1
|
Baumgartner C, Baumgartner J, Lang C, Lisy T, Koren JP. Seizure Detection Devices. J Clin Med 2025; 14:863. [PMID: 39941534 PMCID: PMC11818620 DOI: 10.3390/jcm14030863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Goals of automated detection of epileptic seizures using wearable devices include objective documentation of seizures, prevention of sudden unexpected death in epilepsy (SUDEP) and seizure-related injuries, obviating both the unpredictability of seizures and potential social embarrassment, and finally to develop seizure-triggered on-demand therapies. Automated seizure detection devices are based on the analysis of EEG signals (scalp-EEG, subcutaneous EEG and intracranial EEG), of motor manifestations of seizures (surface EMG, accelerometry), and of physiologic autonomic changes caused by seizures (heart and respiration rate, oxygen saturation, sweat secretion, body temperature). While the detection of generalized tonic-clonic and of focal to bilateral tonic-clonic seizures can be achieved with high sensitivity and low false alarm rates, the detection of focal seizures is still suboptimal, especially in the everyday ambulatory setting. Multimodal seizure detection devices in general provide better performance than devices based on single measurement parameters. Long-term use of seizure detection devices in home environments helps to improve the accuracy of seizure diaries and to reduce seizure-related injuries, while evidence for prevention of SUDEP is still lacking. Automated seizure detection devices are generally well accepted by patients and caregivers.
Collapse
Affiliation(s)
- Christoph Baumgartner
- Department of Neurology, Clinic Hietzing, 1130 Vienna, Austria; (C.L.); (J.P.K.)
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, 1130 Vienna, Austria; (J.B.); (T.L.)
- Medical Faculty, Sigmund Freud University, 1020 Vienna, Austria
| | - Jakob Baumgartner
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, 1130 Vienna, Austria; (J.B.); (T.L.)
- Medical Faculty, Sigmund Freud University, 1020 Vienna, Austria
| | - Clemens Lang
- Department of Neurology, Clinic Hietzing, 1130 Vienna, Austria; (C.L.); (J.P.K.)
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, 1130 Vienna, Austria; (J.B.); (T.L.)
| | - Tamara Lisy
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, 1130 Vienna, Austria; (J.B.); (T.L.)
| | - Johannes P. Koren
- Department of Neurology, Clinic Hietzing, 1130 Vienna, Austria; (C.L.); (J.P.K.)
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, 1130 Vienna, Austria; (J.B.); (T.L.)
| |
Collapse
|
2
|
Janmohamed M, Nhu D, Shakathreh L, Gonen O, Kuhlman L, Gilligan A, Tan CW, Perucca P, O'Brien TJ, Kwan P. Comparison of Automated Spike Detection Software in Detecting Epileptiform Abnormalities on Scalp-EEG of Genetic Generalized Epilepsy Patients. J Clin Neurophysiol 2024; 41:618-624. [PMID: 37934089 DOI: 10.1097/wnp.0000000000001039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
PURPOSE Despite availability of commercial EEG software for automated epileptiform detection, validation on real-world EEG datasets is lacking. Performance evaluation of two software packages on a large EEG dataset of patients with genetic generalized epilepsy was performed. METHODS Three epileptologists labelled IEDs manually of EEGs from three centres. All Interictal epileptiform discharge (IED) markings predicted by two commercial software (Encevis 1.11 and Persyst 14) were reviewed individually to assess for suspicious missed markings and were integrated into the reference standard if overlooked during manual annotation during a second phase. Sensitivity, precision, specificity, and F1-score were used to assess the performance of the software packages against the adjusted reference standard. RESULTS One hundred and twenty-five routine scalp EEG recordings from different subjects were included (total recording time, 310.7 hours). The total epileptiform discharge reference count was 5,907 (including spikes and fragments). Encevis demonstrated a mean sensitivity for detection of IEDs of 0.46 (SD 0.32), mean precision of 0.37 (SD 0.31), and mean F1-score of 0.43 (SD 0.23). Using the default medium setting, the sensitivity of Persyst was 0.67 (SD 0.31), with a precision of 0.49 (SD 0.33) and F1-score of 0.51 (SD 0.25). Mean specificity representing non-IED window identification and classification was 0.973 (SD 0.08) for Encevis and 0.968 (SD 0.07) for Persyst. CONCLUSIONS Automated software shows a high degree of specificity for detection of nonepileptiform background. Sensitivity and precision for IED detection is lower, but may be acceptable for initial screening in the clinical and research setting. Clinical caution and continuous expert human oversight are recommended with all EEG recordings before a diagnostic interpretation is provided based on the output of the software.
