1
|
Tan G, Li X, Jiang P, Lei D, Liu F, Xu Y, Cheng B, Gong Q, Liu L. Individualized morphological covariation network aberrance associated with seizure relapse after antiseizure medication withdrawal. Neurol Sci 2025:10.1007/s10072-024-07958-y. [PMID: 39798068 DOI: 10.1007/s10072-024-07958-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025]
Abstract
This study intents to detect graphical network features associated with seizure relapse following antiseizure medication (ASM) withdrawal. Twenty-four patients remaining seizure-free (SF-group) and 22 experiencing seizure relapse (SR-group) following ASM withdrawal as well as 46 matched healthy participants (Control) were included. Individualized morphological similarity network was constructed using T1-weighted images, and graphic metrics were compared between groups. Relative to the Control, the SF-group exhibited lower local efficiency, while the SR-group displayed lower global and local efficiency and longer characteristic path length. Both patient groups displayed reduced centrality in certain subcortical and cortical nodes than the Control, with a more pronounced reduction in the SR-group. Additionally, the SR-group exhibited lower centrality of the right pallidum than the SF-group. Decreased subcortical-cortical connectivity was found in both patient groups than the Control, with a more extensive decrease in the SR-group. Furthermore, an edge connecting the right pallidum and left middle temporal gyrus exhibited decreased connectivity in the SR-group than in the SF-group. A weaker small-worldization network upon medication withdrawal, potentially underpinned by node decentralization and subcortical-cortical decoupling, may elevate the risk of seizure relapse.
Collapse
Affiliation(s)
- Ge Tan
- Epilepsy Center, Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiuli Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ping Jiang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- West China Medical Publishers, West China Hospital of Sichuan University, Chengdu, China
| | - Du Lei
- Department of Radiology and Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Fangzhou Liu
- Epilepsy Center, Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Yingchun Xu
- Epilepsy Center, Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| | - Ling Liu
- Epilepsy Center, Department of Neurology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Mohd Nazri AK, Yahya N, Khan DM, Mohd Radzi NZ, Badruddin N, Abdul Latiff AH, Abdulaal MJ. Partial directed coherence analysis of resting-state EEG signals for alcohol use disorder detection using machine learning. Front Neurosci 2025; 18:1524513. [PMID: 39867451 PMCID: PMC11757881 DOI: 10.3389/fnins.2024.1524513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Excessive alcohol consumption negatively impacts physical and psychiatric health, lifestyle, and societal interactions. Chronic alcohol abuse alters brain structure, leading to alcohol use disorder (AUD), a condition requiring early diagnosis for effective management. Current diagnostic methods, primarily reliant on subjective questionnaires, could benefit from objective measures. Method The study proposes a novel EEG-based classification approach, focusing on effective connectivity (EC) derived from resting-state EEG signals in combination with support vector machine (SVM) algorithms. EC estimation is performed using the partial directed coherence (PDC) technique. The analysis is conducted on an EEG dataset comprising 35 individuals with AUD and 35 healthy controls (HCs). The methodology evaluates the efficacy of connectivity features in distinguishing between AUD and HC and subsequently develops and assesses an EEG classification technique using EC matrices and SVM. Result The proposed methodology demonstrated promising performance, achieving a peak accuracy of 94.5% and an area under the curve (AUC) of 0.988, specifically using frequency bands 29, 36, 45, 46, and 52. Additionally, feature reduction techniques applied to the PDC adjacency matrices in the gamma band further improved classification outcomes. The SVM-based classification achieved an accuracy of 96.37 ± 0.45%, showcasing enhanced performance through the utilization of reduced PDC adjacency matrices. Discussion These results highlight the potential of the developed algorithm as a robust diagnostic tool for AUD detection, enhancing precision beyond subjective methods. Incorporating EC features derived from EEG signals can inform tailored treatment strategies, contributing to improved management of AUD.
