1
|
Mo J, Wei W, Liu Z, Zhang J, Ma Y, Sang L, Hu W, Zhang C, Wang Y, Wang X, Liu C, Zhao B, Gao D, Tian J, Zhang K. Neuroimaging Phenotyping and Assessment of Structural-Metabolic-Electrophysiological Alterations in the Temporal Neocortex of Focal Cortical Dysplasia IIIa. J Magn Reson Imaging 2021; 54:925-935. [PMID: 33891371 DOI: 10.1002/jmri.27615] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Focal cortical dysplasia IIIa (FCD IIIa) is a common histopathological finding in temporal lobe epilepsy. However, subtle alterations in the temporal neocortex of FCD IIIa renders presurgical diagnosis and definition of the resective range challenging. PURPOSE To explore neuroimaging phenotyping and structural-metabolic-electrophysiological alterations in FCD IIIa. STUDY TYPE Retrospective. SUBJECTS One hundred and sixty-seven subjects aged 4-39 years, including 64 FCD IIIa patients, 89 healthy controls and 14 FCD I patients as disease controls. FIELD STRENGTH/SEQUENCE 3 T, fast-spin-echo T2 -weighted fluid-attenuated inversion recovery (FLAIR), synthetic T1 -weighted magnetization prepared rapid acquisition gradient echo (MPRAGE). ASSESSMENT Surface-based linear model was applied to reveal neuroimaging phenotyping in FCD IIIa and assess its relationship with clinical variables. Logistic regression was implemented to identify FCD IIIa patients. Epileptogenicity mapping (EM) was conducted to explore the structural-metabolic-electrophysiological alterations in temporal neocortex of FCD IIIa. STATISTICAL TESTS Student's t-test was applied to determine the significance of paired differences. Calibration curves were plotted to assess the goodness-of-fit (GOF) of the models, combined with the Hosmer-Lemeshow test. RESULTS FCD IIIa exhibited widespread hyperintensities in temporal neocortex, and these alterations correlated with disease duration (Puncorrected < 0.01). Machine learning model accurately identified 84.4% of FCD IIIa patients, 92.1% of healthy controls and 92.9% of FCD I patients. Cross-modality analysis showed a significant negative correlation between FLAIR hyperintensity and positron emission tomography hypometabolism P < 0.01). Furthermore, epileptogenic cortices were located predominantly in brain regions with FLAIR hyperintensity and hypometabolism. DATA CONCLUSION FCD IIIa exhibited widespread temporal neocortex FLAIR hyperintensity. Automated machine learning of neuroimaging patterns is conducive for accurate identification of FCD IIIa. The degree and distribution of morphological alterations related to the extent of metabolic and epileptogenic abnormalities, lending support to its potential value for reduction of the radiative and invasive approaches during presurgical workup. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wei Wei
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yanshan Ma
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Lin Sang
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Dongmei Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Kanber B, Vos SB, de Tisi J, Wood TC, Barker GJ, Rodionov R, Chowdhury FA, Thom M, Alexander DC, Duncan JS, Winston GP. Detection of covert lesions in focal epilepsy using computational analysis of multimodal magnetic resonance imaging data. Epilepsia 2021; 62:807-816. [PMID: 33567113 PMCID: PMC8436754 DOI: 10.1111/epi.16836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/24/2020] [Accepted: 01/21/2021] [Indexed: 02/01/2023]
Abstract
Objective To compare the location of suspect lesions detected by computational analysis of multimodal magnetic resonance imaging data with areas of seizure onset, early propagation, and interictal epileptiform discharges (IEDs) identified with stereoelectroencephalography (SEEG) in a cohort of patients with medically refractory focal epilepsy and radiologically normal magnetic resonance imaging (MRI) scans. Methods We developed a method of lesion detection using computational analysis of multimodal MRI data in a cohort of 62 control subjects, and 42 patients with focal epilepsy and MRI‐visible lesions. We then applied it to detect covert lesions in 27 focal epilepsy patients with radiologically normal MRI scans, comparing our findings with the areas of seizure onset, early propagation, and IEDs identified at SEEG. Results Seizure‐onset zones (SoZs) were identified at SEEG in 18 of the 27 patients (67%) with radiologically normal MRI scans. In 11 of these 18 cases (61%), concordant abnormalities were detected by our method. In the remaining seven cases, either early seizure propagation or IEDs were observed within the abnormalities detected, or there were additional areas of imaging abnormalities found by our method that were not sampled at SEEG. In one of the nine patients (11%) in whom SEEG was inconclusive, an abnormality, which may have been involved in seizures, was identified by our method and was not sampled at SEEG. Significance Computational analysis of multimodal MRI data revealed covert abnormalities in the majority of patients with refractory focal epilepsy and radiologically normal MRI that co‐located with SEEG defined zones of seizure onset. The method could help identify areas that should be targeted with SEEG when considering epilepsy surgery.
Collapse
Affiliation(s)
- Baris Kanber
- Centre for Medical Image Computing, University College London, London, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,MRI Unit, Epilepsy Society, Chalfont St Peter, UK.,National Institute for Health Research Biomedical Research Centre at University College London and University College London NHS Foundation Trust, London, UK
| | - Sjoerd B Vos
- Centre for Medical Image Computing, University College London, London, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,MRI Unit, Epilepsy Society, Chalfont St Peter, UK.,National Institute for Health Research Biomedical Research Centre at University College London and University College London NHS Foundation Trust, London, UK.,Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Tobias C Wood
- Department of Neuroimaging, King's College London, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, King's College London, London, UK
| | - Roman Rodionov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,MRI Unit, Epilepsy Society, Chalfont St Peter, UK
| | - Fahmida Amin Chowdhury
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing, University College London, London, UK.,National Institute for Health Research Biomedical Research Centre at University College London and University College London NHS Foundation Trust, London, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,MRI Unit, Epilepsy Society, Chalfont St Peter, UK.,National Institute for Health Research Biomedical Research Centre at University College London and University College London NHS Foundation Trust, London, UK
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,MRI Unit, Epilepsy Society, Chalfont St Peter, UK.,Department of Medicine, Division of Neurology, Queen's University, Kingston, Canada
| |
Collapse
|