Collapse
Affiliation(s)
- Mubeen Janmohamed
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Duong Nhu
- Department of Data Science and AI, Faculty of IT, Monash University, Clayton, Victoria, Australia
| | - Lubna Shakathreh
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ofer Gonen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Levin Kuhlman
- Department of Data Science and AI, Faculty of IT, Monash University, Clayton, Victoria, Australia
| | - Amanda Gilligan
- Neurosciences Clinical Institute, Epworth Healthcare Hospital, Melbourne, Victoria, Australia
| | - Chang Wei Tan
- Department of Data Science and AI, Faculty of IT, Monash University, Clayton, Victoria, Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Melbourne, Victoria, Australia; and
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Dan J, Pale U, Amirshahi A, Cappelletti W, Ingolfsson TM, Wang X, Cossettini A, Bernini A, Benini L, Beniczky S, Atienza D, Ryvlin P. SzCORE: Seizure Community Open-Source Research Evaluation framework for the validation of electroencephalography-based automated seizure detection algorithms. Epilepsia 2024. [PMID: 39292446 DOI: 10.1111/epi.18113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
The need for high-quality automated seizure detection algorithms based on electroencephalography (EEG) becomes ever more pressing with the increasing use of ambulatory and long-term EEG monitoring. Heterogeneity in validation methods of these algorithms influences the reported results and makes comprehensive evaluation and comparison challenging. This heterogeneity concerns in particular the choice of datasets, evaluation methodologies, and performance metrics. In this paper, we propose a unified framework designed to establish standardization in the validation of EEG-based seizure detection algorithms. Based on existing guidelines and recommendations, the framework introduces a set of recommendations and standards related to datasets, file formats, EEG data input content, seizure annotation input and output, cross-validation strategies, and performance metrics. We also propose the EEG 10-20 seizure detection benchmark, a machine-learning benchmark based on public datasets converted to a standardized format. This benchmark defines the machine-learning task as well as reporting metrics. We illustrate the use of the benchmark by evaluating a set of existing seizure detection algorithms. The SzCORE (Seizure Community Open-Source Research Evaluation) framework and benchmark are made publicly available along with an open-source software library to facilitate research use, while enabling rigorous evaluation of the clinical significance of the algorithms, fostering a collective effort to more optimally detect seizures to improve the lives of people with epilepsy.
Collapse
Affiliation(s)
- Jonathan Dan
- Embedded Systems Laboratory, EPFL, Lausanne, Switzerland
| | - Una Pale
- Embedded Systems Laboratory, EPFL, Lausanne, Switzerland
| | | | | | | | - Xiaying Wang
- Integrated Systems Laboratory, ETH Zürich, Zürich, Switzerland
- Research Department, Swiss University of Traditional Chinese Medicine, Zurzach, Switzerland
| | | | - Adriano Bernini
- Service of Neurology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Luca Benini
- Integrated Systems Laboratory, ETH Zürich, Zürich, Switzerland
- Department of Electrical, Electronic, and Information Engineering, University of Bologna, Bologna, Italy
| | - Sándor Beniczky
- Aarhus University Hospital and Danish Epilepsy Center, Aarhus University, Dianalund, Denmark
| | - David Atienza
- Embedded Systems Laboratory, EPFL, Lausanne, Switzerland
| | - Philippe Ryvlin
- Service of Neurology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
4
|
Koren J, Lang C, Gritsch G, Mayer L, Hartmann M, Hafner S, Kluge T, Baumgartner C. Idiopathic generalized epilepsies in the epilepsy monitoring unit: Systematic quantification of focal EEG and semiological signs. Clin Neurophysiol 2024; 162:82-90. [PMID: 38603948 DOI: 10.1016/j.clinph.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVE Focal seizure symptoms (FSS) and focal interictal epileptiform discharges (IEDs) are common in patients with idiopathic generalized epilepsies (IGEs), but dedicated studies systematically quantifying them both are lacking. We used automatic IED detection and localization algorithms and correlated these EEG findings with clinical FSS for the first time in IGE patients. METHODS 32 patients with IGEs undergoing long-term video EEG monitoring were systematically analyzed regarding focal vs. generalized IEDs using automatic IED detection and localization algorithms. Quantitative EEG findings were correlated with FSS. RESULTS We observed FSS in 75% of patients, without significant differences between IGE subgroups. Mostly varying/shifting lateralizations of FSS across successive recorded seizures were seen. We detected a total of 81,949 IEDs, whereof 19,513 IEDs were focal (23.8%). Focal IEDs occurred in all patients (median 13% focal IEDs per patient, range 1.1 - 51.1%). Focal IED lateralization and localization predominance had no significant effect on FSS. CONCLUSIONS All included patients with IGE showed focal IEDs and three-quarter had focal seizure symptoms irrespective of the specific IGE subgroup. Focal IED localization had no significant effect on lateralization and localization of FSS. SIGNIFICANCE Our findings may facilitate diagnostic and treatment decisions in patients with suspected IGE and focal signs.