Collapse
Affiliation(s)
| | - Norashikin Yahya
- Centre for Intelligent Signal and Imaging Research (CISIR), Electrical and Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | - Danish M. Khan
- Department of Data Science and Artificial Intelligence, School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
| | - Noor'Izni Zafirah Mohd Radzi
- Centre for Intelligent Signal and Imaging Research (CISIR), Electrical and Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | - Nasreen Badruddin
- Centre for Intelligent Signal and Imaging Research (CISIR), Electrical and Electronic Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | - Abdul Halim Abdul Latiff
- Centre for Subsurface Imaging, Department of Geosciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia
| | - Mohammed J. Abdulaal
- Center of Excellence in Intelligent Engineering Systems (CEIES), Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Kobayashi K, Shibata T, Tsuchiya H, Akiyama M, Akiyama T. Hypotheses of pathophysiological mechanisms in epileptic encephalopathies: A review. Brain Dev 2025; 47:104318. [PMID: 39787996 DOI: 10.1016/j.braindev.2024.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Epileptic encephalopathy (EE) is a serious clinical issue that manifests as part of developmental and epileptic encephalopathy (DEE), particularly in childhood epilepsy. In EE, neurocognitive functions and behavior are impaired by intense epileptiform electroencephalogram (EEG) activity. Hypotheses of pathophysiological mechanisms behind EE are reviewed to contribute to an effective solution for EE. REVIEW Current hypotheses are as follows: 1) neuronal dysfunction based on genetic abnormalities that may affect neurocognitive functions and epilepsy separately; 2) impairment of synaptic homeostasis during sleep that may be responsible for DEE/EE with spike-and-wave activation in sleep; 3) abnormal subcortical regulation of the cerebral cortex; 4) abnormal cortical metabolism and hemodynamics with impairment of the neural network including default mode network; 5) neurotransmitter imbalance and disordered neural excitability; 6) the effects of neuroinflammation that may be caused by epileptic seizures and in turn aggravate epileptogenesis; 7) the interaction between physiological and pathological high-frequency EEG activity; etc. The causal relationship between epileptiform EEG activity and neurocognitive dysfunctions is small in DEE based on genetic abnormalities and it is largely unestablished in the other hypothetical mechanisms. CONCLUSION We have not yet found answers to the question of whether the single-central or multiple derangements are present and what seizures and intense epileptiform EEG abnormalities mean in EE. We need to continue our best efforts in both aspects to elucidate the pathophysiological mechanisms of DEE/EE and further develop epilepsy treatment and precision medicine.
Collapse
Affiliation(s)
- Katsuhiro Kobayashi
- Department of Pediatrics, Asahigawaso Rehabilitation and Medical Center, Okayama, Japan.
| | - Takashi Shibata
- Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroki Tsuchiya
- Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mari Akiyama
- Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoyuki Akiyama
- Department of Pediatric Neurology, Okayama University Hospital and Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
4
|
Shibata T, Tsuchiya H, Akiyama M, Akiyama T, Kobayashi K. Modulation index predicts the effect of ethosuximide on developmental and epileptic encephalopathy with spike-and-wave activation in sleep. Epilepsy Res 2024; 202:107359. [PMID: 38582072 DOI: 10.1016/j.eplepsyres.2024.107359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
PURPOSE In developmental and epileptic encephalopathy with spike-and-wave activation in sleep (DEE-SWAS), the thalamocortical network is suggested to play an important role in the pathophysiology of the progression from focal epilepsy to DEE-SWAS. Ethosuximide (ESM) exerts effects by blocking T-type calcium channels in thalamic neurons. With the thalamocortical network in mind, we studied the prediction of ESM effectiveness in DEE-SWAS treatment using phase-amplitude coupling (PAC) analysis. METHODS We retrospectively enrolled children with DEE-SWAS who had an electroencephalogram (EEG) recorded between January 2009 and September 2022 and were prescribed ESM at Okayama University Hospital. Only patients whose EEG showed continuous spike-and-wave during sleep were included. We extracted 5-min non-rapid eye movement sleep stage N2 segments from EEG recorded before starting ESM. We calculated the modulation index (MI) as the measure of PAC in pair combination comprising one of two fast oscillation types (gamma, 40-80 Hz; ripples, 80-150 Hz) and one of five slow-wave bands (delta, 0.5-1, 1-2, 2-3, and 3-4 Hz; theta, 4-8 Hz), and compared it between ESM responders and non-responders. RESULTS We identified 20 children with a diagnosis of DEE-SWAS who took ESM. Fifteen were ESM responders. Regarding gamma oscillations, significant differences were seen only in MI with 0.5-1 Hz slow waves in the frontal pole and occipital regions. Regarding ripples, ESM responders had significantly higher MI in coupling with all slow waves in the frontal pole region, 0.5-1, 3-4, and 4-8 Hz slow waves in the frontal region, 3-4 Hz slow waves in the parietal region, 0.5-1, 2-3, 3-4, and 4-8 Hz slow waves in the occipital region, and 3-4 Hz slow waves in the anterior-temporal region. SIGNIFICANCE High MI in a wider area of the brain may represent the epileptic network mediated by the thalamus in DEE-SWAS and may be a predictor of ESM effectiveness.
