1
|
Himstead AS, Picton B, Luzzi S, Fote GM, Urgun K, Winslow N, Vadera S. "Mail-slot" Technique for Minimally Invasive Placement of Subdural Grid Electrodes: A Single-institution Experience. World Neurosurg 2024; 189:e191-e203. [PMID: 38866238 DOI: 10.1016/j.wneu.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND In the management of multi-drug-resistant focal epilepsies, intracranial electrode implantation is used for precise localization of the ictal onset zone. In select patients, subdural grid electrode implantation is utilized. Subdural grid placement traditionally requires large craniotomies to visualize the cortex prior to mapping. However, smaller craniotomies may enable shorter operations and reduced risks. We aimed to compare surgical outcomes between patients undergoing traditional large craniotomies with those undergoing tailored "mini" craniotomies (the "mail-slot" technique) for subdural grid placement. METHODS This retrospective cohort study included 23 patients who underwent subdural electrode implantation for epilepsy monitoring between 2014 and 2020. Patients were categorized into mini-craniotomies (n = 9) and traditional large craniotomies (n = 14) groups. Demographics, operative details, and outcomes were reviewed. Craniotomy size and number of electrodes were determined via post hoc radiographs. RESULTS Of the 23 patients studied, the mini group had smaller craniotomy sizes (mean: 22.71 cm2 vs. 65.17 cm2, P < 0.001) and higher electrode-to-size ratios (mean: 4.25 vs. 1.71, P < 0.0001). The mini group had slightly fewer total electrodes (mean: 88.67 vs. 107.43, P = 0.047). No significant differences were found in operative duration, blood loss, invasive electroencephalography duration, complications, or Engel scores between the groups. One patient per group required further invasive epilepsy monitoring for localization; all patients underwent therapeutic surgery. CONCLUSIONS Our findings suggest that mini-craniotomies for subdural grid placement in epilepsy monitoring offer significant advantages, including smaller craniotomy sizes and shorter operation durations, without compromising safety or efficacy. These results support the trend towards minimally invasive, patient-tailored surgical approaches in epilepsy treatment.
Collapse
Affiliation(s)
- Alexander S Himstead
- Department of Neurological Surgery, University of California, Irvine, California, USA.
| | - Bryce Picton
- School of Medicine, University of California, Irvine, California, USA
| | - Sophia Luzzi
- School of Medicine, University of California, Irvine, California, USA
| | - Gianna M Fote
- Department of Neurological Surgery, University of California, Irvine, California, USA
| | - Kamran Urgun
- Department of Neurological Surgery, University of California, Irvine, California, USA
| | - Nolan Winslow
- Department of Neurological Surgery, University of California, Irvine, California, USA
| | - Sumeet Vadera
- Department of Neurological Surgery, University of California, Irvine, California, USA
| |
Collapse
|
2
|
Kaneko S, Inaji M, Shimizu K, Orihara A, Hashimoto Fujimoto S, Maehara T. Clinical utility and safety of a trapezoid-shaped electrode placement for evaluating the mesio-basal temporal lobe during epilepsy surgery. J Clin Neurosci 2024; 121:28-33. [PMID: 38335825 DOI: 10.1016/j.jocn.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
A trapezoid-shaped electrode (TSE) is used for detecting epileptogenicity in patients with temporal lobe epilepsy (TLE). However, the utility and safety associated with TSE placement have not been reported. In this study, we evaluated the safety and usefulness of TSE by analyzing the seizure detection, surgical outcomes and complications in patients with TLE who underwent intracranial electrodes (ICE) placement. Between April 2000 and August 2019, 50 patients with TLE who underwent 51 ICE placement procedures were examined. A TSE with eight contacts covering the parahippocampal gyrus and basal temporal lobe was used. Among the 37 patients who underwent TSE placement, 26 and 11 patients were diagnosed with mesial TLE (mTLE) and extra-mTLE, respectively. The 14 remaining patients without TSE placement were diagnosed with extra-mTLE. Seizure freedom was achieved in 73% (19/26) of mTLE patients detected by TSE and 50% (14/24) of extra-mTLE patients.Good seizure outcomes (Engel class I and II) were observed in 81% (21/26) patients with mTLE and 67% (16/24) patients with extra-mTLE. Radiographic complications were observed in 20% (10/50) patients who underwent ICE placement. Although 6% (3/50) patients showed transient neurological deficits, none were permanent. The electrodes responsible for the occurrence of complications included nine grid electrodes and one TSE. The complication rate after TSE placement was 3% (1/37). More than 64 electrode contacts and male sex, not TSE placement, were identified as significant risk factors for developing complications. This study demonstrated the usefulness and safety of TSE for evaluating mTLE in patients undergoing ICE placement.
Collapse
Affiliation(s)
- Satoshi Kaneko
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | - Kazuhide Shimizu
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Asumi Orihara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Satoka Hashimoto Fujimoto
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
3
|
McGinley C, Teti S, Hofmann K, Schreiber JM, Cohen NT, Gaillard WD, Oluigbo CO. Seizure Control Outcomes following Resection of Cortical Dysplasia in Patients with DEPDC5 Variants: A Systematic Review and Individual Patient Data Analysis. Neuropediatrics 2024; 55:1-8. [PMID: 37984419 DOI: 10.1055/a-2213-8584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
There is insufficient evidence regarding the efficacy of epilepsy surgery in patients with pharmacoresistant focal epilepsy and coexistent DEPDC5 (dishevelled EGL-10 and pleckstrin domain-containing protein 5) pathogenic (P), likely pathogenic (LP), or variance of unknown significance (VUS) variants. To conduct a systematic review on the literature regarding the use and efficacy of epilepsy surgery as an intervention for patients with DEPDC5 variants who have pharmacoresistant epilepsy. A systematic review of the current literature published regarding the outcomes of epilepsy surgery for patients with DEPDC5 variants was conducted. Demographics and individual patient data were recorded and analyzed. Subsequent statistical analysis was performed to assess significance of the findings. A total of eight articles comprising 44 DEPDC5 patients with genetic variants undergoing surgery were included in this study. The articles primarily originated in high-income countries (5/8, 62.5%). The average age of the subjects was 10.06 ± 9.41 years old at the time of study. The most common form of epilepsy surgery was focal resection (38/44, 86.4%). Thirty-seven of the 40 patients (37/40, 92.5%) with reported seizure frequency results had improvement. Twenty-nine out of 38 patients (29/38, 78.4%) undergoing focal resection achieved Engel Score I postoperatively, and two out of four patients achieved International League Against Epilepsy I (50%). Epilepsy surgery is effective in patients with pharmacoresistant focal epilepsy and coexistent DEPDC5 P, LP, or VUS variants.
Collapse
Affiliation(s)
- Christopher McGinley
- College of Medicine, Howard University College of Medicine, Washington, District of Columbia, United States
| | - Saige Teti
- Division of Neurosurgery, Children's National Hospital, Washington, District of Columbia, United States
| | - Katherine Hofmann
- Division of Neurosurgery, Children's National Hospital, Washington, District of Columbia, United States
| | - John M Schreiber
- Division of Neurology, Children's National Hospital, Washington, District of Columbia, United States
| | - Nathan T Cohen
- Division of Neurology, Children's National Hospital, Washington, District of Columbia, United States
| | - William D Gaillard
- Division of Neurosurgery, Children's National Hospital, Washington, District of Columbia, United States
| | - Chima O Oluigbo
- Division of Neurosurgery, Children's National Hospital, Washington, District of Columbia, United States
| |
Collapse
|
4
|
Yu H, Kim W, Park DK, Phi JH, Lim BC, Chae JH, Kim SK, Kim KJ, Provenzano FA, Khodagholy D, Gelinas JN. Interaction of interictal epileptiform activity with sleep spindles is associated with cognitive deficits and adverse surgical outcome in pediatric focal epilepsy. Epilepsia 2024; 65:190-203. [PMID: 37983643 PMCID: PMC10873110 DOI: 10.1111/epi.17810] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE Temporal coordination between oscillations enables intercortical communication and is implicated in cognition. Focal epileptic activity can affect distributed neural networks and interfere with these interactions. Refractory pediatric epilepsies are often accompanied by substantial cognitive comorbidity, but mechanisms and predictors remain mostly unknown. Here, we investigate oscillatory coupling across large-scale networks in the developing brain. METHODS We analyzed large-scale intracranial electroencephalographic recordings in children with medically refractory epilepsy undergoing presurgical workup (n = 25, aged 3-21 years). Interictal epileptiform discharges (IEDs), pathologic high-frequency oscillations (HFOs), and sleep spindles were detected. Spatiotemporal metrics of oscillatory coupling were determined and correlated with age, cognitive function, and postsurgical outcome. RESULTS Children with epilepsy demonstrated significant temporal coupling of both IEDs and HFOs to sleep spindles in discrete brain regions. HFOs were associated with stronger coupling patterns than IEDs. These interactions involved tissue beyond the clinically identified epileptogenic zone and were ubiquitous across cortical regions. Increased spatial extent of coupling was most prominent in older children. Poor neurocognitive function was significantly correlated with high IED-spindle coupling strength and spatial extent; children with strong pathologic interactions additionally had decreased likelihood of postoperative seizure freedom. SIGNIFICANCE Our findings identify pathologic large-scale oscillatory coupling patterns in the immature brain. These results suggest that such intercortical interactions could predict risk for adverse neurocognitive and surgical outcomes, with the potential to serve as novel therapeutic targets to restore physiologic development.
Collapse
Affiliation(s)
- Han Yu
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Woojoong Kim
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, South Korea
| | - David K. Park
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, South Korea
| | - Byung Chan Lim
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, South Korea
| | - Jong-Hee Chae
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, South Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, South Korea
| | - Ki Joong Kim
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, South Korea
| | | | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Jennifer N. Gelinas
- Departments of Neurology, Columbia University, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
5
|
d'Orio P, Revay M, Bevacqua G, Battista F, Castana L, Squarza S, Chiarello D, Lo Russo G, Sartori I, Cardinale F. Stereo-electroencephalography (SEEG)-Guided Surgery in Epilepsy With Cingulate Gyrus Involvement: Electrode Implantation Strategies and Postoperative Seizure Outcome. J Clin Neurophysiol 2023; 40:516-528. [PMID: 36930225 DOI: 10.1097/wnp.0000000000001000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
SUMMARY Surgical treatment of cingulate gyrus epilepsy is associated with good results on seizures despite its rarity and challenging aspects. Invasive EEG monitoring is often mandatory to assess the epileptogenic zone in these patients. To date, only small surgical series have been published, and a consensus about management of these complex cases did not emerge. The authors retrospectively analyzed a large surgical series of patients in whom at least part of the cingulate gyrus was confirmed as included in the epileptogenic zone by means of stereo-electroencephalography and was thus resected. One hundred twenty-seven patients were selected. Stereo-electroencephalography-guided implantation of intracerebral electrodes was performed in the right hemisphere in 62 patients (48.8%) and in the left hemisphere in 44 patients (34.7%), whereas 21 patients (16.5%) underwent bilateral implantations. The median number of implanted electrodes per patient was 13 (interquartile range 12-15). The median number of electrodes targeting the cingulate gyrus was 4 (interquartile range 3-5). The cingulate gyrus was explored bilaterally in 19 patients (15%). Complication rate was 0.8%. A favorable outcome (Engel class I) was obtained in 54.3% of patients, with a median follow-up of 60 months. The chance to obtain seizure freedom increased in cases in whom histologic diagnosis was type-IIb focal cortical dysplasia or tumor (mostly ganglioglioma or dysembryoplastic neuroepithelial tumor) and with male gender. Higher seizure frequency predicted better outcome with a trend toward significance. Our findings suggest that stereo-electroencephalography is a safe and effective methodology in achieving seizure freedom in complex cases of epilepsy with cingulate gyrus involvement.
Collapse
Affiliation(s)
- Piergiorgio d'Orio
- "Claudio Munari" Epilepsy Surgery Centre, Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | - Martina Revay
- "Claudio Munari" Epilepsy Surgery Centre, Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giuseppina Bevacqua
- "Claudio Munari" Epilepsy Surgery Centre, Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Neurosurgery Unit, Department of Translational Medicine, Ferrara University, Ferrara, Italy
| | - Francesca Battista
- "Claudio Munari" Epilepsy Surgery Centre, Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Neurosurgery Clinic, Department of Neuroscience, Psychology, Pharmacology, and Child Health, Careggi University Hospital and University of Florence, Florence, Italy; and
| | - Laura Castana
- "Claudio Munari" Epilepsy Surgery Centre, Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Silvia Squarza
- Neuroradiology Department, Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Daniela Chiarello
- "Claudio Munari" Epilepsy Surgery Centre, Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giorgio Lo Russo
- "Claudio Munari" Epilepsy Surgery Centre, Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Ivana Sartori
- "Claudio Munari" Epilepsy Surgery Centre, Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Francesco Cardinale
- "Claudio Munari" Epilepsy Surgery Centre, Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| |
Collapse
|
6
|
Joshi S, Stephens E, Bleasel A, Bartley M, Wijayath M, Rahman Z, Varikatt W, Dexter M, Wong C. Successful stereoelectroencephalography re-evaluation in epilepsy patients after failed initial subdural grid evaluation. Epileptic Disord 2023; 25:534-544. [PMID: 37265017 DOI: 10.1002/epd2.20084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVE Epilepsy surgery success is dependent on accurate localization of the epileptogenic zone. Despite the use of invasive EEG using subdural grids and strips, surgical failures can occur. In this series, we explore the utility of a second evaluation with stereoelectroencephalography in patients whose initial invasive evaluation with subdural grid electrodes was unsuccessful in localizing seizure origin. METHODS We conducted a retrospective review of patients who underwent subdural grid evaluation (SDE) at our center and identified patients who underwent a re-evaluation with stereoelectroencephalography (SEEG). RESULTS We identified three patients who had both subdural and SEEG electrodes in the region of the identified epileptogenic zone in whom the initial SDE evaluation failed to make the patients seizure-free. Two of these patients underwent a second resection and became seizure-free. SIGNIFICANCE Stereoelectroencephalography can be useful in the re-evaluation and re-operation of patients who previously had surgical failure using SDE.