Collapse
Affiliation(s)
- Johannes Koren
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria; Department of Neurology, Clinic Hietzing, Vienna, Austria.
| | - Clemens Lang
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Gerhard Gritsch
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Lisa Mayer
- Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Manfred Hartmann
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | | | - Tilmann Kluge
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Christoph Baumgartner
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria; Department of Neurology, Clinic Hietzing, Vienna, Austria; Medical Faculty, Sigmund Freud University, Vienna, Austria
| |
Collapse
|
5
|
Fussner S, Boyne A, Han A, Nakhleh LA, Haneef Z. Differentiating Epileptic and Psychogenic Non-Epileptic Seizures Using Machine Learning Analysis of EEG Plot Images. SENSORS (BASEL, SWITZERLAND) 2024; 24:2823. [PMID: 38732929 PMCID: PMC11086151 DOI: 10.3390/s24092823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
The treatment of epilepsy, the second most common chronic neurological disorder, is often complicated by the failure of patients to respond to medication. Treatment failure with anti-seizure medications is often due to the presence of non-epileptic seizures. Distinguishing non-epileptic from epileptic seizures requires an expensive and time-consuming analysis of electroencephalograms (EEGs) recorded in an epilepsy monitoring unit. Machine learning algorithms have been used to detect seizures from EEG, typically using EEG waveform analysis. We employed an alternative approach, using a convolutional neural network (CNN) with transfer learning using MobileNetV2 to emulate the real-world visual analysis of EEG images by epileptologists. A total of 5359 EEG waveform plot images from 107 adult subjects across two epilepsy monitoring units in separate medical facilities were divided into epileptic and non-epileptic groups for training and cross-validation of the CNN. The model achieved an accuracy of 86.9% (Area Under the Curve, AUC 0.92) at the site where training data were extracted and an accuracy of 87.3% (AUC 0.94) at the other site whose data were only used for validation. This investigation demonstrates the high accuracy achievable with CNN analysis of EEG plot images and the robustness of this approach across EEG visualization software, laying the groundwork for further subclassification of seizures using similar approaches in a clinical setting.
Collapse
Affiliation(s)
- Steven Fussner
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aidan Boyne
- Undergraduate Medical Education, Baylor College of Medicine, Houston, TX 77030, USA
| | - Albert Han
- Undergraduate Medical Education, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren A. Nakhleh
- Undergraduate Medical Education, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Neurology Care Line, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW To review recent advances in the field of seizure detection in ambulatory patients with epilepsy. RECENT FINDINGS Recent studies have shown that wrist or arm wearable sensors, using 3D-accelerometry, electrodermal activity or photoplethysmography, in isolation or in combination, can reliably detect focal-to-bilateral and generalized tonic-clonic seizures (GTCS), with a sensitivity over 90%, and false alarm rates varying from 0.1 to 1.2 per day. A headband EEG has also demonstrated a high sensitivity for detecting and help monitoring generalized absence seizures. In contrast, no appropriate solution is yet available to detect focal seizures, though some promising findings were reported using ECG-based heart rate variability biomarkers and subcutaneous EEG. SUMMARY Several FDA and/or EU-certified solutions are available to detect GTCS and trigger an alarm with acceptable rates of false alarms. However, data are still missing regarding the impact of such intervention on patients' safety. Noninvasive solutions to reliably detect focal seizures in ambulatory patients, based on either EEG or non-EEG biosignals, remain to be developed. To this end, a number of challenges need to be addressed, including the performance, but also the transparency and interpretability of machine learning algorithms.