Collapse
Affiliation(s)
- Takashi Shibata
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan.
| | - Hiroki Tsuchiya
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Mari Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Tomoyuki Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Katsuhiro Kobayashi
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| |
Collapse
|
5
|
Posar A, Visconti P. Continuous Spike-Waves during Slow Sleep Today: An Update. CHILDREN (BASEL, SWITZERLAND) 2024; 11:169. [PMID: 38397281 PMCID: PMC10887038 DOI: 10.3390/children11020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
In the context of childhood epilepsy, the concept of continuous spike-waves during slow sleep (CSWS) includes several childhood-onset heterogeneous conditions that share electroencephalograms (EEGs) characterized by a high frequency of paroxysmal abnormalities during sleep, which have negative effects on the cognitive development and behavior of the child. These negative effects may have the characteristics of a clear regression or of a slowdown in development. Seizures are very often present, but not constantly. The above makes it clear why CSWS have been included in epileptic encephalopathies, in which, by definition, frequent EEG paroxysmal abnormalities have an unfavorable impact on cognitive functions, including socio-communicative skills, causing autistic features, even regardless of the presence of clinically overt seizures. Although several decades have passed since the original descriptions of the electroclinical condition of CSWS, there are still many areas that are little-known and deserve to be further studied, including the EEG diagnostic criteria, the most effective electrophysiological parameter for monitoring the role of the thalamus in CSWS pathogenesis, its long-term evolution, the nosographic location of Landau-Kleffner syndrome, standardized neuropsychological and behavioral assessments, and pharmacological and non-pharmacological therapies.
Collapse
Affiliation(s)
- Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, Bologna University, 40139 Bologna, Italy
| | - Paola Visconti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, 40139 Bologna, Italy;
| |
Collapse
|
6
|
Tan G, Li X, Niu R, Wang H, Chen D, Gong Q, Liu L. Functional connectivity of the thalamocortical circuit in patients with seizure relapse after antiseizure medication withdrawal. Epilepsia 2021; 62:2463-2473. [PMID: 34342885 DOI: 10.1111/epi.17014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To characterize the features of thalamocortical functional connectivity during seizure recurrence at the time of antiseizure medication (ASM) withdrawal. METHODS Patients with chronic epilepsy who attempted to discontinue medications were prospectively registered and followed up; 19 patients remained seizure-free (SF-group), 18 patients had seizure relapses (SR-group) after ASM withdrawal, and 28 healthy controls were recruited. Resting-state functional magnetic resonance imaging was performed before ASM withdrawal. Thalamus subdivisions were set as seeds to calculate voxelwise functional connectivity. Partial correlation analysis between functional connectivity and clinical variables was performed. A support vector machine was used to assess the predictive ability of the specific functional connectivity for seizure relapse. RESULTS The within-group comparison indicated that the SR-group had more extensive functional connectivity than the SF-group; the left inferior pulvinar, left medial pulvinar, and right anterior pulvinar showed a significantly stronger functional connection with the precuneus in the SR-group than in the SF-group (Gaussian random field correction, voxel-level p < .001 and cluster-level p < .05). In the SR-group, a positive correlation was found between the left inferior pulvinar-precuneus connectivity and the active period (r = .46, p = .05), seizure-free period (r = .67, p = .002), and disease duration (r = .53, p = .02), and between the left medial pulvinar-precuneus connectivity and the seizure-free period (r = .58, p = .01). The combination of these thalamocortical connections showed a high predictive ability, with an area under the curve of .92 and accuracy of .90 (p = .01). SIGNIFICANCE This study determined distinct features of thalamocortical functional connectivity at the time of ASM withdrawal in patients with and without seizure relapse, showing a potential for predicting seizure outcomes following ASM withdrawal.
Collapse
Affiliation(s)
- Ge Tan
- Epilepsy Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuli Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Running Niu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Haijiao Wang
- Epilepsy Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Deng Chen
- Epilepsy Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ling Liu
- Epilepsy Center, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Hamid L, Habboush N, Stern P, Japaridze N, Aydin Ü, Wolters CH, Claussen JC, Heute U, Stephani U, Galka A, Siniatchkin M. Source imaging of deep-brain activity using the regional spatiotemporal Kalman filter. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105830. [PMID: 33250282 DOI: 10.1016/j.cmpb.2020.105830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE The human brain displays rich and complex patterns of interaction within and among brain networks that involve both cortical and subcortical brain regions. Due to the limited spatial resolution of surface electroencephalography (EEG), EEG source imaging is used to reconstruct brain sources and investigate their spatial and temporal dynamics. The majority of EEG source imaging methods fail to detect activity from subcortical brain structures. The reconstruction of subcortical sources is a challenging task because the signal from these sources is weakened and mixed with artifacts and other signals from cortical sources. In this proof-of-principle study we present a novel EEG source imaging method, the regional spatiotemporal Kalman filter (RSTKF), that can detect deep brain activity. METHODS The regional spatiotemporal Kalman filter (RSTKF) is a generalization of the spatiotemporal Kalman filter (STKF), which allows for the characterization of different regional dynamics in the brain. It is based on state-space modeling with spatially heterogeneous dynamical noise variances, since models with spatial and temporal homogeneity fail to describe the dynamical complexity of brain activity. First, RSTKF is tested using simulated EEG data from sources in the frontal lobe, putamen, and thalamus. After that, it is applied to non-averaged interictal epileptic spikes from a presurgical epilepsy patient with focal epileptic activity in the amygdalo-hippocampal complex. The results of RSTKF are compared to those of low-resolution brain electromagnetic tomography (LORETA) and of standard STKF. RESULTS Only RSTKF is successful in consistently and accurately localizing the sources in deep brain regions. Additionally, RSTKF shows improved spatial resolution compared to LORETA and STKF. CONCLUSIONS RSTKF is a generalization of STKF that allows for accurate, focal, and consistent localization of sources, especially in the deeper brain areas. In contrast to standard source imaging methods, RSTKF may find application in the localization of the epileptogenic zone in deeper brain structures, such as mesial frontal and temporal lobe epilepsies, especially in EEG recordings for which no reliable averaged spike shape can be obtained due to lack of the necessary number of spikes required to reach a certain signal-to-noise ratio level after averaging.
