1
|
Singh T, Ramakrishnan S, Wu X, Reddy DS. Sex Differences in Organophosphate Model of Benzodiazepine-Refractory Status Epilepticus and Neuronal Damage. J Pharmacol Exp Ther 2024; 388:313-324. [PMID: 37770202 PMCID: PMC10801723 DOI: 10.1124/jpet.123.001747] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
Sex differences are common in human epilepsy. Although men are more susceptible to seizure than women, the mechanisms underlying sex-specific vulnerabilities to seizure are unclear. The organophosphate (OP) diisopropylfluorophosphate (DFP) is known to cause neurotoxicity and status epilepticus (SE), a serious neurologic condition that causes prolonged seizures and brain damage. Current therapies for OP poisoning and SE do not consider neuronal variations between male and female brains. Therefore, we investigated sex-dependent differences in electrographic seizure activity and neuronal injury using the DFP model of refractory SE in rats. Electroencephalogram recordings were used to monitor DFP-induced SE, and the extent of brain injury was determined using fluoro-jade-B staining to detect cellular necrosis. After DFP exposure, we observed striking sex-dependent differences in SE and seizure activity patterns as well as protective responses to midazolam treatment. Following acute DFP exposure, male animals displayed more severe SE with intense epileptiform spiking and greater mortality than females. In contrast, we observed significantly more injured cells and cellular necrosis in the hippocampus and other brain regions in females than in males. We also observed extensive neuronal injury in the somatosensory cortex of males. The anticonvulsant effect of midazolam against SE was limited in this model and found to be similar in males and females. However, unlike males, females exhibited substantially more protection against neuronal damage after midazolam treatment. Overall, these results demonstrate significant sex-dependent differences in DFP-induced refractory SE and neuronal damage patterns, suggesting that it may be possible to develop sex-specific neuroprotective strategies for OP intoxication and refractory SE. SIGNIFICANCE STATEMENT: Sex-dependent differences in neurotoxicity and status epilepticus (SE) are key biological variables after organophosphate (OP) exposure. Here, we investigated sex-dependent differences in SE and brain injury after acute diisopropylfluorophosphate exposure. Male rats had more severe SE and less survival than females, while females had more neuronal damage. Females had more neuroprotection to midazolam than males, while both sexes had similar but partial anticonvulsant effects. These findings suggest that a sex-specific therapeutic approach may prevent neurological complications of OP-induced SE.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics and Institute of Pharmacology and Neurotherapeutics, Texas A&M University School of Medicine, Bryan, Texas
| | - Sreevidhya Ramakrishnan
- Department of Neuroscience and Experimental Therapeutics and Institute of Pharmacology and Neurotherapeutics, Texas A&M University School of Medicine, Bryan, Texas
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics and Institute of Pharmacology and Neurotherapeutics, Texas A&M University School of Medicine, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics and Institute of Pharmacology and Neurotherapeutics, Texas A&M University School of Medicine, Bryan, Texas
| |
Collapse
|
2
|
Brodovskaya A, Sun H, Adotevi N, Wenker IC, Mitchell KE, Clements RT, Kapur J. Neuronal plasticity contributes to postictal death. Prog Neurobiol 2023; 231:102531. [PMID: 37778436 PMCID: PMC10842614 DOI: 10.1016/j.pneurobio.2023.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/07/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Repeated generalized tonic-clonic seizures (GTCSs) are the most critical risk factor for sudden unexpected death in epilepsy (SUDEP). GTCSs can cause fatal apnea. We investigated neuronal plasticity mechanisms that precipitate postictal apnea and seizure-induced death. Repeated seizures worsened behavior, precipitated apnea, and enlarged active neuronal circuits, recruiting more neurons in such brainstem nuclei as periaqueductal gray (PAG) and dorsal raphe, indicative of brainstem plasticity. Seizure-activated neurons are more excitable and have enhanced AMPA-mediated excitatory transmission after a seizure. Global deletion of the GluA1 subunit of AMPA receptors abolishes postictal apnea and seizure-induced death. Treatment with a drug that blocks Ca2+-permeable AMPA receptors also renders mice apnea-free with five-fold better survival than untreated mice. Repeated seizures traffic the GluA1 subunit-containing AMPA receptors to synapses, and blocking this mechanism decreases the probability of postictal apnea and seizure-induced death.