Collapse
Affiliation(s)
- Stuti Joshi
- Department of Neurology and Neurosurgery, Westmead Hospital, Westmead, New South Wales, Australia
| | - Eleanor Stephens
- Department of Neurology and Neurosurgery, Westmead Hospital, Westmead, New South Wales, Australia
| | - Andrew Bleasel
- Department of Neurology and Neurosurgery, Westmead Hospital, Westmead, New South Wales, Australia
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Melissa Bartley
- Department of Neurology and Neurosurgery, Westmead Hospital, Westmead, New South Wales, Australia
| | - Manori Wijayath
- Department of Neurology and Neurosurgery, Westmead Hospital, Westmead, New South Wales, Australia
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Zebunnessa Rahman
- Department of Neurology and Neurosurgery, Westmead Hospital, Westmead, New South Wales, Australia
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Winny Varikatt
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Anatomical Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Mark Dexter
- Department of Neurology and Neurosurgery, Westmead Hospital, Westmead, New South Wales, Australia
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Chong Wong
- Department of Neurology and Neurosurgery, Westmead Hospital, Westmead, New South Wales, Australia
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Matsuda D, Higashi T, Sato M, Hosoyama H, Otsubo T, Hanaya R. Posterior cerebral artery stenosis related to implanted intracranial electrodes for temporal lobe epilepsy: A case report. Int J Surg Case Rep 2023; 105:107988. [PMID: 36963228 PMCID: PMC10060667 DOI: 10.1016/j.ijscr.2023.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
INTRODUCTION Intracranial electroencephalography is a crucial diagnostic technique for epilepsy surgery, though it is associated with a range of complications, including infection, intracranial hemorrhage, increased intracranial pressure, and cerebral infarction. This case study presents an uncommon occurrence of stenosis of the left posterior cerebral artery (PCA) following intracranial electrode implantation. CASE PRESENTATION A woman in her thirties with drug-resistant focal impaired awareness seizures underwent implantation of subdural and depth electrodes on the bilateral temporal lobes to lateralize seizure onset. A left anterior-temporal lobectomy was performed based on the evaluation results. Following the resection of the hippocampus, stenosis of the left PCA, with a pinched appearance, was observed. Postoperatively, extensive cerebral edema in the bilateral temporal lobes and a defect in the left PCA were detected on magnetic resonance (MR) imaging. MR imaging performed the day after surgery showed cerebral infarction in the left medial temporal lobe and left lateral thalamus. A video review indicated that surgical manipulation was not the cause of vascular stenosis. MR angiography one week later confirmed the recanalization of the PCA. DISCUSSION We surmised that the subdural electrodes inserted along the middle skull base might have induced the PCA stenosis or spasms. The patient did not experience any significant sequelae, with no episodes of seizures for more than five years after surgery. CONCLUSION It is essential to note that subdural grid electrodes placed in the medial temporal lobe can cause vascular stenosis, albeit with an extremely rare occurrence.
Collapse
Affiliation(s)
- Daiki Matsuda
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Takuichiro Higashi
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Masanori Sato
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Hiroshi Hosoyama
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| | | | - Ryosuke Hanaya
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan.
| |
Collapse
|
8
|
Lee AT, Nichols NM, Speidel BA, Fan JM, Cajigas I, Knowlton RC, Chang EF. Modern intracranial electroencephalography for epilepsy localization with combined subdural grid and depth electrodes with low and improved hemorrhagic complication rates. J Neurosurg 2023; 138:821-827. [PMID: 35901681 DOI: 10.3171/2022.5.jns221118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Recent trends have moved from subdural grid electrocorticography (ECoG) recordings toward stereo-electroencephalography (SEEG) depth electrodes for intracranial localization of seizures, in part because of perceived morbidity from subdural grid and strip electrodes. For invasive epilepsy monitoring, the authors describe the outcomes of a hybrid approach, whereby patients receive a combination of subdural grids, strips, and frameless stereotactic depth electrode implantations through a craniotomy. Evolution of surgical techniques was employed to reduce complications. In this study, the authors review the surgical hemorrhage and functional outcomes of this hybrid approach. METHODS A retrospective review was performed of consecutive patients who underwent hybrid implantation from July 2012 to May 2022 at an academic epilepsy center by a single surgeon. Outcomes included hemorrhagic and nonhemorrhagic complications, neurological deficits, length of monitoring, and number of electrodes. RESULTS A total of 137 consecutive procedures were performed; 113 procedures included both subdural and depth electrodes. The number of depth electrodes and electrode contacts did not increase the risk of hemorrhage. A mean of 1.9 ± 0.8 grid, 4.9 ± 2.1 strip, and 3.0 ± 1.9 depth electrodes were implanted, for a mean of 125.1 ± 32 electrode contacts per patient. The overall incidence of hematomas over the study period was 5.1% (7 patients) and decreased significantly with experience and the introduction of new surgical techniques. The incidence of hematomas in the last 4 years of the study period was 0% (55 patients). Symptomatic hematomas were all delayed and extra-axial. These patients required surgical evacuation, and there were no cases of hematoma recurrence. All neurological deficits related to hematomas were temporary and were resolved at hospital discharge. There were 2 nonhemorrhagic complications. The mean duration of monitoring was 7.3 ± 3.2 days. Seizures were localized in 95% of patients, with 77% of patients eventually undergoing resection and 17% undergoing responsive neurostimulation device implantation. CONCLUSIONS In the authors' institutional experience, craniotomy-based subdural and depth electrode implantation was associated with low hemorrhage rates and no permanent morbidity. The rate of hemorrhage can be nearly eliminated with surgical experience and specific techniques. The decision to use subdural electrodes or SEEG should be tailored to the patient's unique pathology and surgeon experience.
Collapse
Affiliation(s)
| | | | | | - Joline M Fan
- 2Neurology, University of California, San Francisco, California
| | | | | | | |
Collapse
|
9
|
Mitchell P, Lee SCM, Yoo PE, Morokoff A, Sharma RP, Williams DL, MacIsaac C, Howard ME, Irving L, Vrljic I, Williams C, Bush S, Balabanski AH, Drummond KJ, Desmond P, Weber D, Denison T, Mathers S, O’Brien TJ, Mocco J, Grayden DB, Liebeskind DS, Opie NL, Oxley TJ, Campbell BCV. Assessment of Safety of a Fully Implanted Endovascular Brain-Computer Interface for Severe Paralysis in 4 Patients: The Stentrode With Thought-Controlled Digital Switch (SWITCH) Study. JAMA Neurol 2023; 80:270-278. [PMID: 36622685 PMCID: PMC9857731 DOI: 10.1001/jamaneurol.2022.4847] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 01/10/2023]
Abstract
Importance Brain-computer interface (BCI) implants have previously required craniotomy to deliver penetrating or surface electrodes to the brain. Whether a minimally invasive endovascular technique to deliver recording electrodes through the jugular vein to superior sagittal sinus is safe and feasible is unknown. Objective To assess the safety of an endovascular BCI and feasibility of using the system to control a computer by thought. Design, Setting, and Participants The Stentrode With Thought-Controlled Digital Switch (SWITCH) study, a single-center, prospective, first in-human study, evaluated 5 patients with severe bilateral upper-limb paralysis, with a follow-up of 12 months. From a referred sample, 4 patients with amyotrophic lateral sclerosis and 1 with primary lateral sclerosis met inclusion criteria and were enrolled in the study. Surgical procedures and follow-up visits were performed at the Royal Melbourne Hospital, Parkville, Australia. Training sessions were performed at patients' homes and at a university clinic. The study start date was May 27, 2019, and final follow-up was completed January 9, 2022. Interventions Recording devices were delivered via catheter and connected to subcutaneous electronic units. Devices communicated wirelessly to an external device for personal computer control. Main Outcomes and Measures The primary safety end point was device-related serious adverse events resulting in death or permanent increased disability. Secondary end points were blood vessel occlusion and device migration. Exploratory end points were signal fidelity and stability over 12 months, number of distinct commands created by neuronal activity, and use of system for digital device control. Results Of 4 patients included in analyses, all were male, and the mean (SD) age was 61 (17) years. Patients with preserved motor cortex activity and suitable venous anatomy were implanted. Each completed 12-month follow-up with no serious adverse events and no vessel occlusion or device migration. Mean (SD) signal bandwidth was 233 (16) Hz and was stable throughout study in all 4 patients (SD range across all sessions, 7-32 Hz). At least 5 attempted movement types were decoded offline, and each patient successfully controlled a computer with the BCI. Conclusions and Relevance Endovascular access to the sensorimotor cortex is an alternative to placing BCI electrodes in or on the dura by open-brain surgery. These final safety and feasibility data from the first in-human SWITCH study indicate that it is possible to record neural signals from a blood vessel. The favorable safety profile could promote wider and more rapid translation of BCI to people with paralysis. Trial Registration ClinicalTrials.gov Identifier: NCT03834857.
Collapse
Affiliation(s)
- Peter Mitchell
- Department of Radiology, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Sarah C. M. Lee
- Neurology, Calvary Healthcare Bethlehem, Parkdale, Australia
| | | | - Andrew Morokoff
- Parkville Neurosurgery, The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| | - Rahul P. Sharma
- Stanford Healthcare Cardiovascular Medicine, Stanford University, Stanford, California
| | - Daryl L. Williams
- Department of Anaesthesia and Pain Management, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Christopher MacIsaac
- Intensive Care Department, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Mark E. Howard
- Victorian Respiratory Support Service, Austin Health, Heidelberg, Australia
| | - Lou Irving
- Peter MacCallum Cancer Centre, The University of Melbourne, The Royal Melbourne Hospital, Melbourne, Australia
| | - Ivan Vrljic
- Department of Radiology, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Cameron Williams
- Department of Neurology, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Steven Bush
- Department of Neurology, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Anna H. Balabanski
- Department of Neurology, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
- Melbourne Brain Centre, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
- Department of Neuroscience, Alfred Brain, Alfred Health, Melbourne, Australia
| | - Katharine J. Drummond
- Department of Neurosurgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Patricia Desmond
- Department of Radiology, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| | - Douglas Weber
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Timothy Denison
- Institute of Biomedical Engineering, The University of Oxford, Oxford, United Kingdom
| | - Susan Mathers
- Neurology, Calvary Healthcare Bethlehem, Parkdale, Australia
| | - Terence J. O’Brien
- Department of Neurology, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
- Department of Neuroscience, The Central Clinical School, Monash University and Alfred Health, Melbourne, Australia
| | - J. Mocco
- Department of Neurosurgery, Klingenstein Clinical Center, The Mount Sinai Hospital, New York, New York
| | - David B. Grayden
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, Australia
| | - David S. Liebeskind
- UCLA Comprehensive Stroke Center, Department of Neurology, University of California, Los Angeles
| | - Nicholas L. Opie
- Vascular Bionics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, Australia
- Synchron, Carlton, Australia
| | - Thomas J. Oxley
- Synchron Inc, New York, New York
- Vascular Bionics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Bruce C. V. Campbell
- Department of Neurology, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
- Melbourne Brain Centre, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
10
|
El Shatanofy M, Hofmann K, Myseros JS, Gaillard WD, Keating RF, Oluigbo C. Invasive Intracranial Electroencephalogram (EEG) Monitoring for Epilepsy in the Pediatric Patient With a Shunt. Cureus 2023; 15:e35279. [PMID: 36968898 PMCID: PMC10036197 DOI: 10.7759/cureus.35279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
The use of invasive intracranial electroencephalogram (EEG) monitoring in the patient with a cerebrospinal fluid (CSF) diversionary shunt presents a conundrum -- the presence of a percutaneous electrode passing into the intracranial compartment presents a pathway for entry of pathogens to which a chronically implanted device like a shunt is especially susceptible to infection. In this case report, we describe the clinical and radiological features, medical and surgical management, and treatment outcomes of pediatric patients with shunted hydrocephalus who underwent invasive intracranial monitoring over an eight-year period. Three cases of children undergoing invasive intracranial monitoring were included in this study. Invasive monitoring for each patient occurred over three to six days. In each case, invasive intracranial monitoring was completed successfully, without resulting infection or shunt malfunction. While the second procedure was complicated by the formation of a pneumocephalus, there was no associated midline shift, and invasive intracranial monitoring was completed without incidence. Each patient received further surgery that successfully reduced seizure frequency. This study suggests that, while children with CSF diversionary shunts are at an inherently increased risk for infection and other complications, invasive intracranial monitoring is a relatively safe and feasible option in these patients. Future studies should explore the optimal duration for intracranial monitoring in pediatric patients with chronically implanted devices.