Collapse
Affiliation(s)
- Laith Hamid
- Department of Medical Psychology and Medical Sociology, University of Kiel, D-24113 Kiel, Germany.
| | - Nawar Habboush
- Department of Medical Psychology and Medical Sociology, University of Kiel, D-24113 Kiel, Germany
| | - Philipp Stern
- Institute of Theoretical Physics and Astrophysics, University of Kiel, D-24098 Kiel, Germany
| | - Natia Japaridze
- Department of Neuropediatrics, University of Kiel, D-24098 Kiel, Germany
| | - Ümit Aydin
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, D-48149 Münster, Germany; Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Canada
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, D-48149 Münster, Germany
| | - Jens Christian Claussen
- Institute of Theoretical Physics and Astrophysics, University of Kiel, D-24098 Kiel, Germany; Institute for Neuro- and Bioinformatics, University of Lübeck, D-23562 Lübeck, Germany; Mathematics EAS, Aston University, Aston Triangle, Birmingham B3 7ET, United Kingdom
| | - Ulrich Heute
- Digital Signal Processing and System Theory Group, Faculty of Engineering, University of Kiel, D-24143 Kiel, Germany
| | - Ulrich Stephani
- Department of Neuropediatrics, University of Kiel, D-24098 Kiel, Germany
| | - Andreas Galka
- Department of Medical Psychology and Medical Sociology, University of Kiel, D-24113 Kiel, Germany
| | - Michael Siniatchkin
- Department of Medical Psychology and Medical Sociology, University of Kiel, D-24113 Kiel, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, Evangelisches Klinikum Bethel gGmbH, D-33617 Bielefeld, Germany
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To review the evolution of the concept of epileptic encephalopathy during the course of past years and analyze how the current definition might impact on both clinical practice and research. RECENT FINDINGS Developmental delay in children with epilepsy could be the expression of the cause, consequence of intense epileptiform activity (seizures and EEG abnormalities), or because of the combination of both factors. Therefore, the current International League Against Epilepsy classification identified three electroclinical entities that are those of developmental encephalopathy, epileptic encephalopathy, and developmental and epileptic encephalopathy (DEE). Many biological pathways could be involved in the pathogenesis of DEEs. DNA repair, transcriptional regulation, axon myelination, metabolite and ion transport, and peroxisomal function could all be involved in DEE. Also, epilepsy and epileptiform discharges might impact on cognition via several mechanisms, although they are not fully understood. SUMMARY The correct and early identification of cause in DEE might increase the chances of a targeted treatment regimen. Interfering with neurobiological processes of the disease will be the most successful way in order to improve both the cognitive disturbances and epilepsy that are the key features of DEE.