Collapse
Affiliation(s)
| | - Huayu Sun
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Nadia Adotevi
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Ian C Wenker
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Keri E Mitchell
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Rachel T Clements
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA; UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
3
|
Skwarzynska D, Sun H, Kasprzak I, Sharma S, Williamson J, Kapur J. Glycolytic lactate production supports status epilepticus in experimental animals. Ann Clin Transl Neurol 2023; 10:1873-1884. [PMID: 37632130 PMCID: PMC10578888 DOI: 10.1002/acn3.51881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE Status epilepticus (SE) requires rapid intervention to prevent cerebral injury and mortality. The ketogenic diet, which bypasses glycolysis, is a promising remedy for patients with refractory SE. We tested the role of glycolytic lactate production in sustaining SE. METHODS Extracellular lactate and glucose concentration during a seizure and SE in vivo was measured using lactate and glucose biosensors. A lactate dehydrogenase inhibitor, oxamate, blocked pyruvate to lactate conversion during SE. Video-EEG recordings evaluated seizure duration, severity, and immunohistochemistry was used to determine neuronal loss. Genetically encoded calcium indicator GCaMP7 was used to study the effect of oxamate on CA1 pyramidal neurons in vitro. Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded from CA1 neurons to study oxamate's impact on neurotransmission. RESULTS The extracellular glucose concentration dropped rapidly during seizures, and lactate accumulated in the extracellular space. Inhibition of pyruvate to lactate conversion with oxamate terminated SE in mice. There was less neuronal loss in treated compared to control mice. Oxamate perfusion decreased tonic and phasic neuronal activity of GCaMP7-expressing CA1 pyramidal neurons in vitro. Oxamate application reduced the frequency, but not amplitude of sEPSCs recorded from CA1 neurons, suggesting an effect on the presynaptic glutamatergic neurotransmission. INTERPRETATION A single seizure and SE stimulate lactate production. Diminishing pyruvate to lactate conversion with oxamate terminated SE and reduced associated neuronal death. Oxamate reduced neuronal excitability and excitatory neurotransmission at the presynaptic terminal. Glycolytic lactate production sustains SE and is an attractive therapeutic target.
Collapse
Affiliation(s)
- Daria Skwarzynska
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVirginia22908USA
| | - Huayu Sun
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908USA
| | - Izabela Kasprzak
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908USA
| | - Supriya Sharma
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908USA
| | - John Williamson
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908USA
| | - Jaideep Kapur
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginia22908USA
- UVA Brain InstituteUniversity of VirginiaCharlottesvilleVirginia22908USA
| |
Collapse
|
4
|
Sullivan KA, Vitko I, Blair K, Gaykema RP, Failor MJ, San Pietro JM, Dey D, Williamson JM, Stornetta RL, Kapur J, Perez-Reyes E. Drug-Inducible Gene Therapy Effectively Reduces Spontaneous Seizures in Kindled Rats but Creates Off-Target Side Effects in Inhibitory Neurons. Int J Mol Sci 2023; 24:11347. [PMID: 37511107 PMCID: PMC10379297 DOI: 10.3390/ijms241411347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Over a third of patients with temporal lobe epilepsy (TLE) are not effectively treated with current anti-seizure drugs, spurring the development of gene therapies. The injection of adeno-associated viral vectors (AAV) into the brain has been shown to be a safe and viable approach. However, to date, AAV expression of therapeutic genes has not been regulated. Moreover, a common property of antiepileptic drugs is a narrow therapeutic window between seizure control and side effects. Therefore, a long-term goal is to develop drug-inducible gene therapies that can be regulated by clinically relevant drugs. In this study, a first-generation doxycycline-regulated gene therapy that delivered an engineered version of the leak potassium channel Kcnk2 (TREK-M) was injected into the hippocampus of male rats. Rats were electrically stimulated until kindled. EEG was monitored 24/7. Electrical kindling revealed an important side effect, as even low expression of TREK M in the absence of doxycycline was sufficient to cause rats to develop spontaneous recurring seizures. Treating the epileptic rats with doxycycline successfully reduced spontaneous seizures. Localization studies of infected neurons suggest seizures were caused by expression in GABAergic inhibitory neurons. In contrast, doxycycline increased the expression of TREK-M in excitatory neurons, thereby reducing seizures through net inhibition of firing. These studies demonstrate that drug-inducible gene therapies are effective in reducing spontaneous seizures and highlight the importance of testing for side effects with pro-epileptic stressors such as electrical kindling. These studies also show the importance of evaluating the location and spread of AAV-based gene therapies in preclinical studies.