Collapse
Affiliation(s)
- Adriano Bernini
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne
| | - Jonathan Dan
- Embedded Systems Laboratory, Swiss Federal Institute of Technology of Lausanne (EPFL), Lausanne, Switzerland
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Clinical electroencephalography (EEG) is a conservative medical field. This explains likely the significant gap between clinical practice and new research developments. This narrative review discusses possible causes of this discrepancy and how to circumvent them. More specifically, we summarize recent advances in three applications of clinical EEG: source imaging (ESI), high-frequency oscillations (HFOs) and EEG in critically ill patients. RECENT FINDINGS Recently published studies on ESI provide further evidence for the accuracy and clinical utility of this method in the multimodal presurgical evaluation of patients with drug-resistant focal epilepsy, and opened new possibilities for further improvement of the accuracy. HFOs have received much attention as a novel biomarker in epilepsy. However, recent studies questioned their clinical utility at the level of individual patients. We discuss the impediments, show up possible solutions and highlight the perspectives of future research in this field. EEG in the ICU has been one of the major driving forces in the development of clinical EEG. We review the achievements and the limitations in this field. SUMMARY This review will promote clinical implementation of recent advances in EEG, in the fields of ESI, HFOs and EEG in the intensive care.
Collapse
Affiliation(s)
- Birgit Frauscher
- Department of Neurology, Duke University Medical Center & Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, North Carolina, USA
| | - Andrea O Rossetti
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sándor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund
- Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Tsereteli A, Okujava N, Malashkhia N, Liluashvili K, de Weerd A. The ENCEVIS algorithm in the EMU and the factors affecting its performance: Our experience. Epilepsy Behav Rep 2024; 26:100656. [PMID: 38495403 PMCID: PMC10937301 DOI: 10.1016/j.ebr.2024.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 03/19/2024] Open
Abstract
The study's purpose was to assess the seizure detection performance of ENCEVIS 1.7, identify factors that may influence algorithm performance, and explore its potential for implementation and application in long-term video EEG monitoring units. The study included video-EEG recordings containing at least one epileptic seizure. Forty-three recordings, encompassing 112 seizures, were included in the analysis. True positive, false negative, and false positive seizure detections were defined. Factors that may influence algorithm performance were studied. ENCEVIS demonstrated an overall sensitivity of 71.2%, significantly higher (75.1%) in focal compared to generalized seizures (62%). Ictal patterns rhythmicity (rhythmic 59.4 %, arrhythmic 41.7 %), seizure duration (<10 sec 6.3 %, >60 sec. 63.9 % (p < 0.05)) and patient age (<18 years 39.5 %, >18 years 58.1 % (P < 0.05)) influenced ENCEVIS sensitivity. The coexistence of extracerebral signal changes did not influence sensitivity. ENCEVIS with 79.1% accuracy annotates at least one seizure in those recordings containing epileptic seizures. ENCEVIS seizure detection performance was reasonable for generalized/focal to bilateral tonic-clonic seizures and seizures with temporal lobe onset. Rhythmic ictal patterns, longer seizure duration, and adult age positively influenced algorithm performance. ENCEVIS can be a valuable tool for identifying recordings containing seizures and can potentially reduce the workload of neurophysiologists.
Collapse
Affiliation(s)
- Aleksandre Tsereteli
- Epilepsy and Sleep Centre, S. Khechinashvili University Hospital (SKUH), Georgia
| | - Natela Okujava
- Epilepsy and Sleep Centre, S. Khechinashvili University Hospital (SKUH), Georgia
- Department of Clinical Neurology, Tbilisi State Medical University (TSMU), Georgia
| | - Nikoloz Malashkhia
- Epilepsy and Sleep Centre, S. Khechinashvili University Hospital (SKUH), Georgia
| | | | - Al de Weerd
- Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, Netherland
| |
Collapse
|
9
|
Reus EEM, Visser GH, Cox FME. Letter to the Editor: EEG-based seizure detection. Epilepsy Behav 2024; 151:109614. [PMID: 38199056 DOI: 10.1016/j.yebeh.2023.109614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Affiliation(s)
- E E M Reus
- Department of Clinical Neurophysiology, Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands.