Collapse
|
9
|
Aeby A, Santalucia R, Van Hecke A, Nebbioso A, Vermeiren J, Deconinck N, De Tiège X, Van Bogaert P. A qualitative awake EEG score for the diagnosis of continuous spike and waves during sleep (CSWS) syndrome in self-limited focal epilepsy (SFE): A case-control study. Seizure 2020; 84:34-39. [PMID: 33276197 DOI: 10.1016/j.seizure.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To determine whether awake EEG criteria can differentiate epileptic encephalopathy with continuous spike and waves during sleep (EE-CSWS) at the time of cognitive regression from typical, self-limited focal epilepsy (SFE). METHODS This retrospective case-control study was based on the analysis of awake EEGs and included 15 patients with EE-CSWS and 15 age-matched and sex-matched patients with typical SFE. The EEGs were anonymised and scored by four independent readers. The following qualitative and quantitative EEG indices were analysed: slow-wave index (SLWI), spike-wave index (SWI), spike-wave frequency (SWF), long spike-wave clusters (CLSW) and EEG score (between grades 0 and 4). Sensitivity and specificity were assessed using receiver operating characteristic (ROC) curves and their reproducibility with a kappa test. RESULTS Based on a highly sensitive cut-off, EE-CSWS patients were 8.4 times more likely than those with SFE to have an SLWI > 6%, 15 times more likely to have an SWI > 10 % and six times more likely to have a CLSW of ≥ 1 s. There was substantial agreement between readers (with kappa values of 0.64, 0.69 and 0.67). EE-CSWS patients were 13 times more likely to have an SWF of > 11 % and 149 times more likely to have an EEG score of ≥ 3 than typical SFE patients. Agreement about these ratings was almost perfect (kappa 0.91 and 0.86). CONCLUSION An EEG score of ≥ 3 on a 20-min awake EEG differentiates typical SFE from EE-CSWS at the time of cognitive regression, with good reliability across readers with different levels of expertise.
Collapse
Affiliation(s)
- Alec Aeby
- Department of Paediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF) - Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Roberto Santalucia
- Department of Paediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF) - Université Libre de Bruxelles (ULB), Brussels, Belgium; Department of Paediatric Neurology, Hôpital Saint-Luc, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Audrey Van Hecke
- Department of Paediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Andrea Nebbioso
- Department of Paediatrics, Hôpital d'Ixelles-ULB, Brussels, Belgium
| | - Justine Vermeiren
- Department of Paediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Deconinck
- Department of Paediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Xavier De Tiège
- Department of Functional Neuroimaging, Nuclear Medicine Service, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Patrick Van Bogaert
- Unité de Neurologie et de Neurochirurgie de l'enfant, service de pédiatrie, CHU Angers, France; Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), University of Angers, France
| |
Collapse
|
10
|
van den Munckhof B, Gefferie SR, van Noort SAM, van Teeseling HC, Schijvens MP, Smit W, Teunissen NW, Plate JDJ, Huiskamp GJM, Leijten FSS, Braun KPJ, Jansen FE, Bölsterli BK. Sleep slow-wave homeostasis and cognitive functioning in children with electrical status epilepticus in sleep. Sleep 2020; 43:5831237. [PMID: 32374855 DOI: 10.1093/sleep/zsaa088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/03/2020] [Indexed: 01/13/2023] Open
Abstract
STUDY OBJECTIVES Encephalopathy with electrical status epilepticus in sleep (ESES) is characterized by non-rapid eye movement (non-REM)-sleep-induced epileptiform activity and acquired cognitive deficits. The synaptic homeostasis hypothesis describes the process of daytime synaptic potentiation balanced by synaptic downscaling in non-REM-sleep and is considered crucial to retain an efficient cortical network. We aimed to study the overnight decline of slow waves, an indirect marker of synaptic downscaling, in patients with ESES and explore whether altered downscaling relates to neurodevelopmental and behavioral problems. METHODS Retrospective study of patients with ESES with at least one whole-night electroencephalogram (EEG) and neuropsychological assessment (NPA) within 4 months. Slow waves in the first and last hour of non-REM-sleep were analyzed. Differences in slow-wave slope (SWS) and overnight slope course between the epileptic focus and non-focus electrodes and relations to neurodevelopment and behavior were analyzed. RESULTS A total of 29 patients with 44 EEG ~ NPA combinations were included. Mean SWS decreased from 357 to 327 µV/s (-8%, p < 0.001) across the night and the overnight decrease was less pronounced in epileptic focus than in non-focus electrodes (-5.6% vs. -8.7%, p = 0.003). We found no relation between SWS and neurodevelopmental test results in cross-sectional and longitudinal analyses. Patients with behavioral problems showed less SWS decline than patients without and the difference was most striking in the epileptic focus (-0.9% vs. -8.8%, p = 0.006). CONCLUSIONS Slow-wave homeostasis-a marker of synaptic homeostasis-is disturbed by epileptiform activity in ESES. Behavioral problems, but not neurodevelopmental test results, were related to severity of this disturbance.