Collapse
Affiliation(s)
- Kyle A Sullivan
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Iuliia Vitko
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | - Kathryn Blair
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | - Ronald P Gaykema
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | - Madison J Failor
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | | | - Deblina Dey
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | - John M Williamson
- Department of Neurology, University of Virginia, Charlottesville, VA 22980, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22980, USA
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22980, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22980, USA
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22980, USA
| |
Collapse
|
5
|
Gibbs-Shelton S, Benderoth J, Gaykema RP, Straub J, Okojie KA, Uweru JO, Lentferink DH, Rajbanshi B, Cowan MN, Patel B, Campos-Salazar AB, Perez-Reyes E, Eyo UB. Microglia play beneficial roles in multiple experimental seizure models. Glia 2023; 71:1699-1714. [PMID: 36951238 DOI: 10.1002/glia.24364] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/24/2023]
Abstract
Seizure disorders are common, affecting both the young and the old. Currently available antiseizure drugs are ineffective in a third of patients and have been developed with a focus on known neurocentric mechanisms, raising the need for investigations into alternative and complementary mechanisms that contribute to seizure generation or its containment. Neuroinflammation, broadly defined as the activation of immune cells and molecules in the central nervous system (CNS), has been proposed to facilitate seizure generation, although the specific cells involved in these processes remain inadequately understood. The role of microglia, the primary inflammation-competent cells of the brain, is debated since previous studies were conducted using approaches that were less specific to microglia or had inherent confounds. Using a selective approach to target microglia without such side effects, we show a broadly beneficial role for microglia in limiting chemoconvulsive, electrical, and hyperthermic seizures and argue for a further understanding of microglial contributions to contain seizures.
Collapse
Affiliation(s)
- Synphane Gibbs-Shelton
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Jordan Benderoth
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Ronald P Gaykema
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Justyna Straub
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Kenneth A Okojie
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Joseph O Uweru
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Dennis H Lentferink
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Binita Rajbanshi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Maureen N Cowan
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Brij Patel
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Anthony Brayan Campos-Salazar
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Skwarzynska D, Sun H, Williamson J, Kasprzak I, Kapur J. Glycolysis regulates neuronal excitability via lactate receptor, HCA1R. Brain 2023; 146:1888-1902. [PMID: 36346130 PMCID: PMC10411940 DOI: 10.1093/brain/awac419] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Repetitively firing neurons during seizures accelerate glycolysis to meet energy demand, which leads to the accumulation of extracellular glycolytic by-product lactate. Here, we demonstrate that lactate rapidly modulates neuronal excitability in times of metabolic stress via the hydroxycarboxylic acid receptor type 1 (HCA1R) to modify seizure activity. The extracellular lactate concentration, measured by a biosensor, rose quickly during brief and prolonged seizures. In two epilepsy models, mice lacking HCA1R (lactate receptor) were more susceptible to developing seizures. Moreover, HCA1R deficient (knockout) mice developed longer and more severe seizures than wild-type littermates. Lactate perfusion decreased tonic and phasic activity of CA1 pyramidal neurons in genetically encoded calcium indicator 7 imaging experiments. HCA1R agonist 3-chloro-5-hydroxybenzoic acid (3CL-HBA) reduced the activity of CA1 neurons in HCA1R WT but not in knockout mice. In patch-clamp recordings, both lactate and 3CL-HBA hyperpolarized CA1 pyramidal neurons. HCA1R activation reduced the spontaneous excitatory postsynaptic current frequency and altered the paired-pulse ratio of evoked excitatory postsynaptic currents in HCA1R wild-type but not in knockout mice, suggesting it diminished presynaptic release of excitatory neurotransmitters. Overall, our studies demonstrate that excessive neuronal activity accelerates glycolysis to generate lactate, which translocates to the extracellular space to slow neuronal firing and inhibit excitatory transmission via HCA1R. These studies may identify novel anticonvulsant target and seizure termination mechanisms.
Collapse
Affiliation(s)
- Daria Skwarzynska
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Huayu Sun
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - John Williamson
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Izabela Kasprzak
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
7
|
Shelton-Gibbs S, Benderoth J, Gaykema RP, Straub J, Okojie KA, Uweru JO, Lentferink DH, Rajbanshi B, Cowan MN, Patel B, Campos-Salazar AB, Perez-Reyes E, Eyo UB. Microglia play beneficial roles in multiple experimental seizure models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.04.531090. [PMID: 36945556 PMCID: PMC10028974 DOI: 10.1101/2023.03.04.531090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Seizure disorders are common, affecting both the young and the old. Currently available antiseizure drugs are ineffective in a third of patients and have been developed with a focus on known neurocentric mechanisms, raising the need for investigations into alternative and complementary mechanisms that contribute to seizure generation or its containment. Neuroinflammation, broadly defined as the activation of immune cells and molecules in the central nervous system (CNS), has been proposed to facilitate seizure generation, although the specific cells involved in these processes remain inadequately understood. The role of microglia, the primary inflammation-competent cells of the brain, is debated since previous studies were conducted using approaches that were less specific to microglia or had inherent confounds. Using a selective approach to target microglia without such side effects, we show a broadly beneficial role for microglia in limiting chemoconvulsive, electrical, and hyperthermic seizures and argue for a further understanding of microglial contributions to contain seizures.