Collapse
|
11
|
Bsat S, Najjar M, Nawfal O, Farhat S, Chanbour H, Beydoun A. Standardized reporting of complications of epilepsy surgery and invasive monitoring: A single-center retrospective study. Epilepsy Behav 2022; 134:108844. [PMID: 35853316 DOI: 10.1016/j.yebeh.2022.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Monitoring adverse effects related to epilepsy surgery is essential for quality control and for counseling patients prior to the procedure. The aim of this study was to analyze the rates of complications related to epilepsy surgery following invasive monitoring and to classify them according to the recently proposed protocol by the E-pilepsy consortium. METHODS This is a retrospective study of collected data extracted from our routinely updated epilepsy surgery database which consisted of 173 surgical procedures: 89 surgeries for insertion of subdural grids, strips, and/or depth electrodes, and 84 resective surgeries. According to the protocol, complications were defined as unexpected postoperative adverse events and were stratified into transient (lasting less than 6 months) and permanent deficits (lasting 6 months or longer). In addition, we reported patients with postoperative psychiatric disturbances and calculated the rates of transient and permanent postoperative sequelae which were defined as expected postoperative deficits deemed inherent to the surgical procedure. RESULTS Six potentially life-threatening complications requiring acceleration of the planned resective surgery occurred during invasive monitoring. Following resective surgery, 12 transient sequelae (8 motor deficits, three language deficits, and one transient dyscalculia) and 10 permanent sequelae (5 mild memory disturbances, four visual field cuts, and one contralateral dysesthesia) occurred. In addition, 7 patients experienced transient motor complications. Four permanent postoperative neurological complications (4.8%) occurred: motor deficits in three patients and a partial peripheral facial palsy in one. Finally, five patients developed de novo psychiatric disturbances (transient in four and permanent in one). CONCLUSIONS This is the first study to classify complications of epilepsy surgery according to the E-pilepsy consortium protocol. Our findings demonstrate that epilepsy surgery following invasive monitoring is safe and associated with low morbidity when performed in specialized centers. Monitoring these complications according to a unified definition and using a multidimensional protocol will allow for a direct comparison across epilepsy surgery centers, will provide the epileptologists and surgeons with objective percentages to share with their patients and will help in identifying risk factors and improving the safety of epilepsy surgery.
Collapse
Affiliation(s)
- Shadi Bsat
- Department of Neurosurgery, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Marwan Najjar
- Department of Neurosurgery, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Omar Nawfal
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Sahar Farhat
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Hani Chanbour
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| | - Ahmad Beydoun
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
12
|
Stefanelli A, Sabourin V, Hines K, Matias C, Acharya S, Sharan A, Wu C. Digital Subtraction Angiography May Reduce the Rate of Radiographic Hemorrhage in Stereo-Electroencephalography. World Neurosurg 2022; 164:e964-e969. [DOI: 10.1016/j.wneu.2022.05.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
|
13
|
Xu R, Achberger J, von Wedel D, Vajkoczy P, Onken J, Schneider UC. Utilization of Epidural Electrodes as a Diagnostic Tool in Intractable Epilepsy—A Technical Note. MICROMACHINES 2022; 13:mi13030397. [PMID: 35334689 PMCID: PMC8949231 DOI: 10.3390/mi13030397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/16/2022]
Abstract
The utilization of epidural electrodes in the preoperative evaluation of intractable epilepsy is a valuable but underrepresented tool. In recent years, we have adapted the use of cylindrical epidural 1-contact electrodes (1-CE) instead of Peg electrodes. 1-CEs are more versatile since their explantation is a possible bedside procedure. Here we report our experience with 1-CEs as well as associated technical nuances. This retrospective analysis included 56 patients with intractable epilepsy who underwent epidural electrode placement for presurgical evaluation at the Department of Neurosurgery at the Charité University Hospital from September 2011 to July 2021. The median age at surgery was 36.3 years (range: 18–87), with 30 (53.6%) female and 26 (46.4%) male patients. Overall, 507 electrodes were implanted: 93 Fo electrodes, 33 depth electrodes, and 381 epidural electrodes, with a mean total surgical time of 100.5 ± 38 min and 11.8 ± 5 min per electrode. There was a total number of 24 complications in 21 patients (8 Fo electrode dislocations, 6 CSF leaks, 6 epidural electrode dislocations or malfunction, 3 wound infections, and 2 hemorrhages); 11 of these required revision surgery. The relative electrode complication rates were 3/222 (1.4%) in Peg electrodes and 3/159 (1.9%) in 1-CE. In summary, epidural recording via 1-CE is technically feasible, harbours an acceptable complication rate, and adequately replaces Peg electrodes.
Collapse
Affiliation(s)
- Ran Xu
- Department of Neurosurgery, Charité—Universitätsmedizin Berlin, 13437 Berlin, Germany; (R.X.); (J.A.); (D.v.W.); (P.V.); (J.O.)
- BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Charitéplatz 1, 10117 Berlin, Germany
| | - Johannes Achberger
- Department of Neurosurgery, Charité—Universitätsmedizin Berlin, 13437 Berlin, Germany; (R.X.); (J.A.); (D.v.W.); (P.V.); (J.O.)
| | - Dario von Wedel
- Department of Neurosurgery, Charité—Universitätsmedizin Berlin, 13437 Berlin, Germany; (R.X.); (J.A.); (D.v.W.); (P.V.); (J.O.)
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité—Universitätsmedizin Berlin, 13437 Berlin, Germany; (R.X.); (J.A.); (D.v.W.); (P.V.); (J.O.)
| | - Julia Onken
- Department of Neurosurgery, Charité—Universitätsmedizin Berlin, 13437 Berlin, Germany; (R.X.); (J.A.); (D.v.W.); (P.V.); (J.O.)
| | - Ulf C. Schneider
- Department of Neurosurgery, Charité—Universitätsmedizin Berlin, 13437 Berlin, Germany; (R.X.); (J.A.); (D.v.W.); (P.V.); (J.O.)
- Cantonal Hospital of Lucerne, Spitalstraβe 16, 6000 Lucerne, Switzerland
- Correspondence:
| |
Collapse
|
14
|
Minkin K, Gabrovski K, Karazapryanov P, Milenova Y, Sirakov S, Dimova P. Theoretical stereoelectroencephalography density on the brain convexity. Epilepsy Res 2022; 179:106845. [PMID: 34968894 DOI: 10.1016/j.eplepsyres.2021.106845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Invasive electroencephalography (EEG) remains the "gold standard" for diagnosing the epileptogenic zone in patients with drug-resistant epilepsy and discrepancies between seizure semiology, video-EEG and magnetic resonance imaging (MRI) findings. However, the possibilities of stereoelectroencephalography (SEEG) to explore the brain surface remain a matter of debate and subdural EEG (SDEEG) is still preferred in some centers for cases when the supposed epileptogenic zone is on the brain convexity. The aim of our study was to evaluate the theoretical safe SEEG coverage on the brain convexity and to compare the theoretical SEEG cortical density with the usual SDEEG density. MATERIALS AND METHODS Our material included 10 hemispheres in 5 patients, who had been already investigated with SEEG for drug-resistant epilepsy. We translated our previously described technique in a theoretical model in an attempt to calculate the maximal number of avascular windows for each cerebral hemisphere. The distance between every entry point and the other entry points for each hemisphere was calculated using a mathematical formula. Subsequently, the theoretical SEEG coverage on the brain convexity was described using the maximal, minimal and average distances between each entry point and the closest 4 neighboring points. This type of measurement allows a direct comparison between SEEG and SDEEG in their ability to explore the brain convexity. RESULTS Ten hemispheres had 1328 safe entry points with a safety margin of 2.5 mm and a minimal distance of 2.5 mm between 2 entry points (average number of entry points: 132.8 (SD ± 5). The number of entry points in the explored 10 hemispheres varied from 104 to 156. The average distance between each entry point and its 4 neighbors was 11.47 mm. The maximal distance between two entry points in these 10 hemispheres was ranging from 20.28 to 27.23 mm (average: 24.67 mm). The closest entry points for the explored hemispheres were at an average distance of 4.67 mm (range: 2.82 - 5.96 mm). The average convexity surface was 223.68 cm2 (range: 204.63-238.77 cm2). The safe electrode density without electrode collision on the cortical surface was ranging from 0.46 to 0.69 electrodes per cm2 (average: 0.59 electrodes per cm2) (SD ± 0.023). CONCLUSION The theoretical SEEG cortical density is comparable with the usual SDEEG density. These findings, combined with the better safety profile of SEEG and the possibilities to explore deep cortical structures, explain the progressive shift from SDEEG to SEEG during the last years.
Collapse
Affiliation(s)
- Krasimir Minkin
- Department of Neurosurgery, University Hospital "Sv. Ivan Rilski", Sofia, Bulgaria, "Akad. Ivan Geshov" blvd, 15, Sofia 1000, Bulgaria.
| | - Kaloyan Gabrovski
- Department of Neurosurgery, University Hospital "Sv. Ivan Rilski", Sofia, Bulgaria, "Akad. Ivan Geshov" blvd, 15, Sofia 1000, Bulgaria.
| | - Petar Karazapryanov
- Department of Neurosurgery, University Hospital "Sv. Ivan Rilski", Sofia, Bulgaria, "Akad. Ivan Geshov" blvd, 15, Sofia 1000, Bulgaria.
| | - Yoana Milenova
- Department of Neurology, University Hospital "Sv. Ivan Rilski", Sofia, Bulgaria, "Akad. Ivan Geshov" blvd, 15, Sofia 1000, Bulgaria.
| | - Stanimir Sirakov
- Department of Interventional Radiology, University Hospital "Sv. Ivan Rilski", Sofia, Bulgaria, "Akad. Ivan Geshov" blvd, 15, Sofia 1000, Bulgaria.
| | - Petia Dimova
- Department of Neurosurgery, University Hospital "Sv. Ivan Rilski", Sofia, Bulgaria, "Akad. Ivan Geshov" blvd, 15, Sofia 1000, Bulgaria.
| |
Collapse
|
15
|
Bjellvi J, Cross JH, Gogou M, Leclercq M, Rheims S, Ryvlin P, Sperling MR, Rydenhag B, Malmgren K. Classification of complications of epilepsy surgery and invasive diagnostic procedures: A proposed protocol and feasibility study. Epilepsia 2021; 62:2685-2696. [PMID: 34405890 DOI: 10.1111/epi.17040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE In epilepsy surgery, which aims to treat seizures and thereby to improve the lives of persons with drug-resistant epilepsy, the chances of attaining seizure relief must be carefully weighed against the risks of complications and expected adverse events. The interpretation of data regarding complications of epilepsy surgery and invasive diagnostic procedures is hampered by a lack of uniform definitions and method of data collection. METHODS Based on a review of previous definitions and classifications of complications, we developed a proposal for a new classification. This proposal was then subject to revisions after expert opinion within E-pilepsy, an EU-funded European pilot network of reference centers in refractory epilepsy and epilepsy surgery, later incorporated into the ERN (European Reference Network) EpiCARE. This version was discussed with recognized experts, and a final protocol was agreed to after further revision. The final protocol was evaluated in practical use over 1 year in three of the participating centers. One hundred seventy-four consecutive procedures were included with 35 reported complications. RESULTS This report presents a multidimensional classification of complications in epilepsy surgery and invasive diagnostic procedures, where complications are characterized in terms of their immediate effects, resulting permanent symptoms, and consequences on activities of daily living. SIGNIFICANCE We propose that the protocol will be helpful in the work to promote safety in epilepsy surgery and for future studies designed to identify risk factors for complications. Further work is needed to address the reporting of outcomes as regards neuropsychological function, activities of daily living, and quality of life.