| | - G H Visser
- Department of Clinical Neurophysiology, Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| | - F M E Cox
- Department of Clinical Neurophysiology, Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| |
Collapse
|
10
|
Wong S, Simmons A, Rivera-Villicana J, Barnett S, Sivathamboo S, Perucca P, Kwan P, Kuhlmann L, Vasa R, O'Brien TJ. EEG based automated seizure detection - A survey of medical professionals. Epilepsy Behav 2023; 149:109518. [PMID: 37952416 DOI: 10.1016/j.yebeh.2023.109518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Diagnosing and managing seizures presents substantial challenges for clinicians caring for patients with epilepsy. Although machine learning (ML) has been proposed for automated seizure detection using EEG data, there is little evidence of these technologies being broadly adopted in clinical practice. Moreover, there is a noticeable lack of surveys investigating this topic from the perspective of medical practitioners, which limits the understanding of the obstacles for the development of effective automated seizure detection. Besides the issue of generalisability and replicability seen in a small amount of studies, obstacles to the adoption of automated seizure detection remain largely unknown. To understand the obstacles preventing the application of seizure detection tools in clinical practice, we conducted a survey targeting medical professionals involved in the management of epilepsy. Our study aimed to gather insights on various factors such as the clinical utility, professional sentiment, benchmark requirements, and perceived barriers associated with the use of automated seizure detection tools. Our key findings are: I) The minimum acceptable sensitivity reported by most of our respondents (80%) seems achievable based on studies reported from most currently available ML-based EEG seizure detection algorithms, but replication studies often fail to meet this minimum. II) Respondents are receptive to the adoption of ML seizure detection tools and willing to spend time in training. III) The top three barriers for usage of such tools in clinical practice are related to availability, lack of training, and the blackbox nature of ML algorithms. Based on our findings, we developed a guide that can serve as a basis for developing ML-based seizure detection tools that meet the requirements of medical professionals, and foster the integration of these tools into clinical practice.
Collapse
Affiliation(s)
- Sheng Wong
- Applied Artificial Intelligence Institute, Deakin University, Burwood, Victoria, Australia.
| | - Anj Simmons
- Applied Artificial Intelligence Institute, Deakin University, Burwood, Victoria, Australia
| | | | - Scott Barnett
- Applied Artificial Intelligence Institute, Deakin University, Burwood, Victoria, Australia
| | - Shobi Sivathamboo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Piero Perucca
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia; Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia; Bladin-Berkovic Comprehensive Epilepsy Program, Austin Health, Heidelberg, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Levin Kuhlmann
- Department of Data Science and AI, Faculty of IT, Monash University, Clayton, Victoria, Australia; Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rajesh Vasa
- Applied Artificial Intelligence Institute, Deakin University, Burwood, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Hartmann M, Koren J, Baumgartner C, Duun-Henriksen J, Gritsch G, Kluge T, Perko H, Fürbass F. Seizure detection with deep neural networks for review of two-channel electroencephalogram. Epilepsia 2023; 64 Suppl 4:S34-S39. [PMID: 35416283 DOI: 10.1111/epi.17259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
Ultra-long-term electroencephalographic (EEG) registration using minimally invasive low-channel devices is an emerging technology to assess sporadic seizure events. Highly sensitive automatic seizure detection algorithms are needed for semiautomatic evaluation of these prolonged recordings. We describe the design and validation of a deep neural network for two-channel seizure detection. The model is trained using EEG recordings from 590 patients in a publicly available seizure database. These recordings are based on the full 10-20 electrode system and include seizure annotations created by reviews of the full set of EEG channels. Validation was performed using 48 scalp EEG recordings from an independent epilepsy center and consensus seizure annotations from three neurologists. For each patient, a three-electrode subgroup (two channels with a common reference) of the full montage was selected for validation of the two-channel model. Mean sensitivity across patients of 88.8% and false positive rate across patients of 12.9/day were achieved. The proposed training approach is of great practical relevance, because true recordings from low-channel devices are currently available only in small numbers, and the generation of gold standard seizure annotations in two EEG channels is often difficult. The study demonstrates that automatic seizure detection based on two-channel EEG data is feasible and review of ultra-long-term recordings can be made efficient and effective.
