxidants (Basel) 2023; 12:antiox12020448. [PMID: 36830006 PMCID: PMC9952205 DOI: 10.3390/antiox12020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Reduced glutathione (GSH) and ascorbic acid (AA) are the two most abundant low-molecular-weight antioxidants in mammalian tissues. GclmKO knockout mice lack the gene encoding the modifier subunit of the rate-limiting enzyme in GSH biosynthesis; GclmKO mice exhibit 10-40% of normal tissue GSH levels and show no overt phenotype. GuloKO knockout mice, lacking a functional Gulo gene encoding L-gulono-γ-lactone oxidase, cannot synthesize AA and depend on dietary ascorbic acid for survival. To elucidate functional crosstalk between GSH and AA in vivo, we generated the GclmKO/GuloKO double-knockout (DKO) mouse. DKO mice exhibited spontaneous epileptic seizures, proceeding to death between postnatal day (PND)14 and PND23. Histologically, DKO mice displayed neuronal loss and glial proliferation in the neocortex and hippocampus. Epileptic seizures and brain pathology in young DKO mice could be prevented with AA supplementation in drinking water (1 g/L). Remarkably, in AA-rescued adult DKO mice, the removal of AA supplementation for 2-3 weeks resulted in similar, but more severe, neocortex and hippocampal pathology and seizures, with death occurring between 12 and 21 days later. These results provide direct evidence for an indispensable, yet underappreciated, role for the interplay between GSH and AA in normal brain function and neuronal health. We speculate that the functional crosstalk between GSH and AA plays an important role in regulating glutamatergic neurotransmission and in protecting against excitotoxicity-induced brain damage.
Collapse
Affiliation(s)
- Ying Chen
- Department of Environmental and Public Health Sciences, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA
- Correspondence: ; Tel.: +1-203-785-4694; Fax: +1-203-724-6023
| | - Katherine D. Holland
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Howard G. Shertzer
- Department of Environmental and Public Health Sciences, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Daniel W. Nebert
- Department of Environmental and Public Health Sciences, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Departments of Pediatrics and Molecular & Developmental Biology, Cincinnati Children’s Research Center, Cincinnati, OH 45229, USA
| | - Timothy P. Dalton
- Department of Environmental and Public Health Sciences, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
3
|
Lakatos RK, Dobolyi Á, Kovács Z. Uric acid and allopurinol aggravate absence epileptic activity in Wistar Albino Glaxo Rijswijk rats. Brain Res 2018; 1686:1-9. [PMID: 29457994 DOI: 10.1016/j.brainres.2018.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/05/2018] [Accepted: 02/10/2018] [Indexed: 11/18/2022]
Abstract
Uric acid has a role in several physiological and pathophysiological processes. For example, uric acid may facilitate seizure generalization while reducing uric acid level may evoke anticonvulsant/antiepileptic effects. Allopurinol blocks the activity of xanthine oxidase, by which allopurinol inhibits catabolism of hypoxanthine to xanthine and uric acid and, as a consequence, decreases the level of uric acid. Although the modulation of serum uric acid level is a widely used strategy in the treatment of certain diseases, our knowledge regarding the effects of uric acid on epileptic activity is far from complete. Thus, the main aim of this study was the investigation of the effect of uric acid on absence epileptic seizures (spike-wave discharges: SWDs) in a model of human absence epilepsy, the Wistar Albino Glaxo/Rijswijk (WAG/Rij) rat. We investigated the influence of intraperitoneally (i.p.) injected uric acid (100 mg/kg and 200 mg/kg), allopurinol (50 mg/kg and 100 mg/kg), a cyclooxygenase 1 and 2 (COX-1 and COX-2) inhibitor indomethacin (10 mg/kg) and inosine (500 mg/kg) alone and the combined application of allopurinol (50 mg/kg) with uric acid (100 mg/kg) or inosine (500 mg/kg) as well as indomethacin (10 mg/kg) with uric acid (100 mg/kg) and inosine (500 mg/kg) with uric acid (100 mg/kg) on absence epileptic activity. We demonstrated that both uric acid and allopurinol alone significantly increased the number of SWDs whereas indomethacin abolished the uric acid-evoked increase in SWD number. Our results suggest that uric acid and allopurinol have proepileptic effects in WAG/Rij rats.
Collapse
Affiliation(s)
- Renáta Krisztina Lakatos
- Institute of Biology, University of Pécs, Pécs, Hungary; Savaria Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Szombathely, Hungary.
| | - Árpád Dobolyi
- Laboratory of Neuromorphology and Human Brain Tissue Bank, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
| | - Zsolt Kovács
- Savaria Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Szombathely, Hungary.
| |
Collapse
|