1
|
Li X, Guo S, Sun Y, Ding J, Chen C, Wu Y, Li P, Sun T, Wang X. GABRG2 mutations in genetic epilepsy with febrile seizures plus: structure, roles, and molecular genetics. J Transl Med 2024; 22:767. [PMID: 39143639 PMCID: PMC11323400 DOI: 10.1186/s12967-024-05387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 08/16/2024] Open
Abstract
Genetic epilepsy with febrile seizures plus (GEFS+) is a genetic epilepsy syndrome characterized by a marked hereditary tendency inherited as an autosomal dominant trait. Patients with GEFS+ may develop typical febrile seizures (FS), while generalized tonic-clonic seizures (GTCSs) with fever commonly occur between 3 months and 6 years of age, which is generally followed by febrile seizure plus (FS+), with or without absence seizures, focal seizures, or GTCSs. GEFS+ exhibits significant genetic heterogeneity, with polymerase chain reaction, exon sequencing, and single nucleotide polymorphism analyses all showing that the occurrence of GEFS+ is mainly related to mutations in the gamma-aminobutyric acid type A receptor gamma 2 subunit (GABRG2) gene. The most common mutations in GABRG2 are separated in large autosomal dominant families, but their pathogenesis remains unclear. The predominant types of GABRG2 mutations include missense (c.983A → T, c.245G → A, p.Met199Val), nonsense (R136*, Q390*, W429*), frameshift (c.1329delC, p.Val462fs*33, p.Pro59fs*12), point (P83S), and splice site (IVS6+2T → G) mutations. All of these mutations types can reduce the function of ion channels on the cell membrane; however, the degree and mechanism underlying these dysfunctions are different and could be linked to the main mechanism of epilepsy. The γ2 subunit plays a special role in receptor trafficking and is closely related to its structural specificity. This review focused on investigating the relationship between GEFS+ and GABRG2 mutation types in recent years, discussing novel aspects deemed to be great significance for clinically accurate diagnosis, anti-epileptic treatment strategies, and new drug development.
Collapse
Affiliation(s)
- Xinxiao Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Shengnan Guo
- Department of Rehabilitative Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yangyang Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China
| | - Jiangwei Ding
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Chao Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yuehui Wu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Peidong Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China.
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
2
|
Wang J, Zhou C, Huang Z, Ji X, Cui R, Kang Y, Zhang G, Wang Y, Zhang T. Repetitive Transcranial Magnetic Stimulation-Mediated Neuroprotection in the 5xFAD Mouse Model of Alzheimer's Disease Through GABRG2 and SNAP25 Modulation. Mol Neurobiol 2024:10.1007/s12035-024-04354-7. [PMID: 39052185 DOI: 10.1007/s12035-024-04354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/06/2024] [Indexed: 07/27/2024]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative disorder with substantial impacts on cognition and behavior. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique, has been used to treat various neuropsychiatric disorders, but its efficacy in AD has not been thoroughly investigated. This study examines the neuroprotective effects of rTMS in the 5xFAD mouse model of AD, with a particular focus on its modulation of GABAergic neuronal activity via the GABRG2 and SNAP25 proteins. Transcriptomic sequencing of rTMS-treated 5xFAD mice revealed 32 genes influenced by the treatment, among which GABRG2 was identified as a critical modulatory target. Electrophysiological assessments, including whole-cell patch clamp recordings from frontal cortex neurons, demonstrated significant alterations in inhibitory synaptic currents following rTMS. Subsequent experiments involved sh-GABRG2 transduction combined with rTMS treatment (20Hz, 14 days), examining behavioral responses, GABAergic neuron functionality, cortical GABA expression, cerebrospinal fluid GABA concentrations, β-amyloid accumulation, and pro-inflammatory cytokine levels. The results indicated notable improvements in behavioral performance, enhanced functionality of GABAergic neurons, and reductions in β-amyloid deposition and neuroinflammation after rTMS treatment. Further analysis revealed that SNAP25 overexpression could counteract the negative effects of GABRG2 silencing, highlighting the crucial role of SNAP25 downstream of GABRG2 in mediating rTMS's therapeutic effects in AD. This research highlights rTMS's potential to modulate synaptic and vesicular transport mechanisms, offering a promising avenue for ameliorating symptoms of AD through neuroprotective pathways.