Collapse
Affiliation(s)
- Johan Bjellvi
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neurology, Sahlgrenska University Hospital, Member of the ERN EpiCARE, Gothenburg, Sweden
| | - J Helen Cross
- UCL-NIHR BRC Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital for Children, Member of the ERN EpiCARE, London, UK.,Young Epilepsy, Lingfield, UK
| | - Maria Gogou
- Great Ormond Street Hospital for Children, Member of the ERN EpiCARE, London, UK
| | - Mathilde Leclercq
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Member of the ERN EpiCARE, Lyon, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Member of the ERN EpiCARE, Lyon, France
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bertil Rydenhag
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neurosurgery, Sahlgrenska University Hospital, Member of the ERN EpiCARE, Gothenburg, Sweden
| | - Kristina Malmgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neurology, Sahlgrenska University Hospital, Member of the ERN EpiCARE, Gothenburg, Sweden
| |
Collapse
|
16
|
Miller C, Schatmeyer B, Landazuri P, Uysal U, Nazzaro J, Kinsman MJ, Camarata PJ, Ulloa CM, Hammond N, Pearson C, Shah V, Cheng JJ. sEEG for Expansion of a Surgical Epilepsy Program: Safety and Efficacy in 152 Consecutive Cases. Epilepsia Open 2021; 6:694-702. [PMID: 34388309 PMCID: PMC8633478 DOI: 10.1002/epi4.12535] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/13/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022] Open
Abstract
Objective Stereoelectroencephalography (sEEG) is an intracranial encephalography method of expanding use. The need for increased epilepsy surgery access has led to the consideration of sEEG adoption by new or expanding surgical epilepsy programs. Data regarding safety and efficacy are uncommon outside of high‐volume, well‐established centers, which may be less applicable to newer or low‐volume centers. The objective of this study was to add to the sEEG outcomes in the literature from the perspective of a rapidly expanding center. Methods A retrospective chart review of consecutive sEEG cases from January 2016 to December 2019 was performed. Data extraction included demographic data, surgical data, and outcome data, which pertinently examined surgical method, progression to therapeutic procedure, clinically significant adverse events, and Engel outcomes. Results One hundred and fifty‐two sEEG procedures were performed on 131 patients. Procedures averaged 10.5 electrodes for a total of 1603 electrodes. The majority (84%) of patients progressed to a therapeutic procedure. Six clinically significant complications occurred: three retained electrodes, two hemorrhages, and one failure to complete investigation. Only one complication resulted in a permanent deficit. Engel 1 outcome was achieved in 63.3% of patients reaching one‐year follow‐up after a curative procedure. Significance New or expanding epilepsy surgery centers can appropriately consider the use of sEEG. The complication rate is low and the majority of patients progress to therapeutic surgery. Procedural safety, progression to therapeutic intervention, and Engel outcomes are comparable to cohorts from long‐established epilepsy surgery programs.
Collapse
Affiliation(s)
- Christopher Miller
- Department of Neurosurgery, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Bryan Schatmeyer
- Department of Neurosurgery, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Patrick Landazuri
- Department of Neurology, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Utku Uysal
- Department of Neurology, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Jules Nazzaro
- Department of Neurosurgery, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Michael J Kinsman
- Department of Neurosurgery, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Paul J Camarata
- Department of Neurosurgery, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Carol M Ulloa
- Department of Neurology, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Nancy Hammond
- Department of Neurology, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Caleb Pearson
- Department of Neurology, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Vishal Shah
- Department of Neurology, The University of Kansas School of Medicine, Kansas City, KS, USA
| | - Jennifer J Cheng
- Department of Neurosurgery, The University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
17
|
Scullen T, Teja N, Song SH, Couldwell M, Carr C, Mathkour M, Lee DJ, Tubbs RS, Dallapiazza RF. Use of stereoelectroencephalography beyond epilepsy: a systematic review. World Neurosurg 2021; 155:96-108. [PMID: 34217862 DOI: 10.1016/j.wneu.2021.06.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Tyler Scullen
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Nikhil Teja
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Hanover, New Hampshire, USA
| | - Seo Ho Song
- Geisel School of Medicine, Dartmouth University, Hanover, New Hampshire, USA
| | - Mitchell Couldwell
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Chris Carr
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Mansour Mathkour
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Darrin J Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - R Shane Tubbs
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA; Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana, USA; Department of Anatomical Sciences, St. George's University, Grenada
| | - Robert F Dallapiazza
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA.
| |
Collapse
|
18
|
Rollo PS, Rollo MJ, Zhu P, Woolnough O, Tandon N. Oblique trajectory angles in robotic stereo-electroencephalography. J Neurosurg 2021; 135:245-254. [PMID: 32796145 DOI: 10.3171/2020.5.jns20975] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Traditional stereo-electroencephalography (sEEG) entails the use of orthogonal trajectories guided by seizure semiology and arteriography. Advances in robotic stereotaxy and computerized neuronavigation have made oblique trajectories more feasible and easier to implement without formal arteriography. Such trajectories provide access to components of seizure networks not readily sampled using orthogonal trajectories. However, the dogma regarding the relative safety and predictability of orthogonal and azimuth-based trajectories persists, given the absence of data regarding the safety and efficacy of oblique sEEG trajectories. In this study, the authors evaluated the relative accuracy and efficacy of both orthogonal and oblique trajectories during robotic implantation of sEEG electrodes to sample seizure networks. METHODS The authors performed a retrospective analysis of 150 consecutive procedures in 134 patients, accounting for 2040 electrode implantations. Of these, 837 (41%) were implanted via oblique trajectories (defined as an entry angle > 30°). Accuracy was calculated by comparing the deviation of each electrode at the entry and the target point from the planned trajectory using postimplantation imaging. RESULTS The mean entry and target deviations were 1.57 mm and 1.89 mm for oblique trajectories compared with 1.38 mm and 1.69 mm for orthogonal trajectories, respectively. Entry point deviation was significantly associated with entry angle, but the impact of this relationship was negligible (-0.015-mm deviation per degree). Deviation at the target point was not significantly affected by the entry angle. No hemorrhagic or infectious complications were observed in the entire cohort, further suggesting that these differences were not meaningful in a clinical context. Of the patients who then underwent definitive procedures after sEEG, 69 patients had a minimum of 12 months of follow-up, of whom 58 (84%) achieved an Engel class I or II outcome during a median follow-up of 27 months. CONCLUSIONS The magnitude of stereotactic errors in this study falls squarely within the range reported in the sEEG literature, which primarily features orthogonal trajectories. The patient outcomes reported in this study suggest that seizure foci are well localized using oblique trajectories. Thus, the selective use of oblique trajectories in the authors' cohort was associated with excellent safety and efficacy, with no patient incidents, and the findings support the use of oblique trajectories as an effective and safe means of investigating seizure networks.
Collapse
Affiliation(s)
- Patrick S Rollo
- 1Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UTHealth Houston
- 2Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston; and
| | - Matthew J Rollo
- 1Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UTHealth Houston
| | - Ping Zhu
- 1Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UTHealth Houston
- 2Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston; and
| | - Oscar Woolnough
- 1Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UTHealth Houston
- 2Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston; and
| | - Nitin Tandon
- 1Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UTHealth Houston
- 2Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston; and
- 3Memorial Hermann Hospital, Texas Medical Center, Houston, Texas
| |
Collapse
|
19
|
Opie NL, O'Brien TJ. The potential of closed-loop endovascular neurostimulation as a viable therapeutic approach for drug-resistant epilepsy: A critical review. Artif Organs 2021; 46:337-348. [PMID: 34101849 DOI: 10.1111/aor.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Over the last few decades, biomedical implants have successfully delivered therapeutic electrical stimulation to reduce the frequency and severity of seizures in people with drug-resistant epilepsy. However, neurostimulation approaches require invasive surgery to implant stimulating electrodes, and surgical, medical, and hardware complications are not uncommon. An endovascular approach provides a potentially safer and less invasive surgical alternative. This article critically evaluates the feasibility of endovascular closed-loop neuromodulation for the treatment of epilepsy. By reviewing literature that reported the impact of direct electrical stimulation to reduce the frequency of epileptic seizures, we identified clinically validated extracranial, cortical, and deep cortical neural targets. We identified veins in close proximity to these targets and evaluated the potential of delivering an endovascular implant to these veins based on their diameter. We then compared the risks and benefits of existing technology to describe a benchmark of clinical safety and efficacy that would need to be achieved for endovascular neuromodulation to provide therapeutic benefit. For the majority of brain regions that have been clinically demonstrated to reduce seizure occurrence in response to delivered electrical stimulation, vessels of appropriate diameter for delivery of an endovascular electrode to these regions could be achieved. This includes delivery to the vagus nerve via the 13.2 ± 0.9 mm diameter internal jugular vein, the motor cortex via the 6.5 ± 1.7 mm diameter superior sagittal sinus, and the cerebellum via the 7.7 ± 1.4 mm diameter sigmoid sinus or 6.2 ± 1.4 mm diameter transverse sinus. Deep cerebral targets can also be accessed with an endovascular approach, with the 1.9 ± 0.5 mm diameter internal cerebral vein and 1.2-mm-diameter thalamostriate vein lying in close proximity to the anterior and centromedian nuclei of the thalamus, respectively. This work identified numerous veins that are in close proximity to conventional stimulation targets that are of a diameter large enough for delivery and deployment of an endovascular electrode array, supporting future work to assess clinical efficacy and chronic safety of an endovascular approach to deliver therapeutic neurostimulation.
Collapse
Affiliation(s)
- Nicholas L Opie
- Vascular Bionics Laboratory, Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.,Synchron Inc., San Francisco, CA, USA
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Tantawi M, Miao J, Matias C, Skidmore CT, Sperling MR, Sharan AD, Wu C. Gray Matter Sampling Differences Between Subdural Electrodes and Stereoelectroencephalography Electrodes. Front Neurol 2021; 12:669406. [PMID: 33986721 PMCID: PMC8110924 DOI: 10.3389/fneur.2021.669406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Stereoelectroencephalography (SEEG) has seen a recent increase in popularity in North America; however, concerns regarding the spatial sampling capabilities of SEEG remain. We aimed to quantify and compare the spatial sampling of subdural electrode (SDE) and SEEG implants. Methods: Patients with drug-resistant epilepsy who underwent invasive monitoring were included in this retrospective case-control study. Ten SEEG cases were compared with ten matched SDE cases based on clinical presentation and pre-implantation hypothesis. To quantify gray matter sampling, MR and CT images were coregistered and a 2.5mm radius sphere was superimposed over the center of each electrode contact. The estimated recording volume of gray matter was defined as the cortical voxels within these spherical models. Paired t-tests were performed to compare volumes and locations of SDE and SEEG recording. A Ripley's K-function analysis was performed to quantify differences in spatial distributions. Results: The average recording volume of gray matter by each individual contact was similar between the two modalities. SEEG implants sampled an average of 20% more total gray matter, consisted of an average of 17% more electrode contacts, and had 77% more of their contacts covering gray matter within sulci. Insular coverage was only achieved with SEEG. SEEG implants generally consist of discrete areas of dense local coverage scattered across the brain; while SDE implants cover relatively contiguous areas with lower density recording. Significance: Average recording volumes per electrode contact are similar for SEEG and SDE, but SEEG may allow for greater overall volumes of recording as more electrodes can be routinely implanted. The primary difference lies in the location and distribution of gray matter than can be sampled. The selection between SEEG and SDE implantation depends on sampling needs of the invasive implant.
Collapse
Affiliation(s)
- Mohamed Tantawi
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jingya Miao
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Caio Matias
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ashwini D Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chengyuan Wu
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
21
|
Yazdani M, Reagan J, Kocher M, Antonucci M, Taylor J, Edwards J, Vandergrift WA, Spampinato MV. Safety of MRI in the localization of implanted intracranial electrodes for refractory epilepsy. J Neuroimaging 2021; 31:551-559. [PMID: 33783916 DOI: 10.1111/jon.12848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/27/2021] [Accepted: 02/17/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE This is an observational study to evaluate the safety of magnetic resonance imaging (MRI) to localize subdural grids and depth electrodes in patients with refractory epilepsy using a 1.5 Tesla MR scanner. METHODS We implemented an optimized MRI protocol providing adequate image quality for the assessment of subdural grids and depth electrodes, while minimizing the specific absorption rate (SAR). We reviewed all MRI studies performed in patients with subdural grids and depth electrodes between January 2010 and October 2018. Image quality was graded as acceptable or nonacceptable for the assessment of intracranial device positioning. We reviewed the medical record and any imaging obtained after intracranial implant removal for adverse event or complication occurring during and after the procedure. RESULTS Ninety-nine patients with refractory epilepsy underwent MRI scans using a magnetization-prepared rapid acquisition of gradient echo sequence and a transmit-receive head coil with depth electrodes and subdural grids in place. Two patients underwent two separate depth electrode implantations for a total of 101 procedures and MRI scans. No clinical adverse events were reported during or immediately after imaging. Image quality was graded as acceptable for 97 MRI scans. Review of follow-up CT and MRI studies after implant removal, available for 70 patients, did not demonstrate unexpected complications in 69 patients. CONCLUSION In our experience, a low SAR MRI protocol can be used to safely localize intracranial subdural grids and depth electrode in patients with refractory epilepsy.
Collapse
Affiliation(s)
- Milad Yazdani
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - Justin Reagan
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - Madison Kocher
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - Michael Antonucci
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - James Taylor
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| | - Jonathan Edwards
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | | | - Maria Vittoria Spampinato
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
22
|
Clinical safety of intracranial EEG electrodes in MRI at 1.5 T and 3 T: a single-center experience and literature review. Neuroradiology 2021; 63:1669-1678. [PMID: 33543360 DOI: 10.1007/s00234-021-02661-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Intracranial electroencephalography (EEG) can be a critical part of presurgical evaluation for drug resistant epilepsy. With the increasing use of intracranial EEG, the safety of these electrodes in the magnetic resonance imaging (MRI) environment remains a concern, particularly at higher field strengths. However, no studies have reported the MRI safety experience of intracranial electrodes at 3 T. We report an MRI safety review of patients with intracranial electrodes at 1.5 and 3 T. METHODS One hundred and sixty-five consecutive admissions for intracranial EEG monitoring were reviewed. A total of 184 MRI scans were performed on 135 patients over 140 admissions. These included 118 structural MRI studies at 1.5 T and 66 functional MRI studies at 3 T. The magnetic resonance (MR) protocols avoided the use of high specific energy absorption rate sequences that could result in electrode heating. The intracranial implantations included 114 depth, 15 subdural, and 11 combined subdural and depth electrodes. Medical records were reviewed for patient-reported complications and radiologic complications related to these studies. Pre-implantation, post-implantation, and post-explantation imaging studies were reviewed for potential complications. RESULTS No adverse events or complications were seen during or after MRI scanning at 1.5 or 3 T apart from those attributed to electrode implantation. There was also no clinical or imaging evidence of worsening of pre-existing implantation-related complications after MR imaging. CONCLUSION No clinical or radiographic complications are seen when performing MRI scans at 1.5 or 3 T on patients with implanted intracranial EEG electrodes while avoiding high specific energy absorption rate sequences.