Collapse
Affiliation(s)
- Manfred Hartmann
- Center for Health and Bioresources, Austrian Institute of Technology, Vienna, Austria
| | - Johannes Koren
- Department of Neurology, Clinic Hietzing, Vienna, Austria
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Christoph Baumgartner
- Department of Neurology, Clinic Hietzing, Vienna, Austria
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
- Medical Faculty, Sigmund Freud University, Vienna, Austria
| | | | - Gerhard Gritsch
- Center for Health and Bioresources, Austrian Institute of Technology, Vienna, Austria
| | - Tilmann Kluge
- Center for Health and Bioresources, Austrian Institute of Technology, Vienna, Austria
| | - Hannes Perko
- Center for Health and Bioresources, Austrian Institute of Technology, Vienna, Austria
| | - Franz Fürbass
- Center for Health and Bioresources, Austrian Institute of Technology, Vienna, Austria
| |
Collapse
|
12
|
Nurse ES, Dalic LJ, Clarke S, Cook M, Archer J. Deep learning for automated detection of generalized paroxysmal fast activity in Lennox-Gastaut syndrome. Epilepsy Behav 2023; 147:109418. [PMID: 37677902 DOI: 10.1016/j.yebeh.2023.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVES Generalized paroxysmal fast activity (GPFA) is a key electroencephalographic (EEG) feature of Lennox-Gastaut Syndrome (LGS). Automated analysis of scalp EEG has been successful in detecting more typical abnormalities. Automatic detection of GPFA has been more challenging, due to its variability from patient to patient and similarity to normal brain rhythms. In this work, a deep learning model is investigated for detection of GPFA events and estimating their overall burden from scalp EEG. METHODS Data from 10 patients recorded during four ambulatory EEG monitoring sessions are used to generate and validate the model. All patients had confirmed LGS and were recruited into a trial for thalamic deep-brain stimulation therapy (ESTEL Trial). RESULTS The correlation coefficient between manual and model estimates of event counts was r2 = 0.87, and for total burden was r2 = 0.91. The average GPFA detection sensitivity was 0.876, with an average false-positive rate of 3.35 per minute. There was no significant difference found between patients with early or delayed deep brain stimulation (DBS) treatment, or those with active vagal nerve stimulation (VNS). CONCLUSIONS Overall, the deep learning model was able to accurately detect GPFA and provide accurate estimates of the overall GPFA burden and electrographic event counts, albeit with a high false-positive rate. SIGNIFICANCE Automated GPFA detection may enable automated calculation of EEG biomarkers of burden of disease in LGS.
Collapse
Affiliation(s)
- Ewan S Nurse
- Seer Medical, Melbourne, VIC 3000, Australia; Department of Medicine (St. Vincent's Hospital Melbourne), University of Melbourne, Fitzroy, VIC 3065, Australia.
| | - Linda J Dalic
- Department of Medicine (Austin Hospital), University of Melbourne, Heidelberg, VIC 3084, Australia; Department of Neurology, Austin Health, Heidelberg, VIC 3084, Australia
| | | | - Mark Cook
- Department of Medicine (St. Vincent's Hospital Melbourne), University of Melbourne, Fitzroy, VIC 3065, Australia
| | - John Archer
- Department of Medicine (Austin Hospital), University of Melbourne, Heidelberg, VIC 3084, Australia; Department of Neurology, Austin Health, Heidelberg, VIC 3084, Australia; The Florey Institute of Neuroscience and Mental Health, Heidelberg, VIC 3084, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| |
Collapse
|
13
|
Reus EEM, Visser GH, Sommers-Spijkerman MPJ, van Dijk JG, Cox FME. Automated spike and seizure detection: Are we ready for implementation? Seizure 2023; 108:66-71. [PMID: 37088057 DOI: 10.1016/j.seizure.2023.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
OBJECTIVE Automated detection of spikes and seizures has been a subject of research for several decades now. There have been important advances, yet automated detection in EMU (Epilepsy Monitoring Unit) settings has not been accepted as standard practice. We intend to implement this software at our EMU and so carried out a qualitative study to identify factors that hinder ('barriers') and facilitate ('enablers') implementation. METHOD Twenty-two semi-structured interviews were conducted with 14 technicians and neurologists involved in recording and reporting EEGs and eight neurologists who receive EEG reports in the outpatient department. The study was reported according to the Consolidated Criteria for Reporting Qualitative Studies (COREQ). RESULTS We identified 14 barriers and 14 enablers for future implementation. Most barriers were reported by technicians. The most prominent barrier was lack of trust in the software, especially regarding seizure detection and false positive results. Additionally, technicians feared losing their EEG review skills or their jobs. Most commonly reported enablers included potential efficiency in the EEG workflow, the opportunity for quantification of EEG findings and the willingness to try the software. CONCLUSIONS This study provides insight into the perspectives of users and offers recommendations for implementing automated spike and seizure detection in EMUs.