Collapse
Affiliation(s)
- Jinyang Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Chenming Zhou
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhimin Huang
- Department of Stomatology, People's Hospital, Shizhu Tujia Autonomous County, Chongqing, 409100, China
| | - Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Zhongshan Donglu No.361, ShijiazhuangHebei Province, 050017, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Cui
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Zhongshan Donglu No.361, ShijiazhuangHebei Province, 050017, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Guoliang Zhang
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu Wang
- Laboratory of Neurobiology, Hebei Medical University, Zhongshan Donglu No.361, ShijiazhuangHebei Province, 050017, China
| | - Tianyun Zhang
- Laboratory of Neurobiology, Hebei Medical University, Zhongshan Donglu No.361, ShijiazhuangHebei Province, 050017, China.
| |
Collapse
|
3
|
Xiao W, Li P, Kong F, Kong J, Pan A, Long L, Yan X, Xiao B, Gong J, Wan L. Unraveling the Neural Circuits: Techniques, Opportunities and Challenges in Epilepsy Research. Cell Mol Neurobiol 2024; 44:27. [PMID: 38443733 PMCID: PMC10914928 DOI: 10.1007/s10571-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by high morbidity, frequent recurrence, and potential drug resistance, profoundly affects millions of people globally. Understanding the microscopic mechanisms underlying seizures is crucial for effective epilepsy treatment, and a thorough understanding of the intricate neural circuits underlying epilepsy is vital for the development of targeted therapies and the enhancement of clinical outcomes. This review begins with an exploration of the historical evolution of techniques used in studying neural circuits related to epilepsy. It then provides an extensive overview of diverse techniques employed in this domain, discussing their fundamental principles, strengths, limitations, as well as their application. Additionally, the synthesis of multiple techniques to unveil the complexity of neural circuits is summarized. Finally, this review also presents targeted drug therapies associated with epileptic neural circuits. By providing a critical assessment of methodologies used in the study of epileptic neural circuits, this review seeks to enhance the understanding of these techniques, stimulate innovative approaches for unraveling epilepsy's complexities, and ultimately facilitate improved treatment and clinical translation for epilepsy.
Collapse
Affiliation(s)
- Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Peile Li
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Fujiao Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, Hunan Province, China.
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China.
| |
Collapse
|
4
|
Liu N, Li J, Gao K, Perszyk RE, Zhang J, Wang J, Wu Y, Jenkins A, Yuan H, Traynelis SF, Jiang Y. De novo CLPTM1 variants with reduced GABA A R current response in patients with epilepsy. Epilepsia 2023; 64:2968-2981. [PMID: 37577761 PMCID: PMC10840799 DOI: 10.1111/epi.17746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
OBJECTIVE To investigate the clinical features and potential pathogenesis mechanism of de novo CLPTM1 variants associated with epilepsy. METHODS Identify de novo genetic variants associated with epilepsy by reanalyzing trio-based whole-exome sequencing data. We analyzed the clinical characteristics of patients with these variants and performed functional in vitro studies in cells expressing mutant complementary DNA for these variants using whole-cell voltage-clamp current recordings and outside-out patch-clamp recordings from transiently transfected human embryonic kidney (HEK) cells. RESULTS Two de novo missense variants related to epilepsy were identified in the CLPTM1 gene. Functional studies indicated that CLPTM1-p.R454H and CLPTM1-p.R568Q variants reduced the γ-aminobutyric acid A receptor (GABAA R) current response amplitude recorded under voltage clamp compared to the wild-type receptors. These variants also reduced the charge transfer and altered the time course of desensitization and deactivation following rapid removal of GABA. The surface expression of the GABAA R γ2 subunit from the CLPTM1-p.R568Q group was significantly reduced compared to CLPTM1-WT. SIGNIFICANCE This is the first report of functionally relevant variants within the CLPTM1 gene. Patch-clamp recordings showed that these de novo CLPTM1 variants reduce GABAA R currents and charge transfer, which should promote excitation and hypersynchronous activity. This study may provide insights into the molecular mechanisms of the CLPTM1 variants underlying the patients' phenotypes, as well as for exploring potential therapeutic targets for epilepsy.