Collapse
|
23
|
Khoo HM, Hall JA, Dubeau F, Tani N, Oshino S, Fujita Y, Gotman J, Kishima H. Technical Aspects of SEEG and Its Interpretation in the Delineation of the Epileptogenic Zone. Neurol Med Chir (Tokyo) 2020; 60:565-580. [PMID: 33162469 PMCID: PMC7803703 DOI: 10.2176/nmc.st.2020-0176] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stereo-electroencephalography (SEEG) has gained global popularity in recent years. In Japan, a country in which invasive studies using subdural electrodes (SDEs) have been the mainstream, SEEG has been approved for insurance coverage in 2020 and is expected to gain in popularity. Some concepts supporting SEEG methodology are fundamentally different from that of SDE studies. Clinicians interested in utilizing SEEG in their practice should be aware of those aspects in which they differ. Success in utilizing the SEEG methodology relies heavily on the construction of an a priori hypothesis regarding the putative seizure onset zone (SOZ) and propagation. This article covers the technical and theoretical aspects of SEEG, including the surgical techniques and precautions, hypothesis construction, and the interpretation of the recording, all with the aim of providing an introductory guide to SEEG.
Collapse
Affiliation(s)
- Hui Ming Khoo
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| | - Jeffery A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University
| | - Francois Dubeau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University
| | - Naoki Tani
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| | - Yuya Fujita
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| | - Jean Gotman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| |
Collapse
|
24
|
Melikyan AG, Vorobiev AN, Shishkina LV, Kozlova AB, Vlasov PA, Ayvazyan SO, Shults EI, Korsakova MB, Koptelova AM, Buklina SB, Demin MO, Agrba SB, Shevchenko AM. [Surgical treatment of epilepsy in children with focal cortical dysplasia]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:5-20. [PMID: 33095529 DOI: 10.17116/neiro2020840515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Surgery is the first-line treatment option in children with FCD and refractory epilepsy, but the rate of success and patient numbers who became free of seizures vary widely from series to series. STUDY AIMS To elicit variables affecting the outcome and predicting achievement of the long-term seizure-free status. MATERIAL AND METHODS One hundred sixty-nine children with cortical dysplasia and DR-epilepsy underwent surgery Preoperative evaluation included prolonged video-EEG and MRI (in all patients) and neuropsychological testing when possible. Fourteen patients underwent invasive EEG, fMRI and MEG were used also in some cases. Including 27 repeat procedures the list of overall 196 surgeries performed consists of: cortectomy (lesionectomy with or without adjacent epileptogenic cortices) – in 116 cases; lobectomy – in 46; and various disconnective procedures – in 34 patients. Almost routinely employed intraoperative ECOG (134 surgeries) was combined with stimulation and/or SSEP in 47 cases to map eloquent cortex (with CST-tracking in some). A new permanent and not anticipated neurological deficit developed post-surgery in 5 cases (2,5%). Patients were follow-upped using video-EEG and MRI and FU which lasts more than 2 years (median – 3 years) is known in 56 cases. Thirty-two children were free of seizures at the last check (57,2% rate of Engel IA). A list of variables regarding patients’ demography, seizure type, lesion pathology and localization, and those related to surgery and its extent were evaluated to figure out anyone associated with favorable outcome. RESULTS Both Type II FCDs and their anatomically complete excision are positive predictors for favorable outcome and achievement of SF-status (p<0,05). Residual epileptic activity on immediate post-resection ECOG do not affect the outcome. CONCLUSION Patients with Type II FCD, particularly with Type IIb malformations are the best candidates for curative surgery, including cases with lesions in brain eloquent areas. Kids with Type I FCD have much less chances to become free of seizures when attempting focal cortectomy. However, some of them with early onset catastrophic epilepsies may benefit from larger surgeries using lobectomy or various disconnections.
Collapse
Affiliation(s)
| | | | | | - A B Kozlova
- Burdenko Neurosurgical Center, Moscow, Russia
| | - P A Vlasov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - E I Shults
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - A M Koptelova
- Center for Neurocognitive research (MEG-center), MSUPE, Moscow, Russia
| | - S B Buklina
- Burdenko Neurosurgical Center, Moscow, Russia
| | - M O Demin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - S B Agrba
- Burdenko Neurosurgical Center, Moscow, Russia
| | | |
Collapse
|
25
|
Chakraborty AR, Almeida NC, Prather KY, O'Neal CM, Wells AA, Chen S, Conner AK. Resting-state functional magnetic resonance imaging with independent component analysis for presurgical seizure onset zone localization: A systematic review and meta-analysis. Epilepsia 2020; 61:1958-1968. [PMID: 32770853 DOI: 10.1111/epi.16637] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE One of the greatest challenges of achieving successful surgical outcomes in patients with epilepsy is the ability to properly localize the seizure onset zone (SOZ). Many techniques exist for localizing the SOZ, including intracranial electroencephalography, magnetoencephalography, and stereoelectroencephalography. Recently, resting-state functional magnetic resonance imaging (rs-fMRI) in conjunction with independent component analysis (ICA) has been utilized for presurgical planning of SOZ resection, with varying results. In this meta-analysis, we analyze the current role of rs-fMRI in identifying the SOZ for presurgical planning for patients with drug-resistant epilepsy. Specifically, we seek to demonstrate its current effectiveness compared to other methods of SOZ localization. METHODS A literature review was conducted using the PubMed, MEDLINE, and Embase databases up to May of 2020. A total of 253 articles were screened, and seven studies were chosen for analysis. Each study was analyzed for SOZ localization by ground truth, SOZ localization by rs-fMRI with ICA, principal component analysis, or intrinsic connectivity contrast, and outcomes of surgery. A meta-analysis was performed to analyze how ground truth compares to rs-fMRI in SOZ localization. RESULTS The odds ratio comparing ground truth to rs-fMRI was 2.63 (95% confidence interval = 0.66-10.56). Average concordance of rs-fMRI SOZ localization compared with ground truth localization across studies was 71.3%. SIGNIFICANCE In the hunt for less invasive presurgical planning for epilepsy surgery, rs-fMRI with ICA provides a promising avenue for future standard practice. Our preliminary results show no significant difference in surgical outcomes between traditional standards of SOZ localization and rs-fMRI with ICA. We believe that rs-fMRI could be a step forward in this search. Further investigation comparing rs-fMRI to traditional methods of SOZ localization should be conducted, with the hope of moving toward relying solely on noninvasive screening methods.
Collapse
Affiliation(s)
- Arpan R Chakraborty
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nyle C Almeida
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kiana Y Prather
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Christen M O'Neal
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Allison A Wells
- Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sixia Chen
- Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
26
|
Kuzan-Fischer CM, Parker WE, Schwartz TH, Hoffman CE. Challenges of Epilepsy Surgery. World Neurosurg 2020; 139:762-774. [PMID: 32689697 DOI: 10.1016/j.wneu.2020.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/02/2020] [Indexed: 12/22/2022]
Abstract
Though frequently effective in the management of medically refractory seizures, epilepsy surgery presents numerous challenges. Selection of the appropriate candidate patients who are likely to benefit from surgery is critical to achieving seizure freedom and avoiding neurocognitive morbidity. Identifying the seizure focus and mapping epileptogenic networks involves an interdisciplinary team dedicated to formulating a safe and effective surgical plan. Various strategies can be employed either to eliminate the epileptic focus or to modulate network activity, including resection of the focus with open surgery or laser interstitial thermal therapy; modulation of epileptogenic firing patterns with responsive neurostimulation, deep brain stimulation, or vagus nerve stimulation; or non-invasive disconnection of epileptic circuits with focused ultrasound, which is also discussed in greater detail in the subsequent chapter in our series. We review several challenges of epilepsy surgery that must be thoughtfully addressed in order to ensure its success.
Collapse
Affiliation(s)
- Claudia M Kuzan-Fischer
- Department of Neurological Surgery, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Whitney E Parker
- Department of Neurological Surgery, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Caitlin E Hoffman
- Department of Neurological Surgery, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York, USA.
| |
Collapse
|
27
|
Jobst BC, Bartolomei F, Diehl B, Frauscher B, Kahane P, Minotti L, Sharan A, Tardy N, Worrell G, Gotman J. Intracranial EEG in the 21st Century. Epilepsy Curr 2020; 20:180-188. [PMID: 32677484 PMCID: PMC7427159 DOI: 10.1177/1535759720934852] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intracranial electroencephalography (iEEG) has been the mainstay of identifying the seizure onset zone (SOZ), a key diagnostic procedure in addition to neuroimaging when considering epilepsy surgery. In many patients, iEEG has been the basis for resective epilepsy surgery, to date still the most successful treatment for drug-resistant epilepsy. Intracranial EEG determines the location and resectability of the SOZ. Advances in recording and implantation of iEEG provide multiple options in the 21st century. This not only includes the choice between subdural electrodes (SDE) and stereoelectroencephalography (SEEG) but also includes the implantation and recordings from microelectrodes. Before iEEG implantation, especially in magnetic resonance imaging -negative epilepsy, a clear hypothesis for seizure generation and propagation should be based on noninvasive methods. Intracranial EEG implantation should be planned by a multidisciplinary team considering epileptic networks. Recordings from SDE and SEEG have both their advantages and disadvantages. Stereo-EEG seems to have a lower rate of complications that are clinically significant, but has limitations in spatial sampling of the cortical surface. Stereo-EEG can sample deeper areas of the brain including deep sulci and hard to reach areas such as the insula. To determine the epileptogenic zone, interictal and ictal information should be taken into consideration. Interictal spiking, low frequency slowing, as well as high frequency oscillations may inform about the epileptogenic zone. Ictally, high frequency onsets in the beta/gamma range are usually associated with the SOZ, but specialized recordings with combined macro and microelectrodes may in the future educate us about onset in higher frequency bands. Stimulation of intracranial electrodes triggering habitual seizures can assist in identifying the SOZ. Advanced computational methods such as determining the epileptogenicity index and similar measures may enhance standard clinical interpretation. Improved techniques to record and interpret iEEG may in the future lead to a greater proportion of patients being seizure free after epilepsy surgery.
Collapse
Affiliation(s)
- Barbara C Jobst
- Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Hanover, NH, USA
| | - Fabrice Bartolomei
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone hospital, Epileptology department, Marseille, France
| | - Beate Diehl
- National Hospital for Neurology and Neurosurgery, University College London, London, United Kingdom
| | - Birgit Frauscher
- Montreal Neurological Institute & Hospital, McGill University, Montreal, Quebec, Canada
| | - Philippe Kahane
- Neurology Department & INSERM U1216, Grenoble-Alpes University and Hospital, Grenoble, France
| | - Lorella Minotti
- Neurology Department & INSERM U1216, Grenoble-Alpes University and Hospital, Grenoble, France
| | - Ashwini Sharan
- National Hospital for Neurology and Neurosurgery, Jefferson University, Philadelphia, PA, USA
| | - Nastasia Tardy
- Neurology Department & INSERM U1216, Grenoble-Alpes University and Hospital, Grenoble, France
| | | | - Jean Gotman
- Montreal Neurological Institute & Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Hammen T, Reisert M, Juschkat W, Egger K, Urbach H, Zentner J, Beck J, Hamer H, Steinhoff BJ, Baumgartner C, Schulze-Bonhage A, Puhahn-Schmeiser B. Alterations of intracerebral connectivity in epilepsy patients with secondary bilateral synchrony. Epilepsy Res 2020; 166:106402. [PMID: 32673968 DOI: 10.1016/j.eplepsyres.2020.106402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/19/2020] [Accepted: 06/20/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The aim of our study was to evaluate intracerebral network changes in epilepsy patients demonstrating secondary bilateral synchrony (SBS) in EEG by applying a new Diffusion Tensor Imaging (DTI) method using an energy-based global tracking algorithm. MATERIALS AND METHODS 10 MRI negative epilepsy patients demonstrating SBS in 10-20 surface EEG were included. EEG findings were analyzed for irritative zones characterized by focal interictal epileptiform discharges (IEDs) triggering SBS. In addition, DTI including an energy-based global tracking algorithm was applied to analyze fiber tract alterations in irritative zones. To measure the deviation of a certain cortical connection in comparison to healthy controls, normalized differences of fiber tract streamline counts (SC) and their p-values were evaluated in comparison to corresponding fibers of the control group. RESULTS In 6 patients the irritative zone initiating SBS was located in the frontal lobe, in 3 patients in the temporal lobe and in 1 patient in the region surrounding the right central sulcus. All patients demonstrated significantly altered SC in brain lobes where the irritative zone triggering SBS was located (p ≤ 0.05). Seven out of 10 patients demonstrated SC alterations in tracts connecting brain lobes between the ipsilateral and the contralateral hemisphere (p ≤ 0.05). CONCLUSION Our data demonstrate that alterations in fiber tracts in irritative zones triggering SBS are not necessarily associated with intracerebral lesions visible in high resolution MRI. Our study gives evidence that diffusion tensor imaging is a promising non-invasive additive tool for intracerebral network analyses even in MRI-negative epilepsy patients.