Collapse
Affiliation(s)
- Bart van den Munckhof
- Department of Pediatric Neurology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Silvano R Gefferie
- Department of Pediatric Neurology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Suus A M van Noort
- Department of Pediatric Neurology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Heleen C van Teeseling
- Department of Pediatric Neuropsychology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mischa P Schijvens
- Department of Pediatric Neurology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - William Smit
- Department of Clinical Neurophysiology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nico W Teunissen
- Department of Clinical Neurophysiology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joost D J Plate
- Department of Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Geert Jan M Huiskamp
- Department of Clinical Neurophysiology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Frans S S Leijten
- Department of Clinical Neurophysiology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kees P J Braun
- Department of Pediatric Neurology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bigna K Bölsterli
- Division of Clinical Neurophysiology, Department of Neurology, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Cortical Excitability, Synaptic Plasticity, and Cognition in Benign Epilepsy With Centrotemporal Spikes: A Pilot TMS-EMG-EEG Study. J Clin Neurophysiol 2020; 37:170-180. [PMID: 32142025 DOI: 10.1097/wnp.0000000000000662] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Children with benign epilepsy with centrotemporal spikes have rare seizures emerging from the motor cortex, which they outgrow in adolescence, and additionally may have language deficits of unclear etiology. We piloted the use of transcranial magnetic stimulation paired with EMG and EEG (TMS-EMG, TMS-EEG) to test the hypotheses that net cortical excitability decreases with age and that use-dependent plasticity predicts learning. METHODS We assessed language and motor learning in 14 right-handed children with benign epilepsy with centrotemporal spikes. We quantified two TMS metrics of left motor cortex excitability: the resting motor threshold (measure of neuronal membrane excitability) and amplitude of the N100-evoked potential (an EEG measure of GABAergic tone). To test plasticity, we applied 1 Hz repetitive TMS to the motor cortex to induce long-term depression-like changes in EMG- and EEG-evoked potentials. RESULTS Children with benign epilepsy with centrotemporal spikes tolerate TMS; no seizures were provoked. Resting motor threshold decreases with age but is elevated above maximal stimulator output for half the group. N100 amplitude decreases with age after controlling for resting motor threshold. Motor cortex plasticity correlates significantly with language learning and at a trend level with motor learning. CONCLUSIONS Transcranial magnetic stimulation is safe and feasible for children with benign epilepsy with centrotemporal spikes, and TMS-EEG provides more reliable outcome measures than TMS-EMG in this group because many children have unmeasurably high resting motor thresholds. Net cortical excitability decreases with age, and motor cortex plasticity predicts not only motor learning but also language learning, suggesting a mechanism by which motor cortex seizures may interact with language development.
Collapse
|
12
|
Escobar Fernández L, Coccolo Góngora A, Vázquez López M, Polo Arrondo AP, Miranda Herrero MC, Barredo Valderrama E, Castro de Castro P. Continuous spike-waves during slow–wave sleep: Experience during 20 years. An Pediatr (Barc) 2019. [DOI: 10.1016/j.anpede.2018.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
Bear JJ, Chapman KE, Tregellas JR. The epileptic network and cognition: What functional connectivity is teaching us about the childhood epilepsies. Epilepsia 2019; 60:1491-1507. [PMID: 31247129 PMCID: PMC7175745 DOI: 10.1111/epi.16098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/09/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
Abstract
Our objective was to summarize and evaluate the rapidly expanding body of literature studying functional connectivity in childhood epilepsy. In the self-limited childhood epilepsies, awareness of cognitive comorbidities has been steadily increasing, and recent advances in our understanding of the network effects of these disorders promise insights into the underlying neurobiology. We reviewed publications addressing functional connectivity in children with epilepsy with an emphasis on studies of children with self-limited childhood epilepsies. The majority of studies have been published in the past 10 years and predominantly examine childhood epilepsy with centrotemporal spikes and childhood absence epilepsy. Cognitive network alterations are commonly observed across the childhood epilepsies. Some of these effects appear to be nonspecific to epilepsy syndrome or even to category of neurological disorder. Other patterns, such as changes in the connectivity of cortical language areas in childhood epilepsy with centrotemporal spikes, provide clues to the underlying cognitive deficits seen in affected children. The literature to date is dominated by general observations of connectivity patterns without a priori hypotheses. These data-driven studies build an important foundation for hypothesis generation and are already providing useful insights into the neuropathology of the childhood epilepsies. Future work should emphasize hypothesis-driven approaches and rigorous clinical correlations to better understand how the knowledge of network alterations can be applied to guidance and treatment for the children in our clinics.