Collapse
Affiliation(s)
- Nana Liu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Jinliang Li
- Department of Pediatrics, Central People’s Hospital of Zhanjiang, Guangdong 524045, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing 100034, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100034, China
| | - Riley E. Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322 USA
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322 USA
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing 100034, China
- Department of Neurology, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing 100045, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Andrew Jenkins
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322 USA
- Department of Pharmaceutical Sciences, University of Saint Joseph, Connecticut 06117, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322 USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta 30322, USA
| | - Stephen F. Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322 USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta 30322, USA
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing 100034, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100034, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
5
|
Zhang Q, Forster-Gibson C, Bercovici E, Bernardo A, Ding F, Shen W, Langer K, Rex T, Kang JQ. Epilepsy plus blindness in microdeletion of GABRA1 and GABRG2 in mouse and human. Exp Neurol 2023; 369:114537. [PMID: 37703949 PMCID: PMC10591898 DOI: 10.1016/j.expneurol.2023.114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE GABAA receptor subunit gene (GABR) mutations are significant causes of epilepsy, including syndromic epilepsy. This report for the first time, describes intractable epilepsy and blindness due to optic atrophy in our patient, who has a microdeletion of the GABRA1 and GABRG2 genes. We then characterized the molecular phenotypes and determined patho-mechanisms underlying the genotype-phenotype correlations in a mouse model who is haploinsufficient for both genes (Gabra1+/-/Gabrg2+/- mouse). METHODS Electroencephalography was conducted in both human and mice with the same gene loss. GABAA receptor expression was evaluated by biochemical and imaging approaches. Optic nerve atrophy was evaluated with fundus photography in human while electronic microscopy, visual evoked potential and electroretinography recordings were conducted in mice. RESULTS The patient has bilateral optical nerve atrophy. Mice displayed spontaneous seizures, reduced electroretinography oscillatory potential and reduced GABAA receptor α1, β2 and γ2 subunit expression in various brain regions. Electronic microscopy showed that mice also had optic nerve degeneration, as indicated by increased G-ratio, the ratio of the inner axonal diameter to the total outer diameter, suggesting impaired myelination of axons. More importantly, we identified that phenobarbital was the most effective anticonvulsant in mice and the patient's seizures were also controlled with phenobarbital after failing multiple anti-seizure drugs. CONCLUSIONS This study is the first report of haploinsufficiency of two GABR epilepsy genes and visual impairment due to altered axonal myelination and resultant optic nerve atrophy. The study suggests the far-reaching impact of GABR mutations and the translational significance of animal models with the same etiology.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, United States of America; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Department of Neurology, Nantong University, 19 Qixiu Road, Nantong, JS 226001, PR China
| | - Cynthia Forster-Gibson
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga and Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada
| | - Eduard Bercovici
- Division of Neurology, Faculty of Medicine, University of Toronto, Canada
| | - Alexandra Bernardo
- Department of Ophthalmology & Visual Sciences Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37212, United States of America
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Department of Neurology, Nantong University, 19 Qixiu Road, Nantong, JS 226001, PR China
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, United States of America
| | - Katherine Langer
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, United States of America
| | - Tonia Rex
- Department of Ophthalmology & Visual Sciences Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37212, United States of America
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, United States of America; Department of Pharmacology, Vanderbilt University, United States of America; Vanderbilt Brain Institute and Vanderbilt Kennedy Center of Human Development, Vanderbilt University, Nashville, TN 37212, United States of America.
| |
Collapse
|
6
|
Integrative multi-omics landscape of fluoxetine action across 27 brain regions reveals global increase in energy metabolism and region-specific chromatin remodelling. Mol Psychiatry 2022; 27:4510-4525. [PMID: 36056172 PMCID: PMC9734063 DOI: 10.1038/s41380-022-01725-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.
Collapse
|
7
|
Integrative Functional Genomic Analysis of Molecular Signatures and Mechanistic Pathways in the Cell Cycle Underlying Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5552623. [PMID: 34336099 PMCID: PMC8290224 DOI: 10.1155/2021/5552623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
Objective Alzheimer's disease (AD) is associated with cell cycle reentry of mature neurons that subsequently undergo degeneration. This study is aimed to identify key regulators of the cell cycle and their underlying pathways for developing optimal treatment of AD. Methods RNA sequencing data were profiled to screen for differentially expressed genes in the cell cycle. Correlation of created modules with AD phenotype was computed by weight gene correlation network analysis (WGCNA). Signature genes for trophic factor receptors were determined using Pearson correlation coefficient (PCC) analysis. Results Among the 13,679 background genes, 775 cell cycle genes and 77 trophic factor receptors were differentially expressed in AD versus nondementia controls. Four coexpression modules were constructed by WGCNA, among which the turquoise module had the strongest correlation with AD. According to PCC analysis, 10 signature trophic receptors most strongly interacting with cell cycle genes were filtered and subsequently displayed in the global regulatory network. Further cross-talking pathways of signature receptors, such as glutamatergic synapse, long-term potentiation, PI3K-Akt, and MAPK signaling pathways, were identified. Conclusions Our findings highlighted the mechanistic pathways of signature trophic receptors in cell cycle perturbation underlying AD pathogenesis, thereby providing new molecular targets for therapeutic intervention in AD.