Collapse
Affiliation(s)
- T Hammen
- Department of Epileptology, Medical Center, University of Freiburg, Faculty of Medicine, Breisacher Strasse 64, 79106 Freiburg, Germany; Clinic of Neurology, Westpfalz Klinikum Kaiserslautern, Hellmut-Hartert-Straße 1, 67655 Kaiserslautern, Germany
| | - M Reisert
- Medical Physics, Department of Radiology, University of Freiburg, Breisacher Strasse 60a, 79106 Freiburg, Germany
| | - W Juschkat
- Department of Epileptology, Medical Center, University of Freiburg, Faculty of Medicine, Breisacher Strasse 64, 79106 Freiburg, Germany
| | - K Egger
- Department of Neuroradiology, Medical Center, University of Freiburg, Faculty of Medicine, Breisacher Strasse 64, 79106 Freiburg, Germany
| | - H Urbach
- Department of Neuroradiology, Medical Center, University of Freiburg, Faculty of Medicine, Breisacher Strasse 64, 79106 Freiburg, Germany
| | - J Zentner
- Department of Neurosurgery, Medical Center, University of Freiburg, Faculty of Medicine, Breisacher Strasse 64, 79106 Freiburg, Germany
| | - J Beck
- Department of Neurosurgery, Medical Center, University of Freiburg, Faculty of Medicine, Breisacher Strasse 64, 79106 Freiburg, Germany
| | - H Hamer
- Epilepsy Center, Department of Neurology, University of Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - B J Steinhoff
- Epilepsy Center Kork, Landstrasse 1, 77694 Kehl, Germany
| | - C Baumgartner
- Neurological Center Rosenhügel & Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Riedelgasse 5, 1130 Vienna, Austria; Medical Faculty, Sigmund Freud Private University, Vienna, Austria
| | - A Schulze-Bonhage
- Department of Epileptology, Medical Center, University of Freiburg, Faculty of Medicine, Breisacher Strasse 64, 79106 Freiburg, Germany
| | - B Puhahn-Schmeiser
- Department of Neurosurgery, Medical Center, University of Freiburg, Faculty of Medicine, Breisacher Strasse 64, 79106 Freiburg, Germany.
| |
Collapse
|
29
|
Razavi B, Rao VR, Lin C, Bujarski KA, Patra SE, Burdette DE, Geller EB, Brown MGM, Johnson EA, Drees C, Chang EF, Greenwood JE, Heck CN, Jobst BC, Gwinn RP, Warner NM, Halpern CH. Real-world experience with direct brain-responsive neurostimulation for focal onset seizures. Epilepsia 2020; 61:1749-1757. [PMID: 32658325 PMCID: PMC7496294 DOI: 10.1111/epi.16593] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 11/30/2022]
Abstract
Objective The RNS System is a direct brain‐responsive neurostimulation system that is US Food and Drug Administration–approved for adults with medically intractable focal onset seizures based on safety and effectiveness data from controlled clinical trials. The purpose of this study was to retrospectively evaluate the real‐world safety and effectiveness of the RNS System. Methods Eight comprehensive epilepsy centers conducted a chart review of patients treated with the RNS System for at least 1 year, in accordance with the indication for use. Data included device‐related serious adverse events and the median percent change in disabling seizure frequency from baseline at years 1, 2, and 3 of treatment and at the most recent follow‐up. Results One hundred fifty patients met the criteria for analysis. The median reduction in seizures was 67% (interquartile range [IQR] = 33%‐93%, n = 149) at 1 year, 75% (IQR = 50%‐94%, n = 93) at 2 years, 82% (IQR = 50%‐96%, n = 38) at ≥3 years, and 74% (IQR = 50%‐96%, n = 150) at last follow‐up (mean = 2.3 years). Thirty‐five percent of patients had a ≥90% seizure frequency reduction, and 18% of patients reported being clinically seizure‐free at last follow‐up. Seizure frequency reductions were similar regardless of patient age, age at epilepsy onset, duration of epilepsy, seizure onset in mesial temporal or neocortical foci, magnetic resonance imaging findings, prior intracranial monitoring, prior epilepsy surgery, or prior vagus nerve stimulation treatment. The infection rate per procedure was 2.9% (6/150 patients); five of the six patients had an implant site infection, and one had osteomyelitis. Lead revisions were required in 2.7% (4/150), and 2.0% (3/150) of patients had a subdural hemorrhage, none of which had long‐lasting neurological consequences. Significance In this real‐world experience, safety was similar and clinical seizure outcomes exceeded those of the prospective clinical trials, corroborating effectiveness of this therapy and suggesting that clinical experience has informed more effective programming.
Collapse
Affiliation(s)
- Babak Razavi
- Stanford University School of Medicine, Stanford, CA, USA
| | - Vikram R Rao
- University of California, San Francisco, CA, USA
| | - Christine Lin
- Stanford University School of Medicine, Stanford, CA, USA
| | | | - Sanjay E Patra
- Spectrum Health Center, Michigan State University School of Human Medicine, East Lansing, MI, USA
| | - David E Burdette
- Spectrum Health Center, Michigan State University School of Human Medicine, East Lansing, MI, USA
| | | | | | - Emily A Johnson
- Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Janet E Greenwood
- Keck School of Medicine at University of Southern California, Los Angeles, CA, USA
| | - Christianne N Heck
- Keck School of Medicine at University of Southern California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
30
|
Taussig D, Chipaux M, Fohlen M, Dorison N, Bekaert O, Ferrand-Sorbets S, Dorfmüller G. Invasive evaluation in children (SEEG vs subdural grids). Seizure 2020; 77:43-51. [DOI: 10.1016/j.seizure.2018.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022] Open
|
31
|
Abstract
BACKGROUND Stereoelectroencephalography (SEEG) is an invasive diagnostic surgical procedure used to identify specific areas of seizure activity in the brain. SEEG has been shown in both adult and pediatric populations to be a safe and effective tool for preoperative decision making. USES: This is used in patients with medically refractory epilepsy who are potential candidates for brain surgery to control seizures. It is preferred over other invasive diagnostic procedures because of lower risk, reduced discomfort, and shorter operating times. OUTCOMES It has a distinct role in obtaining meaningful data that leads to more precise surgical options. All of this results in better seizure control and improved quality of life for the patients. CONCLUSION Knowledge of the SEEG procedure, its benefits, complications, and the neuroscience nurse's role will improve care for surgical patients and improve outcomes.
Collapse
|
32
|
Tandon N, Tong BA, Friedman ER, Johnson JA, Von Allmen G, Thomas MS, Hope OA, Kalamangalam GP, Slater JD, Thompson SA. Analysis of Morbidity and Outcomes Associated With Use of Subdural Grids vs Stereoelectroencephalography in Patients With Intractable Epilepsy. JAMA Neurol 2020; 76:672-681. [PMID: 30830149 DOI: 10.1001/jamaneurol.2019.0098] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Importance A major change has occurred in the evaluation of epilepsy with the availability of robotic stereoelectroencephalography (SEEG) for seizure localization. However, the comparative morbidity and outcomes of this minimally invasive procedure relative to traditional subdural electrode (SDE) implantation are unknown. Objective To perform a comparative analysis of the relative efficacy, procedural morbidity, and epilepsy outcomes consequent to SEEG and SDE in similar patient populations and performed by a single surgeon at 1 center. Design, Setting and Participants Overall, 239 patients with medically intractable epilepsy underwent 260 consecutive intracranial electroencephalographic procedures to localize their epilepsy. Procedures were performed from November 1, 2004, through June 30, 2017, and data were analyzed in June 2017 and August 2018. Interventions Implantation of SDE using standard techniques vs SEEG using a stereotactic robot, followed by resection or laser ablation of the seizure focus. Main Outcomes and Measures Length of surgical procedure, surgical complications, opiate use, and seizure outcomes using the Engel Epilepsy Surgery Outcome Scale. Results Of the 260 cases included in the study (54.6% female; mean [SD] age at evaluation, 30.3 [13.1] years), the SEEG (n = 121) and SDE (n = 139) groups were similar in age (mean [SD], 30.1 [12.2] vs 30.6 [13.8] years), sex (47.1% vs 43.9% male), numbers of failed anticonvulsants (mean [SD], 5.7 [2.5] vs 5.6 [2.5]), and duration of epilepsy (mean [SD], 16.4 [12.0] vs17.2 [12.1] years). A much greater proportion of SDE vs SEEG cases were lesional (99 [71.2%] vs 53 [43.8%]; P < .001). Seven symptomatic hemorrhagic sequelae (1 with permanent neurological deficit) and 3 infections occurred in the SDE cohort with no clinically relevant complications in the SEEG cohort, a marked difference in complication rates (P = .003). A greater proportion of SDE cases resulted in resection or ablation compared with SEEG cases (127 [91.4%] vs 90 [74.4%]; P < .001). Favorable epilepsy outcomes (Engel class I [free of disabling seizures] or II [rare disabling seizures]) were observed in 57 of 75 SEEG cases (76.0%) and 59 of 108 SDE cases (54.6%; P = .003) amongst patients undergoing resection or ablation, at 1 year. An analysis of only nonlesional cases revealed good outcomes in 27 of 39 cases (69.2%) vs 9 of 26 cases (34.6%) at 12 months in SEEG and SDE cohorts, respectively (P = .006). When considering all patients undergoing evaluation, not just those undergoing definitive procedures, favorable outcomes (Engel class I or II) for SEEG compared with SDE were similar (57 of 121 [47.1%] vs 59 of 139 [42.4%] at 1 year; P = .45). Conclusions and Relevance This direct comparison of large matched cohorts undergoing SEEG and SDE implantation reveals distinctly better procedural morbidity favoring SEEG. These modalities intrinsically evaluate somewhat different populations, with SEEG being more versatile and applicable to a range of scenarios, including nonlesional and bilateral cases, than SDE. The significantly favorable adverse effect profile of SEEG should factor into decision making when patients with pharmacoresistant epilepsy are considered for intracranial evaluations.
Collapse
Affiliation(s)
- Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health, Houston.,Mischer Neuroscience Institute, Memorial Hermann Hospital, Texas Medical Center, Houston
| | - Brian A Tong
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health, Houston
| | - Elliott R Friedman
- Department of Radiology, McGovern Medical School, University of Texas Health, Houston
| | - Jessica A Johnson
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health, Houston.,Mischer Neuroscience Institute, Memorial Hermann Hospital, Texas Medical Center, Houston
| | - Gretchen Von Allmen
- Department of Pediatrics, McGovern Medical School, University of Texas Health, Houston
| | - Melissa S Thomas
- Department of Neurology, McGovern Medical School, University of Texas Health, Houston
| | - Omotola A Hope
- Department of Neurology, McGovern Medical School, University of Texas Health, Houston
| | | | - Jeremy D Slater
- Department of Neurology, McGovern Medical School, University of Texas Health, Houston
| | - Stephen A Thompson
- Department of Neurology, McGovern Medical School, University of Texas Health, Houston
| |
Collapse
|
33
|
Stereotactic electroencephalography. Clin Neurol Neurosurg 2020; 189:105640. [DOI: 10.1016/j.clineuro.2019.105640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 11/23/2022]
|
34
|
Comparison of narcotic pain control between stereotactic electrocorticography and subdural grid implantation. Epilepsy Behav 2020; 103:106843. [PMID: 31882325 DOI: 10.1016/j.yebeh.2019.106843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The choice of subdural grid (SDG) or stereoelectroencephalography (sEEG) for patients with epilepsy can be complex and in some cases overlap. Comparing postoperative pain and narcotics consumption with SDG or sEEG can help develop an intracranial monitoring strategy. MATERIALS AND METHODS A retrospective study was performed for adult patients undergoing SDG or sEEG monitoring. Numeric Rating Scale (NRS) was used for pain assessment. Types and dosage of the opioids were calculated by converting into milligram morphine equivalents (MME). Narcotic consumption was analyzed at the following three time periods: I. the first 24 h of implantation; II. from the second postimplantation day to the day of explantation; and III. the days following electrode removal to discharge. RESULTS Forty-two patients who underwent SDG and 31 patients who underwent sEEG implantation were analyzed. After implantation, average NRS was 3.7 for SDG and 2.2 for sEEG (P < .001). After explantation, the NRS was 3.5 for SDG and 1.4 in sEEG (P < .001). Sixty percent of SDG patients and 13% of sEEG patients used more than one opioid in period III (P < .001). The SDG group had a significantly higher MME throughout the three periods compared with the sEEG group: period I: 448 (SDG) vs. 205 (sEEG) mg, P = .002; period II: 377 (SDG) vs. 102 (sEEG) mg, P < .001; and period III: 328 (SDG) vs. 75 (sEEG) mg; P = .002. Patients with the larger SDG implantation had the higher NRS (P = .03) and the higher MME at period I (P = .019). There was no correlation between the number of depth electrodes and pain control in patients with sEEG. CONCLUSIONS Patients undergoing sEEG had significantly less pain and required fewer opiates compared with patients with SDG. These differences in perioperative pain may be a consideration when choosing between these two invasive monitoring options.