Collapse
Affiliation(s)
- Joshua J Bear
- Department of Pediatrics, Section of Neurology, Children’s Hospital Colorado
- Department of Pediatrics, University of Colorado Anschutz Medical Campus
| | - Kevin E Chapman
- Department of Pediatrics, Section of Neurology, Children’s Hospital Colorado
- Department of Pediatrics, University of Colorado Anschutz Medical Campus
| | - Jason R Tregellas
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
- Research Service, Rocky Mountain Regional VA Medical Center
| |
Collapse
|
14
|
van Mierlo P, Höller Y, Focke NK, Vulliemoz S. Network Perspectives on Epilepsy Using EEG/MEG Source Connectivity. Front Neurol 2019; 10:721. [PMID: 31379703 PMCID: PMC6651209 DOI: 10.3389/fneur.2019.00721] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
The evolution of EEG/MEG source connectivity is both, a promising, and controversial advance in the characterization of epileptic brain activity. In this narrative review we elucidate the potential of this technology to provide an intuitive view of the epileptic network at its origin, the different brain regions involved in the epilepsy, without the limitation of electrodes at the scalp level. Several studies have confirmed the added value of using source connectivity to localize the seizure onset zone and irritative zone or to quantify the propagation of epileptic activity over time. It has been shown in pilot studies that source connectivity has the potential to obtain prognostic correlates, to assist in the diagnosis of the epilepsy type even in the absence of visually noticeable epileptic activity in the EEG/MEG, and to predict treatment outcome. Nevertheless, prospective validation studies in large and heterogeneous patient cohorts are still lacking and are needed to bring these techniques into clinical use. Moreover, the methodological approach is challenging, with several poorly examined parameters that most likely impact the resulting network patterns. These fundamental challenges affect all potential applications of EEG/MEG source connectivity analysis, be it in a resting, spiking, or ictal state, and also its application to cognitive activation of the eloquent area in presurgical evaluation. However, such method can allow unique insights into physiological and pathological brain functions and have great potential in (clinical) neuroscience.
Collapse
Affiliation(s)
- Pieter van Mierlo
- Medical Image and Signal Processing Group, Ghent University, Ghent, Belgium
| | - Yvonne Höller
- Faculty of Psychology, University of Akureyri, Akureyri, Iceland
| | - Niels K Focke
- Clinical Neurophysiology, University Medicine Göttingen, Göttingen, Germany
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Escobar Fernández L, Coccolo Góngora A, Vázquez López M, Polo Arrondo AP, Miranda Herrero MC, Barredo Valderrama E, Castro de Castro P. [Continuous spike-waves during slow-wave sleep: Experience during 20 years]. An Pediatr (Barc) 2019; 91:180-188. [PMID: 30772272 DOI: 10.1016/j.anpedi.2018.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/15/2018] [Accepted: 12/19/2018] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Continuous spikes and waves during slow sleep (CSWS) is an EEG pattern that appears during childhood, and is often associated with cognitive impairment. It can appear in the course of epileptic syndromes, as well as in benign epilepsy. The aim of this study is to analyse epidemiological and clinical characteristic of patients with CSWS, in order to describe possible predictive factors in their outcome. METHODS A retrospective study was conducted on paediatric patients with CSWS treated in a third-level hospital from November 1997 to November 2017. RESULTS The study included 25 patients (68% male), of whom 76% had abnormalities in the neuroimaging or suffered from psychomotor development disorder (secondary CSWS). The rest were healthy, or diagnosed with idiopathic epilepsy. The mean age of onset of CSWS was 6.7 years, but earlier in the secondary CSWS cases. Symptoms were present during the CSWS episode in 72% of cases. All of them were treated with antiepileptic drugs, which were effective in 36%. CSWS stopped in 72%, and remission was longer if the CSWS onset occurred at an older age. One-third (33%) presented with sequelae, mostly cognitive and behavioural alterations. Outcome was poorer in those with secondary CSWS and, in those whose CSWS started at an earlier age and lasted longer. CONCLUSION The CSWS pattern, although rare, is still a therapeutic challenge. A close follow-up of the patients with epilepsy is important, especially if associated with cognitive impairment, in order to establish an early diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - María Vázquez López
- Sección de Neuropediatría, Hospital Materno Infantil Gregorio Marañón, Madrid, España
| | | | | | | | | |
Collapse
|
16
|
Rosch R, Baldeweg T, Moeller F, Baier G. Network dynamics in the healthy and epileptic developing brain. Netw Neurosci 2018; 2:41-59. [PMID: 29911676 PMCID: PMC5989999 DOI: 10.1162/netn_a_00026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/09/2017] [Indexed: 12/29/2022] Open
Abstract
Electroencephalography (EEG) allows recording of cortical activity at high temporal resolution. EEG recordings can be summarized along different dimensions using network-level quantitative measures, such as channel-to-channel correlation, or band power distributions across channels. These reveal network patterns that unfold over a range of different timescales and can be tracked dynamically. Here we describe the dynamics of network state transitions in EEG recordings of spontaneous brain activity in normally developing infants and infants with severe early infantile epileptic encephalopathies (n = 8, age: 1–8 months). We describe differences in measures of EEG dynamics derived from band power, and correlation-based summaries of network-wide brain activity. We further show that EEGs from different patient groups and controls may be distinguishable on a small set of the novel quantitative measures introduced here, which describe dynamic network state switching. Quantitative measures related to the sharpness of switching from one correlation pattern to another show the largest differences between groups. These findings reveal that the early epileptic encephalopathies are associated with characteristic dynamic features at the network level. Quantitative network-based analyses like the one presented here may in the future inform the clinical use of quantitative EEG for diagnosis.