Collapse
Affiliation(s)
- Synphane Shelton-Gibbs
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Jordan Benderoth
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Ronald P. Gaykema
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Justyna Straub
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Kenneth A. Okojie
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Joseph O. Uweru
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Dennis H. Lentferink
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Binita Rajbanshi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Maureen N. Cowan
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Brij Patel
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Anthony Brayan Campos-Salazar
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Ukpong B. Eyo
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Negative effects of brain regulatory T cells depletion on epilepsy. Prog Neurobiol 2022; 217:102335. [PMID: 35931355 DOI: 10.1016/j.pneurobio.2022.102335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
The infiltration of immune cells is observed in the epileptogenic zone; however, the relationship between epilepsy and regulatory T cells (Tregs) remains only partially understood. We aimed to investigate brain-infiltrating Tregs to reveal their underlying role in epilepsy. We analyzed the infiltration of Tregs in the epileptogenic zones from patients with epilepsy and a pilocarpine-induced temporal lobe epilepsy (TLE) model. Next, we evaluated the effects of brain Treg depletion on neuroinflammation, neuronal loss, oxidative stress, seizure activity and behavioral changes in the pilocarpine model. We also explored the impact of Treg expansion in the brain on seizure activity. There were a large number of Tregs in the epileptogenic zones of human and experimental epilepsy. The number of brain Tregs was negatively correlated with the frequency of seizures in patients with epilepsy. Our further findings demonstrated that brain Treg depletion promoted astrocytosis, microgliosis, inflammatory cytokine production, oxidative stress, and neuronal loss in the hippocampus after status epilepticus (SE). Moreover, brain Treg depletion increased seizure activity and contributed to behavioral impairments in experimental chronic TLE. Interestingly, intracerebroventricular injection of CCL20 amplified Tregs in brain tissue, thereby inhibiting seizure activity. Taken together, our study highlights the therapeutic potential of regulating Tregs in epileptic brain tissue.
Collapse
|
9
|
Singh T, Batabyal T, Kapur J. Neuronal circuits sustaining neocortical-injury-induced status epilepticus. Neurobiol Dis 2022; 165:105633. [PMID: 35065250 PMCID: PMC8860889 DOI: 10.1016/j.nbd.2022.105633] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES Acute injuries or insults to the cortex, such as trauma, subarachnoid hemorrhage, lobar hemorrhage, can cause seizures or status epilepticus(SE). Neocortical SE is associated with coma, worse prognosis, delayed recovery, and the development of epilepsy. The anatomical structures progressively recruited during neocortical-onset status epilepticus (SE) is unknown. Therefore, we constructed large-scale maps of brain regions active during neocortical SE. METHODS We used a neocortical injury-induced SE mouse model. We implanted cobalt (Co) in the right supplementary motor cortex (M2). We 16 h later administered a homocysteine injection (845 mg/kg, intraperitoneal) to C57Bl/6 J mice to induce SE and monitored it by video and EEG. We harvested animals for 1 h (early-stage) and 2 h (late-stage) following homocysteine injections. To construct activation maps, we immunolabeled whole-brain sections for cFos and NeuN, imaged them using a confocal microscope and quantified cFos immunoreactivity (IR). RESULTS SE in the early phase consisted of discrete, focal intermittent seizures, which became continuous and bilateral in the late stage. In this early stage, cFos IR was primarily observed in the right hemisphere, ipsilateral to the Co lesion, specifically in the motor cortex, retrosplenial cortex, somatosensory cortex, anterior cingulate cortex, lateral and medial septal nuclei, and amygdala. We observed bilateral cFos IR in brain regions during the late stage, indicating the bilateral spread of focal seizures. We found increased cFOS IR in the bilateral somatosensory cortex and the motor cortex and subcortical regions, including the amygdala, thalamus, and hypothalamus. There was noticeably different, intense cFos IR in the bilateral hippocampus compared to the early stage. In addition, there was higher activity in the cortex ipsilateral to the seizure focus during the late stage compared with the early one. CONCLUSION We present a large-scale, high-resolution map of seizure spread during neocortical injury-induced SE. Cortico-cortical and cortico subcortical re-entrant circuits sustain neocortical SE. Neuronal loss following neocortical SE, distant from the neocortical focus, may result from seizures.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Tamal Batabyal
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA; UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
10
|
Adotevi N, Kapur J. Focal impaired awareness seizures in a rodent model: A functional anatomy. Epilepsia Open 2022; 7:110-123. [PMID: 34822222 PMCID: PMC8886100 DOI: 10.1002/epi4.12563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Patients with temporal lobe epilepsy (TLE) frequently report debilitating comorbidities such as memory impairments, anxiety, and depression. An extensive neuronal network generates epileptic seizures and associated comorbidities, but a detailed description of this network is unavailable, which requires the generation of neuronal activation maps in experimental animals. METHODS We recorded electrographic seizures from the hippocampi during a kindling-evoked focal impaired awareness seizure with observed freezing, facial twitching, and involuntary head bobbing. We mapped seizure circuits activated during these seizures by permanently tagging neurons through activity-induced immediate early genes, combined with immunohistochemical approaches. RESULTS There was bilateral activation of circuits necessary for memory consolidation, including the hippocampal complex, entorhinal cortex, cingulate gyrus, retrosplenial cortex, piriform cortex, and septohippocampal complex in kindled animals compared with unstimulated awake behaving mice. Neuronal circuits in the ventral hippocampus, amygdala, and anterior cingulate cortex, which regulate the stress response of hypothalamic-pituitary-adrenal axis, were also markedly activated during a focal impaired awareness seizure. SIGNIFICANCE This study highlights neuronal circuits preferentially activated during a focal awareness impaired seizure in a rodent model. Many of the seizure-activated neuronal circuits are critical modulators of memory consolidation and long-term stress/depression response. The hijack of these memory and depression regulatory systems by a focal seizure could account for the frequent reports of comorbidities such as memory impairment and depression in many TLE patients.