Collapse
|
35
|
Foiadelli T, Lagae L, Goffin K, Theys T, De Amici M, Sacchi L, Van Loon J, Savasta S, Jansen K. Subtraction Ictal SPECT coregistered to MRI (SISCOM) as a guide in localizing childhood epilepsy. Epilepsia Open 2019; 5:61-72. [PMID: 32140644 PMCID: PMC7049808 DOI: 10.1002/epi4.12373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/28/2019] [Accepted: 11/10/2019] [Indexed: 01/26/2023] Open
Abstract
Objective To assess feasibility and efficacy of subtraction ictal SPECT coregistered to MRI (SISCOM) for epilepsy localization in children who are candidates for resective surgery. Methods We retrospectively reviewed all patients ≤16 years with drug‐resistant epilepsy screened for epilepsy surgery in the University Hospital of Leuven from January 2009 to January 2018. Fifty‐eight hospitalizations for ictal SPECT and 51 SISCOM analyses in 44 patients were included. Mean age was 9.1 years. Hospitalizations for SISCOM were analyzed in terms of multiple variables affecting feasibility and efficacy. The localization of SISCOM was compared with the localization of the presumed epileptogenic zone (PEZ) as determined by video‐EEG. Results SISCOM was feasible in terms of chronic medication management, rescue antiepileptic therapy during hospitalization, and operative timings. Radiotracer injection occurred within 30 seconds from seizure onset in 91.4% of the patients. ictal SPECT imaging was performed within two hours from injection in 100% of the patients (mean: 40 minutes). SISCOM was able to localize the PEZ in 51.0% (26/51) and to additionally lateralize the PEZ in 17.6% (9/51), achieving better localizations than ictal SPECT, FDG‐PET, and MRI (P < .01). SISCOM was useful to localize the PEZ in 25% of patients with poorly localizing video‐EEG and in 27.8% of MRI‐negative cases. The occurrence of habitual seizures during injection for ictal SPECT and the temporal localization of the PEZ both correlated with a better SISCOM localization (P < .05). 36.4% (16/44) patients were finally selected for resective surgery, with a 87.5% seizure‐free rate at 12 months. A localizing SISCOM was associated with seizure freedom in 66.7% and with a Engel I‐II in 75.0% of our patients. Significance SISCOM is a reliable tool to localize the epileptogenic zone in clinical practice and is both feasible and useful in children, adding precious presurgical information especially in patients with noninformative MRI or a poorly localizing video‐EEG.
Collapse
Affiliation(s)
- Thomas Foiadelli
- Pediatric Clinic Fondazione IRCCS Policlinico San Matteo University of Pavia Pavia Italy
| | - Lieven Lagae
- Department of Development and Regeneration University Hospitals Leuven Leuven Belgium
| | - Karolien Goffin
- Nuclear Medicine and Molecular Imaging University Hospitals Leuven KU Leuven Leuven Belgium
| | - Tom Theys
- Neurosurgery Department University Hospitals Leuven Leuven Belgium
| | - Mara De Amici
- Laboratory of Immuno-Allergology Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | - Lucia Sacchi
- Department of Electrical, Computer, and Biomedical Engineering University of Pavia Pavia Italy
| | | | - Salvatore Savasta
- Pediatric Clinic Fondazione IRCCS Policlinico San Matteo University of Pavia Pavia Italy
| | - Katrien Jansen
- Department of Development and Regeneration University Hospitals Leuven Leuven Belgium
| |
Collapse
|
36
|
Larkin C, O'Brien D, Maheshwari D. Anaesthesia for epilepsy surgery. BJA Educ 2019; 19:383-389. [PMID: 33456862 PMCID: PMC7807957 DOI: 10.1016/j.bjae.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2019] [Indexed: 11/28/2022] Open
|
37
|
Vakharia VN, Sparks R, Miserocchi A, Vos SB, O'Keeffe A, Rodionov R, McEvoy AW, Ourselin S, Duncan JS. Computer-Assisted Planning for Stereoelectroencephalography (SEEG). Neurotherapeutics 2019; 16:1183-1197. [PMID: 31432448 PMCID: PMC6985077 DOI: 10.1007/s13311-019-00774-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stereoelectroencephalography (SEEG) is a diagnostic procedure in which multiple electrodes are stereotactically implanted within predefined areas of the brain to identify the seizure onset zone, which needs to be removed to achieve remission of focal epilepsy. Computer-assisted planning (CAP) has been shown to improve trajectory safety metrics and generate clinically feasible trajectories in a fraction of the time needed for manual planning. We report a prospective validation study of the use of EpiNav (UCL, London, UK) as a clinical decision support software for SEEG. Thirteen consecutive patients (125 electrodes) undergoing SEEG were prospectively recruited. EpiNav was used to generate 3D models of critical structures (including vasculature) and other important regions of interest. Manual planning utilizing the same 3D models was performed in advance of CAP. CAP was subsequently employed to automatically generate a plan for each patient. The treating neurosurgeon was able to modify CAP generated plans based on their preference. The plan with the lowest risk score metric was stereotactically implanted. In all cases (13/13), the final CAP generated plan returned a lower mean risk score and was stereotactically implanted. No complication or adverse event occurred. CAP trajectories were generated in 30% of the time with significantly lower risk scores compared to manually generated. EpiNav has successfully been integrated as a clinical decision support software (CDSS) into the clinical pathway for SEEG implantations at our institution. To our knowledge, this is the first prospective study of a complex CDSS in stereotactic neurosurgery and provides the highest level of evidence to date.
Collapse
Affiliation(s)
- Vejay N Vakharia
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK.
| | - Rachel Sparks
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, UK
| | - Anna Miserocchi
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Sjoerd B Vos
- Wellcome Trust EPSRC Interventional and Surgical Sciences, University College London, London, UK
| | - Aidan O'Keeffe
- Department of Statistical Science, University College London, London, UK
| | - Roman Rodionov
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Andrew W McEvoy
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| |
Collapse
|
38
|
Bass DI, Buckley R, Meyer RM, Lawrence B, Paschall C, Ojemann J, Ko AL. Standard Free Versus Osteoplastic Craniotomy: Assessment of Complication Rates During Intracranial Electroencephalogram Electrode Placement for Seizure Localization. World Neurosurg 2019; 132:e599-e603. [PMID: 31442661 DOI: 10.1016/j.wneu.2019.08.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Patients with medically intractable epilepsy often undergo sequential surgeries and are therefore exposed to an elevated risk for infection, resulting in unanticipated returns to the operating room. The goal of our study was to determine whether use of an osteoplastic bone flap technique would reduce the infection rate in these patients. METHODS A single-institution, retrospective chart review of patients with medically intractable epilepsy for grid placement was performed. Univariate analyses and linear regression were used to assess primary outcomes, including infection and hematomas requiring surgical evacuation. Secondary outcomes included duration of treatment and other, unanticipated surgeries. RESULTS A total of 199 patients were identified, 56 (28%) with osteoplastic flaps. Standard free flaps were associated with an increased rate of infection at the craniotomy site (n = 24, 17%, vs. 0, 0%, P = 0.003), whereas osteoplastic flaps were associated with more returns to operating room for hematoma evacuation (n = 5, 9% vs. 3.2%, P = 0.024). Overall, the rate of return to operating room for unanticipated surgeries was similar, but infectious complications prolonged the duration of treatment (median: 17 days vs. 2 days, χ2 = 13.97, P < 0.001). CONCLUSIONS Osteoplastic bone flaps markedly decreased the risk of craniotomy infections compared with free flaps in patients undergoing sequential surgeries. This decrease is offset, however, by an increase in intracranial hematoma requiring return to the operating room. Infection appeared to be a more significant complication as it was associated with increased duration of treatment. The osteoplastic technique is especially appealing in those patients likely to undergo multiple surgeries in short succession.
Collapse
Affiliation(s)
- David I Bass
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, Washington, USA.
| | - Robert Buckley
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, Washington, USA
| | - R Michael Meyer
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Brady Lawrence
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Courtnie Paschall
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Jeffrey Ojemann
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Andrew L Ko
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
39
|
Shah SA, Tan H, Tinkhauser G, Brown P. Towards Real-Time, Continuous Decoding of Gripping Force From Deep Brain Local Field Potentials. IEEE Trans Neural Syst Rehabil Eng 2019; 26:1460-1468. [PMID: 29985155 DOI: 10.1109/tnsre.2018.2837500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lack of force information and longevity issues are impediments to the successful translation of brain-computer interface systems for prosthetic control from experimental settings to widespread clinical application. The ability to decode force using deep brain stimulation electrodes in the subthalamic nucleus (STN) of the basal ganglia provides an opportunity to address these limitations. This paper explores the use of various classes of algorithms (Wiener filter, Wiener-Cascade model, Kalman filter, and dynamic neural networks) and recommends the use of a Wiener-Cascade model for decoding force from STN. This recommendation is influenced by a combination of accuracy and practical considerations to enable real-time, continuous operation. This paper demonstrates an ability to decode a continuous signal (force) from the STN in real time, allowing the possibility of decoding more than two states from the brain at low latency.
Collapse
|
40
|
Nagahama Y, Schmitt AJ, Nakagawa D, Vesole AS, Kamm J, Kovach CK, Hasan D, Granner M, Dlouhy BJ, Howard MA, Kawasaki H. Intracranial EEG for seizure focus localization: evolving techniques, outcomes, complications, and utility of combining surface and depth electrodes. J Neurosurg 2019; 130:1180-1192. [PMID: 29799342 DOI: 10.3171/2018.1.jns171808] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/15/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Intracranial electroencephalography (iEEG) provides valuable information that guides clinical decision-making in patients undergoing epilepsy surgery, but it carries technical challenges and risks. The technical approaches used and reported rates of complications vary across institutions and evolve over time with increasing experience. In this report, the authors describe the strategy at the University of Iowa using both surface and depth electrodes and analyze outcomes and complications. METHODS The authors performed a retrospective review and analysis of all patients who underwent craniotomy and electrode implantation from January 2006 through December 2015 at the University of Iowa Hospitals and Clinics. The basic demographic and clinical information was collected, including electrode coverage, monitoring results, outcomes, and complications. The correlations between clinically significant complications with various clinical variables were analyzed using multivariate analysis. The Fisher exact test was used to evaluate a change in the rate of complications over the study period. RESULTS Ninety-one patients (mean age 29 ± 14 years, range 3-62 years), including 22 pediatric patients, underwent iEEG. Subdural surface (grid and/or strip) electrodes were utilized in all patients, and depth electrodes were also placed in 89 (97.8%) patients. The total number of electrode contacts placed per patient averaged 151 ± 58. The duration of invasive monitoring averaged 12.0 ± 5.1 days. In 84 (92.3%) patients, a seizure focus was localized by ictal onset (82 cases) or inferred based on interictal discharges (2 patients). Localization was achieved based on data obtained from surface electrodes alone (29 patients), depth electrodes alone (13 patients), or a combination of both surface and depth electrodes (42 patients). Seventy-two (79.1%) patients ultimately underwent resective surgery. Forty-seven (65.3%) and 18 (25.0%) patients achieved modified Engel class I and II outcomes, respectively. The mean follow-up duration was 3.9 ± 2.9 (range 0.1-10.5) years. Clinically significant complications occurred in 8 patients, including hematoma in 3 (3.3%) patients, infection/osteomyelitis in 3 (3.3%) patients, and edema/compression in 2 (2.2%) patients. One patient developed a permanent neurological deficit (1.1%), and there were no deaths. The hemorrhagic and edema/compression complications correlated significantly with the total number of electrode contacts (p = 0.01), but not with age, a history of prior cranial surgery, laterality, monitoring duration, and the number of each electrode type. The small number of infectious complications precluded multivariate analysis. The number of complications decreased from 5 of 36 cases (13.9%) to 3 of 55 cases (5.5%) during the first and last 5 years, respectively, but this change was not statistically significant (p = 0.26). CONCLUSIONS An iEEG implantation strategy that makes use of both surface and depth electrodes is safe and effective at identifying seizure foci in patients with medically refractory epilepsy. With experience and iterative refinement of technical surgical details, the risk of complications has decreased over time.