Collapse
Affiliation(s)
- Richard Rosch
- Wellcome Trust Centre for Neuroimaging, University College London, United Kingdom.,Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Torsten Baldeweg
- Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Friederike Moeller
- Department of Clinical Neurophysiology, Great Ormond Street Hospital, London, United Kingdom
| | - Gerold Baier
- Cell and Developmental Biology, University College London, United Kingdom
| |
Collapse
|
17
|
Baumer FM, Cardon AL, Porter BE. Language Dysfunction in Pediatric Epilepsy. J Pediatr 2018; 194:13-21. [PMID: 29241678 PMCID: PMC5826845 DOI: 10.1016/j.jpeds.2017.10.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Fiona M Baumer
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, Palo Alto, CA.
| | - Aaron L Cardon
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, Palo Alto, CA
| | - Brenda E Porter
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, Palo Alto, CA
| |
Collapse
|
18
|
Japaridze N, Muthuraman M, Dierck C, von Spiczak S, Stephani U, Siniatchkin M. In response: Neuronal networks in epileptic encephalopathies with CSWS. Epilepsia 2018; 58:1297-1298. [PMID: 28677856 DOI: 10.1111/epi.13788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natia Japaridze
- Department of Neuropediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany.,Department Biomedical Statistics and Multimodal Signal Processing Unit, Johannes Gutenberg-University Mainz, Klinik und Poliklinik für Neurologie Germany, Mainz, Department of Nuerology, Germany, Mainz, Germany
| | - Carina Dierck
- Department of Neuropediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Sarah von Spiczak
- Department of Neuropediatrics, Christian-Albrechts-University, Kiel, Germany.,Northern German Epilepsy Center for Children & Adolescents, Schwentinental/OT Raisdorf, Germany
| | - Ulrich Stephani
- Department of Neuropediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Michael Siniatchkin
- Department of Medical Psychology and Medical Sociology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
19
|
Traub RD, Whittington MA, Hall SP. Does Epileptiform Activity Represent a Failure of Neuromodulation to Control Central Pattern Generator-Like Neocortical Behavior? Front Neural Circuits 2017; 11:78. [PMID: 29093667 PMCID: PMC5651241 DOI: 10.3389/fncir.2017.00078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022] Open
Abstract
Rhythmic motor patterns in invertebrates are often driven by specialized “central pattern generators” (CPGs), containing small numbers of neurons, which are likely to be “identifiable” in one individual compared with another. The dynamics of any particular CPG lies under the control of modulatory substances, amines, or peptides, entering the CPG from outside it, or released by internal constituent neurons; consequently, a particular CPG can generate a given rhythm at different frequencies and amplitudes, and perhaps even generate a repertoire of distinctive patterns. The mechanisms exploited by neuromodulators in this respect are manifold: Intrinsic conductances (e.g., calcium, potassium channels), conductance state of postsynaptic receptors, degree of plasticity, and magnitude and kinetics of transmitter release can all be affected. The CPG concept has been generalized to vertebrate motor pattern generating circuits (e.g., for locomotion), which may contain large numbers of neurons – a construct that is sensible, if there is enough redundancy: that is, the large number of neurons consists of only a small number of classes, and the cells within any one class act stereotypically. Here we suggest that CPG and modulator ideas may also help to understand cortical oscillations, normal ones, and particularly transition to epileptiform pathology. Furthermore, in the case illustrated, the mechanism of the transition appears to be an exaggerated form of a normal modulatory action used to influence sensory processing.
Collapse
Affiliation(s)
- Roger D Traub
- Department of Physical Sciences, IBM Thomas J. Watson Research Center, New York City, NY, United States
| | - Miles A Whittington
- Department of Biology, Hull York Medical School, University of York, York, United Kingdom
| | - Stephen P Hall
- Department of Biology, Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
20
|
Current Status of Treatments for Children with Electrical Status in Slow-Wave Sleep (ESES/CSWS). Epilepsy Curr 2017; 17:214-216. [PMID: 29225521 DOI: 10.5698/1535-7597.17.4.214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Halász P. Comment on Neuronal networks in epileptic encephalopathies with CSWS. Epilepsia 2017; 58:1296-1297. [DOI: 10.1111/epi.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Péter Halász
- National Institute of Clinical Neuroscience; Budapest Hungary
| |
Collapse
|