Collapse
Affiliation(s)
- Nadia Adotevi
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Jaideep Kapur
- Department of NeurologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- UVA Brain InstituteUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
11
|
Thergarajan P, Hudson MR, Carmichael I, Clasadonte J, Dedeurwaerdere S, O'Brien TJ, Jones NC, Ali I. Characterising seizure development, behavioural comorbidities and neuroinflammation in a self-sustained electrical status epilepticus model of mesial temporal lobe epilepsy in C57BL/6J mice. Neurobiol Dis 2022; 168:105688. [DOI: 10.1016/j.nbd.2022.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
|
12
|
Reddy DS, Zaayman M, Kuruba R, Wu X. Comparative profile of refractory status epilepticus models following exposure of cholinergic agents pilocarpine, DFP, and soman. Neuropharmacology 2021; 191:108571. [PMID: 33878303 DOI: 10.1016/j.neuropharm.2021.108571] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/24/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Status epilepticus (SE) is a medical emergency with continuous seizure activity that causes profound neuronal damage, morbidity, or death. SE incidents can arise spontaneously but mostly are elicited by seizurogenic triggers. Chemoconvulsants such as the muscarinic agonist pilocarpine and, organophosphates (OP) such as the pesticide diisopropylfluorophosphate (DFP) and, the nerve agent soman, can induce SE. Pilocarpine, DFP, and soman share a common feature of cholinergic crisis that transitions into a state of refractory SE, but their comparative profiles remain unclear. Here, we evaluated the comparative convulsant profile of pilocarpine, DFP, and soman to produce refractory SE and brain damage in rats. Behavioral and electrographic seizures were monitored for 24 h after exposure, and the extent of brain injury was determined by histological markers of neuronal injury and degeneration. Seizures were elicited rather slowly after pilocarpine as compared to DFP or soman, which caused rapid onset of spiking that swiftly developed into persistent SE. Time-course of SE activity after DFP was comparable to that after soman, a potent nerve agent. Diazepam controlled pilocarpine-induced SE, but it was ineffective in reducing OP-induced SE. All three agents produced modestly different degrees of neuronal injury and neurodegeneration in the brain. These results reveal distinct convulsant and neuronal injury patterns following exposure to cholinergic agonists, OP pesticides, and nerve agents. A battery of SE models, especially SE induced by cholinergic agents and other etiologies including epilepsy and brain tumors, is essential to identify novel anticonvulsant therapies for the management of refractory SE.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX, 77807, USA.