Collapse
Affiliation(s)
| | - Alan J Schmitt
- 2Neurology, University of Iowa Hospitals and Clinics, Iowa City
| | | | - Adam S Vesole
- 3Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City; and
| | - Janina Kamm
- 2Neurology, University of Iowa Hospitals and Clinics, Iowa City
| | | | | | - Mark Granner
- 2Neurology, University of Iowa Hospitals and Clinics, Iowa City
| | - Brian J Dlouhy
- Departments of1Neurosurgery and
- 4Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Matthew A Howard
- Departments of1Neurosurgery and
- 4Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | |
Collapse
|
41
|
Opie NL, Oxley TJ. Removing the need for invasive brain surgery: the potential of stent electrodes. ACTA ACUST UNITED AC 2019. [DOI: 10.2217/bem-2019-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the last decade, significant advances in brain–machine interfaces have demonstrated that people with paralysis can control assistive technology such as computers, wheelchairs and bionic arms with their minds. However, due to the invasive surgery required to access the brain and implant electrodes, to date, no device has received commercial US FDA approval, and consequently there is no existing solution to return independence and mobility for the hundreds-of-millions of people paralyzed by stroke, spinal cord injury and motor neuron disease. But there is hope. We have developed a minimally invasive brain–machine interface that can access the brain using cortical vessels which mitigates the risks associated with open brain surgery.
Collapse
Affiliation(s)
- Nicholas L Opie
- Synchron, Inc., Campbell, CA, 95008, USA
- Vascular Bionics Laboratory, The Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3052, Australia
- The Florey Institute of Neuroscience & Mental Health, Parkville, VIC, 3052, Australia
| | - Thomas J Oxley
- Synchron, Inc., Campbell, CA, 95008, USA
- Vascular Bionics Laboratory, The Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3052, Australia
- The Florey Institute of Neuroscience & Mental Health, Parkville, VIC, 3052, Australia
| |
Collapse
|
42
|
Mettenburg JM, Branstetter BF, Wiley CA, Lee P, Richardson RM. Improved Detection of Subtle Mesial Temporal Sclerosis: Validation of a Commercially Available Software for Automated Segmentation of Hippocampal Volume. AJNR Am J Neuroradiol 2019; 40:440-445. [PMID: 30733255 DOI: 10.3174/ajnr.a5966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/23/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Identification of mesial temporal sclerosis is critical in the evaluation of individuals with temporal lobe epilepsy. Our aim was to assess the performance of FDA-approved software measures of hippocampal volume to identify mesial temporal sclerosis in patients with medically refractory temporal lobe epilepsy compared with the initial clinical interpretation of a neuroradiologist. MATERIALS AND METHODS Preoperative MRIs of 75 consecutive patients who underwent a temporal resection for temporal lobe epilepsy from 2011 to 2016 were retrospectively reviewed, and 71 were analyzed using Neuroreader, a commercially available automated segmentation and volumetric analysis package. Volume measures, including hippocampal volume as a percentage of total intracranial volume and the Neuroreader Index, were calculated. Radiologic interpretations of the MR imaging and pathology from subsequent resections were classified as either mesial temporal sclerosis or other, including normal findings. These measures of hippocampal volume were evaluated by receiver operating characteristic curves on the basis of pathologic confirmation of mesial temporal sclerosis in the resected temporal lobe. Sensitivity and specificity were calculated for each method and compared by means of the McNemar test using the optimal threshold as determined by the Youden J point. RESULTS Optimized thresholds of hippocampal percentage of a structural volume relative to total intracranial volume (<0.19%) and the Neuroreader Index (≤-3.8) were selected to optimize sensitivity and specificity (89%/71% and 89%/78%, respectively) for the identification of mesial temporal sclerosis in temporal lobe epilepsy compared with the initial clinical interpretation of the neuroradiologist (50% and 87%). Automated measures of hippocampal volume predicted mesial temporal sclerosis more accurately than radiologic interpretation (McNemar test, P < .0001). CONCLUSIONS Commercially available automated segmentation and volume analysis of the hippocampus accurately identifies mesial temporal sclerosis and performs significantly better than the interpretation of the radiologist.
Collapse
Affiliation(s)
| | - B F Branstetter
- From the Departments of Radiology (J.M.M., B.F.B.,)
- Biomedical Informatics (B.F.B.)
| | | | - P Lee
- Neurosurgery (P.L., R.M.R.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - R M Richardson
- Neurosurgery (P.L., R.M.R.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Youngerman BE, Khan FA, McKhann GM. Stereoelectroencephalography in epilepsy, cognitive neurophysiology, and psychiatric disease: safety, efficacy, and place in therapy. Neuropsychiatr Dis Treat 2019; 15:1701-1716. [PMID: 31303757 PMCID: PMC6610288 DOI: 10.2147/ndt.s177804] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
For patients with drug-resistant epilepsy, surgical intervention may be an effective treatment option if the epileptogenic zone (EZ) can be well localized. Subdural strip and grid electrode (SDE) implantations have long been used as the mainstay of intracranial seizure localization in the United States. Stereoelectroencephalography (SEEG) is an alternative approach in which depth electrodes are placed through percutaneous drill holes to stereotactically defined coordinates in the brain. Long used in certain centers in Europe, SEEG is gaining wider popularity in North America, bolstered by the advent of stereotactic robotic assistance and mounting evidence of safety, without the need for catheter-based angiography. Rates of clinically significant hemorrhage, infection, and other complications appear lower with SEEG than with SDE implants. SEEG also avoids unnecessary craniotomies when seizures are localized to unresectable eloquent cortex, found to be multifocal or nonfocal, or ultimately treated with stereotactic procedures such as laser interstitial thermal therapy (LITT), radiofrequency thermocoagulation (RF-TC), responsive neurostimulation (RNS), or deep brain stimulation (DBS). While SDE allows for excellent localization and functional mapping on the cortical surface, SEEG offers a less invasive option for sampling disparate brain areas, bilateral investigations, and deep or medial targets. SEEG has shown efficacy for seizure localization in the temporal lobe, the insula, lesional and nonlesional extra-temporal epilepsy, hypothalamic hamartomas, periventricular nodular heterotopias, and patients who have had prior craniotomies for resections or grids. SEEG offers a valuable opportunity for cognitive neurophysiology research and may have an important role in the study of dysfunctional networks in psychiatric disease and understanding the effects of neuromodulation.
Collapse
Affiliation(s)
- Brett E Youngerman
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Farhan A Khan
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
44
|
Carlson AA, Rutishauser U, Mamelak AN. Safety and Utility of Hybrid Depth Electrodes for Seizure Localization and Single-Unit Neuronal Recording. Stereotact Funct Neurosurg 2018; 96:311-319. [PMID: 30326475 DOI: 10.1159/000493548] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/05/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Invasive electrode monitoring provides more precise localization of epileptogenic foci in patients with medically refractory epilepsy. The use of hybrid depth electrodes that include microwires for simultaneous single-neuron monitoring is becoming more widespread. OBJECTIVE To determine the safety and utility of hybrid depth electrodes for intracranial monitoring of medically refractory epilepsy. METHODS We reviewed the medical charts of 53 cases of medically refractory epilepsy operated on from 2006 to 2017, where both non-hybrid and hybrid microwire depth electrodes were used for intracranial monitoring. We assessed the localization accuracy and complications that arose to assess the relative safety and utility of hybrid depth electrodes compared with standard electrodes. RESULTS A total of 555 electrodes were implanted in 52 patients. The overall per-electrode complication rate was 2.3%, with a per-case complication rate of 20.8%. There were no infections or deaths. Serious or hemorrhagic complications occurred in 2 patients (0.4% per-electrode risk). Complications did not correlate with the use of any particular electrode type, and hybrids were equally as reliable as standard electrodes in localizing seizure onset zones. CONCLUSIONS Hybrid depth electrodes appear to be as safe and effective as standard depth electrodes for intracranial monitoring and provide unique opportunities to study the human brain at single-neuron resolution.
Collapse
Affiliation(s)
- April A Carlson
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California,
| |
Collapse
|
45
|
Chiong W, Leonard MK, Chang EF. Neurosurgical Patients as Human Research Subjects: Ethical Considerations in Intracranial Electrophysiology Research. Neurosurgery 2018; 83:29-37. [PMID: 28973530 PMCID: PMC5777911 DOI: 10.1093/neuros/nyx361] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/05/2017] [Indexed: 11/14/2022] Open
Abstract
Intracranial electrical recordings and stimulation of neurosurgical patients have been central to the advancement of human neuroscience. The use of these methods has rapidly expanded over the last decade due to theoretical and technical advances, as well as the growing number of neurosurgical patients undergoing functional procedures for indications such as epilepsy, tumor resection, and movement disorders. These methods pose the potential for ethical conflict, as they involve basic neuroscientific research utilizing invasive procedures in human patients undergoing treatment for neurological illnesses. This review addresses technical aspects, clinical contexts, and issues of ethical concern, utilizing a framework that is informed by, but also departs from, existing bioethical literature on matters in clinical research. We conclude with proposals for improving informed consent processes to address potential problems specific to intracranial electrophysiology research, a general schema for scrutinizing research-related risk associated with different methods, and a call for the development of consensus to ensure continuing scientific progress alongside crucial patient protections in this promising area of human neuroscience.
Collapse
Affiliation(s)
- Winston Chiong
- Weill Institute for Neurosciences, Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California
| | - Matthew K Leonard
- Weill Institute for Neurosciences, Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | - Edward F Chang
- Weill Institute for Neurosciences, Department of Neurosurgery, University of California San Francisco, San Francisco, California
| |
Collapse
|
46
|
Witkowska-Wrobel A, Aristovich K, Faulkner M, Avery J, Holder D. Feasibility of imaging epileptic seizure onset with EIT and depth electrodes. Neuroimage 2018; 173:311-321. [DOI: 10.1016/j.neuroimage.2018.02.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 11/27/2022] Open
|
47
|
Abstract
PURPOSE OF REVIEW Three randomized controlled trials demonstrate that surgical treatment is safe and effective for drug-resistant epilepsy (DRE), yet fewer than 1% of patients are referred for surgery. This is a review of recent trends in surgical referral for DRE, and advances in the field. Reasons for continued underutilization are discussed. RECENT FINDINGS Recent series indicate no increase in surgical referral for DRE over the past two decades. One study suggests that decreased referrals to major epilepsy centers can be accounted for by increased referrals to low-volume nonacademic hospitals where results are poorer, and complication rates higher. The increasing ability of high-resolution MRI to identify small neocortical lesions and an increase in pediatric surgeries, in part, explain a relative greater decrease in temporal lobe surgeries. Misconceptions continue to restrict referral. Consequently, advocacy for referral of all patients with DRE to epilepsy centers that offer specialized diagnosis and other alternative treatments, as well as psychosocial support, is recommended. Recent advances will continue to improve the safety and efficacy of surgical treatment and expand the types of patients who benefit from surgical intervention. SUMMARY Surgical treatment for epilepsy remains underutilized, in part because of persistent misconceptions. Rather than promote referral for surgery, it would be more appropriate to advocate that all patients with DRE deserve a consultation at a full-service epilepsy center that offers many options for eliminating or reducing disability.
Collapse
Affiliation(s)
- Jerome Engel
- Departments of Neurology, Neurobiology and Psychiatry and Biobehavioral Sciences and the Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
48
|
Lyu YE, Xu XF, Dai S, Dong XB, Shen SP, Wang Y, Liu C. Intracranial electrodes monitoring improves seizure control and complication outcomes for patients with temporal lobe epilepsy - A retrospective cohort study. Int J Surg 2018; 51:174-179. [DOI: 10.1016/j.ijsu.2018.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 01/04/2018] [Accepted: 01/10/2018] [Indexed: 02/01/2023]
|
49
|
Brandmeir N, Sather M. Utilizing neuronavigation for virtual electrode representation and safe resection following SEEG; a technical report. Br J Neurosurg 2018; 33:309-311. [PMID: 29461094 DOI: 10.1080/02688697.2018.1429562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Purpose: One of the most effective treatments for epilepsy is resection, but it remains underutilized. Efforts must be made to increase the ease, safety, and efficacy of epilepsy resection to improve utilization. Studies have shown an improved risk profile of stereoelectroencephalography (SEEG) over subdural grids (SDG) for invasive monitoring. One limitation to increased adoption of SEEG at epilepsy centers is the theoretical difficulty of planning a delayed resection once electrodes are removed. Our objective was to develop and present a technique using readily available neuronavigation technology to guide a cortical, non-lesional epilepsy resection with co-registration of imaging during invasive monitoring to imaging in an explanted patient, allowing for virtual visualization of electrodes. Methods: An example case taking advantage of the technique described above as an adjunct for an anatomically guided resection is presented with technical details and images. Results: Intraoperative neuronavigation was successfully used to virtually represent previously removed SEEG electrodes and accuracy could be easily verified by examining scars on the scalp, bone, dura and pia. Conclusions: The simple technique presented can be a useful adjunct to resection following SEEG. This may help increase the adoption of SEEG, even when resection is planned.
Collapse
Affiliation(s)
- Nicholas Brandmeir
- a Department of Neurosurgery , Penn State Health Milton S. Hershey Medical Center , Hershey , PA , USA
| | - Michael Sather
- a Department of Neurosurgery , Penn State Health Milton S. Hershey Medical Center , Hershey , PA , USA
| |
Collapse
|
50
|
Minotti L, Montavont A, Scholly J, Tyvaert L, Taussig D. Indications and limits of stereoelectroencephalography (SEEG). Neurophysiol Clin 2018; 48:15-24. [DOI: 10.1016/j.neucli.2017.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|