Collapse
|
8
|
Neocortex- and hippocampus-specific deletion of Gabrg2 causes temperature-dependent seizures in mice. Cell Death Dis 2021; 12:553. [PMID: 34050134 PMCID: PMC8163876 DOI: 10.1038/s41419-021-03846-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023]
Abstract
Mutations in the GABRG2 gene encoding the γ-aminobutyric acid (GABA) A receptor gamma 2 subunit are associated with genetic epilepsy with febrile seizures plus, febrile seizures plus, febrile seizures, and other symptoms of epilepsy. However, the mechanisms underlying Gabrg2-mediated febrile seizures are poorly understood. Here, we used the Cre/loxP system to generate conditional knockout (CKO) mice with deficient Gabrg2 in the hippocampus and neocortex. Heterozygous CKO mice (Gabrg2fl/wtCre+) exhibited temperature-dependent myoclonic jerks, generalised tonic-clonic seizures, increased anxiety-like symptoms, and a predisposition to induce seizures. Cortical electroencephalography showed the hyperexcitability in response to temperature elevation in Gabrg2fl/wtCre+ mice, but not in wild-type mice. Gabrg2fl/wtCre+ mice exhibited spontaneous seizures and susceptibility to temperature-induced seizures. Loss of neurons were observed in cortical layers V-VI and hippocampus of Gabrg2fl/wtCre+ mice. Furthermore, the latency of temperature- or pentylenetetrazol-induced seizures were significantly decreased in Gabrg2fl/wtCre+ mice compared with wild-type mice. In summary, Gabrg2fl/wtCre+ mice with Gabrg2 deletion in the neocortex and hippocampus reproduce many features of febrile seizures and therefore provide a novel model to further understand this syndrome at the cellular and molecular level.
Collapse
|
9
|
Shen W, Poliquin S, Macdonald RL, Dong M, Kang JQ. Endoplasmic reticulum stress increases inflammatory cytokines in an epilepsy mouse model Gabrg2 +/Q390X knockin: A link between genetic and acquired epilepsy? Epilepsia 2020; 61:2301-2312. [PMID: 32944937 DOI: 10.1111/epi.16670] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Neuroinflammation is a major theme in epilepsy, which has been characterized in acquired epilepsy but is poorly understood in genetic epilepsy. γ-Aminobutyric acid type A receptor subunit gene mutations are significant causes of epilepsy, and we have studied the pathophysiology directly resulting from defective receptor channels. Here, we determined the proinflammatory factors in a genetic mouse model, the Gabrg2+/Q390X knockin (KI). We have identified increased cytokines in multiple brain regions of the KI mouse throughout different developmental stages and propose that accumulation of the trafficking-deficient mutant protein may increase neuroinflammation, which would be a novel mechanism for genetic epilepsy. METHODS We used enzyme-linked immunosorbent assay, immunoprecipitation, nuclei purification, immunoblot, immunohistochemistry, and confocal microscopy to characterize increased neuroinflammation and its potential causes in a Gabrg2+/Q390X KI mouse and a Gabrg2+/- knockout (KO) mouse, each associated with a different epilepsy syndrome with different severities. RESULTS We found that proinflammatory cytokines such as tumor necrosis factor alpha, interleukin 1-beta (IL-1β), and IL-6 were increased in the KI mice but not in the KO mice. A major underlying basis for the discrepancy in cytokine expression between the two mouse models is likely chronic mutant protein accumulation and endoplasmic reticulum (ER) stress. The presence of mutant protein dampened cytokine induction upon further cellular stimulation or external stress such as elevated temperature. Pharmacological induction of ER stress upregulated cytokine expression in the wild-type and KO but not in the KI mice. The increased cytokine expression was independent of seizure occurrence, because it was upregulated in both mice and cultured neurons. SIGNIFICANCE Together, these data demonstrate a novel pathophysiology for genetic epilepsy, increased neuroinflammation, which is a common mechanism for acquired epilepsy. The findings thus provide the first link of neuroinflammation between genetic epilepsy associated with an ion channel gene mutation and acquired epilepsy.
Collapse
Affiliation(s)
- Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah Poliquin
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marco Dong
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|