| | - Marcus Zaayman
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Ramkumar Kuruba
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX, 77807, USA
| |
Collapse
|
13
|
Singh T, Joshi S, Williamson JM, Kapur J. Neocortical injury-induced status epilepticus. Epilepsia 2020; 61:2811-2824. [PMID: 33063874 DOI: 10.1111/epi.16715] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To characterize neocortical onset status epilepticus (SE) in the C57BL/6J mouse. METHODS We induced SE by administering homocysteine 16-18 hours after cobalt (Co) implantation. SE was monitored by video and electroencephalography (EEG). We evaluated brain structure with magnetic resonance imaging (MRI). Neurodegeneration was evaluated 72 hours after SE using Fluoro-Jade C staining. RESULTS Cobalt triggered seizures in a dose-dependent manner (median effective dose, ED50 = 0.78 mg) and the latency to peak seizure frequency shortened with increased dose. Animals developed SE after homocysteine administration. SE began with early intermittent focal seizures, consisting of frontal onset rhythmic spike-wave discharges manifested as focal dystonia with clonus. These focal seizures then evolved into generalized continuous convulsive activity. Behavioral manifestations of SE included tonic stiffening, bilateral limb clonus, and bilateral tonic-clonic movements, which were accompanied by generalized rhythmic spike-wave discharges on EEG. After prolonged seizures, animals became comatose with intermittent bilateral myoclonic seizures or jerks. During this period, EEG showed seizures interspersed with generalized periodic discharges on a suppressed background. MRI obtained when animals were in a coma revealed edema, midline shift in frontal lobe around the Co implantation site, and ventricular effacement. Fluoro-Jade C staining revealed neurodegeneration in the cortex, amygdala, and thalamus. SIGNIFICANCE We have developed a mouse model of severe, refractory cortical-onset SE, consisting of convulsions merging into a coma, EEG patterns of cortical seizures, and injury, with evidence of widespread neocortical edema and damage. This model replicates many features of acute seizures and SE resulting from traumatic brain injury, subarachnoid, and lobar hemorrhage.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - John M Williamson
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA, USA.,UVA Brain Institute, University of Virginia, Charlottesville, VA, USA.,Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
14
|
Straub J, Gawda A, Ravichandran P, McGrew B, Nylund E, Kang J, Burke C, Vitko I, Scott M, Williamson J, Joshi S, Kapur J, Perez-Reyes E. Characterization of kindled VGAT-Cre mice as a new animal model of temporal lobe epilepsy. Epilepsia 2020; 61:2277-2288. [PMID: 32954490 DOI: 10.1111/epi.16651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Development of novel therapies for temporal lobe epilepsy is hindered by a lack of models suitable for drug screening. While testing the hypothesis that "inhibiting inhibitory neurons" was sufficient to induce seizures, it was discovered that a mild electrical kindling protocol of VGAT-Cre mice led to spontaneous motor and electrographic seizures. This study characterizes these seizures and investigates the mechanism. METHODS Mice were implanted with electroencephalographic (EEG) headsets that included a stimulating electrode in the hippocampus before being electrically kindled. Seizures were evaluated by review of EEG recordings and behavior. γ-Aminobutyric acidergic (GABAergic) neurotransmission was evaluated by quantitative polymerase chain reaction, immunocytochemistry, Western blot, and electrophysiology. RESULTS Electrical kindling of VGAT-Cre mice induces spontaneous recurring seizures after a short latency (6 days). Seizures occur 1-2 times per day in both male and female mice, with only minimal neuronal death. These mice express Cre recombinase under the control of the vesicular GABA transporter (VGAT), a gene that is specifically expressed in GABAergic inhibitory neurons. The insertion of Cre disrupts the expression of VGAT mRNA and protein, and impairs GABAergic synaptic transmission in the hippocampus. SIGNIFICANCE Kindled VGAT-Cre mice can be used to study the mechanisms involved in epileptogenesis and may be useful for screening novel therapeutics.
Collapse
Affiliation(s)
- Justyna Straub
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Agnieszka Gawda
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Pranav Ravichandran
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Bailey McGrew
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Elsa Nylund
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Julianna Kang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Cassidy Burke
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Iuliia Vitko
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Michael Scott
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - John Williamson
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA.,UVA Brain Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.,UVA Brain Institute, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
15
|
Wagley PK, Williamson J, Skwarzynska D, Kapur J, Burnsed J. Continuous Video Electroencephalogram during Hypoxia-Ischemia in Neonatal Mice. J Vis Exp 2020. [PMID: 32597865 DOI: 10.3791/61346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hypoxia ischemia is the most common cause of neonatal seizures. Animal models are crucial for understanding the mechanisms and physiology underlying neonatal seizures and hypoxia ischemia. This manuscript describes a method for continuous video electroencephalogram (EEG) monitoring in neonatal mice to detect seizures and analyze EEG background during hypoxia ischemia. Use of video and EEG in conjunction allows description of seizure semiology and confirmation of seizures. This method also allows analysis of power spectrograms and EEG background pattern trends over the experimental time period. In this hypoxia ischemia model, the method allows EEG recording prior to injury to obtain a normative baseline and during injury and recovery. Total monitoring time is limited by the inability to separate pups from the mother for longer than four hours. Although, we have used a model of hypoxic-ischemic seizures in this manuscript, this method for neonatal video EEG monitoring could be applied to diverse disease and seizure models in rodents.
Collapse
Affiliation(s)
- Pravin K Wagley
- Department of Pediatrics, University of Virginia; Department of Neurology, University of Virginia
| | | | | | - Jaideep Kapur
- Department of Neurology, University of Virginia; Brain Institute, University of Virginia; Department of Neuroscience, University of Virginia
| | - Jennifer Burnsed
- Department of Pediatrics, University of Virginia; Department of Neurology, University of Virginia;
| |
Collapse
|
16
|
Adotevi N, Lewczuk E, Sun H, Joshi S, Dabrowska N, Shan S, Williamson J, Kapur J. α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor Plasticity Sustains Severe, Fatal Status Epilepticus. Ann Neurol 2019; 87:84-96. [PMID: 31675128 DOI: 10.1002/ana.25635] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Generalized convulsive status epilepticus is associated with high mortality. We tested whether α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor plasticity plays a role in sustaining seizures, seizure generalization, and mortality observed during focal onset status epilepticus. We also determined whether modified AMPA receptors generated during status epilepticus could be targeted with a drug. METHODS Electrically induced status epilepticus was characterized by electroencephalogram and behavior in GluA1 knockout mice and in transgenic mice with selective knockdown of the GluA1 subunit in hippocampal principal neurons. Excitatory and inhibitory synaptic transmission in CA1 neurons was studied using patch clamp electrophysiology. The dose response of N,N,H,-trimethyl-5-([tricyclo(3.3.1.13,7)dec-1-ylmethyl]amino)-1-pentanaminiumbromide hydrobromide (IEM-1460), a calcium-permeable AMPA receptor antagonist, was determined. RESULTS Global removal of the GluA1 subunit did not affect seizure susceptibility; however, it reduced susceptibility to status epilepticus. GluA1 subunit knockout also reduced mortality, severity, and duration of status epilepticus. Absence of the GluA1 subunit prevented enhancement of glutamatergic synaptic transmission associated with status epilepticus; however, γ-aminobutyric acidergic synaptic inhibition was compromised. Selective removal of the GluA1 subunit from hippocampal principal neurons also reduced mortality, severity, and duration of status epilepticus. IEM-1460 rapidly terminated status epilepticus in a dose-dependent manner. INTERPRETATION AMPA receptor plasticity mediated by the GluA1 subunit plays a critical role in sustaining and amplifying seizure activity and contributes to mortality. Calcium-permeable AMPA receptors modified during status epilepticus can be inhibited to terminate status epilepticus. ANN NEUROL 2020;87:84-96.
Collapse
Affiliation(s)
- Nadia Adotevi
- Department of Neurology, University of Virginia, Charlottesville, VA
| | - Ewa Lewczuk
- Department of Neurology, University of Virginia, Charlottesville, VA
| | - Huayu Sun
- Department of Neurology, University of Virginia, Charlottesville, VA
| | - Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA
| | - Natalia Dabrowska
- Department of Neurology, University of Virginia, Charlottesville, VA
| | - Sarah Shan
- College of Arts and Sciences, University of Virginia, Charlottesville, VA
| | - John Williamson
- Department of Neurology, University of Virginia, Charlottesville, VA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA.,Department of Neuroscience, University of Virginia, Charlottesville, VA.,UVA Brain Institute, University of Virginia, Charlottesville, VA
| |
Collapse
|
17
|
Dabrowska N, Joshi S, Williamson J, Lewczuk E, Lu Y, Oberoi S, Brodovskaya A, Kapur J. Parallel pathways of seizure generalization. Brain 2019; 142:2336-2351. [PMID: 31237945 PMCID: PMC6658865 DOI: 10.1093/brain/awz170] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/13/2023] Open
Abstract
Generalized convulsive status epilepticus is a life-threatening emergency, because recurrent convulsions can cause death or injury. A common form of generalized convulsive status epilepticus is of focal onset. The neuronal circuits activated during seizure spread from the hippocampus, a frequent site of seizure origin, to the bilateral motor cortex, which mediates convulsive seizures, have not been delineated. Status epilepticus was initiated by electrical stimulation of the hippocampus. Neurons transiently activated during seizures were labelled with tdTomato and then imaged following brain slice clearing. Hippocampus was active throughout the episode of status epilepticus. Neuronal activation was observed in hippocampus parahippocampal structures: subiculum, entorhinal cortex and perirhinal cortex, septum, and olfactory system in the initial phase status epilepticus. The tdTomato-labelled neurons occupied larger volumes of the brain as seizures progressed and at the peak of status epilepticus, motor and somatosensory cortex, retrosplenial cortex, and insular cortex also contained tdTomato-labelled neurons. In addition, motor thalamic nuclei such as anterior and ventromedial, midline, reticular, and posterior thalamic nuclei were also activated. Furthermore, circuits proposed to be crucial for systems consolidation of memory: entorhinal cortex, retrosplenial cortex, cingulate gyrus, midline thalamic nuclei and prefrontal cortex were intensely active during periods of generalized tonic-clonic seizures. As the episode of status epilepticus waned, smaller volume of brain was activated. These studies suggested that seizure spread could have occurred via canonical thalamocortical pathway and many cortical structures involved in memory consolidation. These studies may help explain retrograde amnesia following seizures.
Collapse
Affiliation(s)
- Natalia Dabrowska
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - John Williamson
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Ewa Lewczuk
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yanhong Lu
- College of Arts and Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Samrath Oberoi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Anastasia Brodovskaya
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
18
|
Andrade P, Banuelos-Cabrera I, Lapinlampi N, Paananen T, Ciszek R, Ndode-Ekane XE, Pitkänen A. Acute Non-Convulsive Status Epilepticus after Experimental Traumatic Brain Injury in Rats. J Neurotrauma 2019; 36:1890-1907. [PMID: 30543155 DOI: 10.1089/neu.2018.6107] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Severe traumatic brain injury (TBI) induces seizures or status epilepticus (SE) in 20-30% of patients during the acute phase. We hypothesized that severe TBI induced with lateral fluid-percussion injury (FPI) triggers post-impact SE. Adult Sprague-Dawley male rats were anesthetized with isoflurane and randomized into the sham-operated experimental control or lateral FPI-induced severe TBI groups. Electrodes were implanted right after impact or sham-operation, then video-electroencephalogram (EEG) monitoring was started. In addition, video-EEG was recorded from naïve rats. During the first 72 h post-TBI, injured rats had seizures that were intermingled with other epileptiform EEG patterns typical to non-convulsive SE, including occipital intermittent rhythmic delta activity, lateralized or generalized periodic discharges, spike-and-wave complexes, poly-spikes, poly-spike-and-wave complexes, generalized continuous spiking, burst suppression, or suppression. Almost all (98%) of the electrographic seizures were recorded during 0-72 h post-TBI (23.2 ± 17.4 seizures/rat). Mean latency from the impact to the first electrographic seizure was 18.4 ± 15.1 h. Mean seizure duration was 86 ± 57 sec. Analysis of high-resolution videos indicated that only 41% of electrographic seizures associated with behavioral abnormalities, which were typically subtle (Racine scale 1-2). Fifty-nine percent of electrographic seizures did not show any behavioral manifestations. In most of the rats, epileptiform EEG patterns began to decay spontaneously on Days 5-6 after TBI. Interestingly, also a few sham-operated and naïve rats had post-operation seizures, which were not associated with EEG background patterns typical to non-convulsive SE seen in TBI rats. To summarize, our data show that lateral FPI-induced TBI results in non-convulsive SE with subtle behavioral manifestations; this explains why it has remained undiagnosed until now. The lateral FPI model provides a novel platform for assessing the mechanisms of acute symptomatic non-convulsive SE and for testing treatments to prevent post-injury SE in a clinically relevant context.
Collapse
Affiliation(s)
- Pedro Andrade
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ivette Banuelos-Cabrera
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Niina Lapinlampi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tomi Paananen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Robert Ciszek
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
19
|
Wu X, Kuruba R, Reddy DS. Midazolam-Resistant Seizures and Brain Injury after Acute Intoxication of Diisopropylfluorophosphate, an Organophosphate Pesticide and Surrogate for Nerve Agents. J Pharmacol Exp Ther 2018; 367:302-321. [PMID: 30115757 DOI: 10.1124/jpet.117.247106] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 08/14/2018] [Indexed: 12/15/2022] Open
Abstract
Organophosphates (OP) such as the pesticide diisopropylfluorophosphate (DFP) and the nerve agent sarin are lethal chemicals that induce seizures, status epilepticus (SE), and brain damage. Midazolam, a benzodiazepine modulator of synaptic GABA-A receptors, is currently considered as a new anticonvulsant for nerve agents. Here, we characterized the time course of protective efficacy of midazolam (0.2-5 mg/kg, i.m.) in rats exposed to DFP, a chemical threat agent and surrogate for nerve agents. Behavioral and electroencephalogram (EEG) seizures were monitored for 24 hours after DFP exposure. The extent of brain injury was determined 3 days after DFP exposure by unbiased stereologic analyses of valid markers of neurodegeneration and neuroinflammation. Seizures were elicited within ∼8 minutes after DFP exposure that progressively developed into persistent SE lasting for hours. DFP exposure resulted in massive neuronal injury or necrosis, neurodegeneration of principal cells and interneurons, and neuroinflammation as evident by extensive activation of microglia and astrocytes in the hippocampus, amygdala, and other brain regions. Midazolam controlled seizures, neurodegeneration, and neuroinflammation when given early (10 minutes) after DFP exposure, but it was less effective when given at 40 minutes or later. Delayed therapy (≥40 minutes), a simulation of the practical therapeutic window for first responders or hospital admission, was associated with reduced seizure protection and neuroprotection. These results strongly reaffirm that the DFP-induced seizures and brain damage are progressively resistant to delayed treatment with midazolam, confirming the benzodiazepine refractory SE after OP intoxication. Thus, novel anticonvulsants superior to midazolam or adjunct therapies that enhance its efficacy are needed for effective treatment of refractory SE.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, Texas
| | - Ramkumar Kuruba
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, Texas
| |
Collapse
|