Collapse
Affiliation(s)
- E E M Reus
- Stichting Epilepsie Instellingen Nederland (SEIN).
| | - G H Visser
- Stichting Epilepsie Instellingen Nederland (SEIN)
| | - M P J Sommers-Spijkerman
- Department of Rehabilitation, Physical Therapy Science and Sports, University Medical Center Utrecht, the Netherlands
| | - J G van Dijk
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - F M E Cox
- Stichting Epilepsie Instellingen Nederland (SEIN)
| |
Collapse
|
14
|
Peh WY, Thangavel P, Yao Y, Thomas J, Tan YL, Dauwels J. Six-Center Assessment of CNN-Transformer with Belief Matching Loss for Patient-Independent Seizure Detection in EEG. Int J Neural Syst 2023; 33:2350012. [PMID: 36809996 DOI: 10.1142/s0129065723500120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurologists typically identify epileptic seizures from electroencephalograms (EEGs) by visual inspection. This process is often time-consuming, especially for EEG recordings that last hours or days. To expedite the process, a reliable, automated, and patient-independent seizure detector is essential. However, developing a patient-independent seizure detector is challenging as seizures exhibit diverse characteristics across patients and recording devices. In this study, we propose a patient-independent seizure detector to automatically detect seizures in both scalp EEG and intracranial EEG (iEEG). First, we deploy a convolutional neural network with transformers and belief matching loss to detect seizures in single-channel EEG segments. Next, we extract regional features from the channel-level outputs to detect seizures in multi-channel EEG segments. At last, we apply post-processing filters to the segment-level outputs to determine seizures' start and end points in multi-channel EEGs. Finally, we introduce the minimum overlap evaluation scoring as an evaluation metric that accounts for minimum overlap between the detection and seizure, improving upon existing assessment metrics. We trained the seizure detector on the Temple University Hospital Seizure (TUH-SZ) dataset and evaluated it on five independent EEG datasets. We evaluate the systems with the following metrics: sensitivity (SEN), precision (PRE), and average and median false positive rate per hour (aFPR/h and mFPR/h). Across four adult scalp EEG and iEEG datasets, we obtained SEN of 0.617-1.00, PRE of 0.534-1.00, aFPR/h of 0.425-2.002, and mFPR/h of 0-1.003. The proposed seizure detector can detect seizures in adult EEGs and takes less than 15[Formula: see text]s for a 30[Formula: see text]min EEG. Hence, this system could aid clinicians in reliably identifying seizures expeditiously, allocating more time for devising proper treatment.
Collapse
Affiliation(s)
- Wei Yan Peh
- Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore 639798, Singapore
| | - Prasanth Thangavel
- Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore 639798, Singapore
| | - Yuanyuan Yao
- Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - John Thomas
- Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada
| | - Yee-Leng Tan
- National Neuroscience Institute, Singapore 308433, Singapore
| | - Justin Dauwels
- Department of Microelectronics, Delft, University of Technology, 2628 CD Delft, Netherlands
| |
Collapse
|
15
|
Ren Z, Han X, Wang B. The performance evaluation of the state-of-the-art EEG-based seizure prediction models. Front Neurol 2022; 13:1016224. [PMID: 36504642 PMCID: PMC9732735 DOI: 10.3389/fneur.2022.1016224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The recurrent and unpredictable nature of seizures can lead to unintentional injuries and even death. The rapid development of electroencephalogram (EEG) and Artificial Intelligence (AI) technologies has made it possible to predict seizures in real-time through brain-machine interfaces (BCI), allowing advanced intervention. To date, there is still much room for improvement in predictive seizure models constructed by EEG using machine learning (ML) and deep learning (DL). But, the most critical issue is how to improve the performance and generalization of the model, which involves some confusing conceptual and methodological issues. This review focuses on analyzing several factors affecting the performance of seizure prediction models, focusing on the aspects of post-processing, seizure occurrence period (SOP), seizure prediction horizon (SPH), and algorithms. Furthermore, this study presents some new directions and suggestions for building high-performance prediction models in the future. We aimed to clarify the concept for future research in related fields and improve the performance of prediction models to provide a theoretical basis for future applications of wearable seizure detection devices.
Collapse
Affiliation(s)
- Zhe Ren
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiong Han
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China,*Correspondence: Xiong Han
| | - Bin Wang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
16
|
Janmohamed M, Nhu D, Kuhlmann L, Gilligan A, Tan CW, Perucca P, O’Brien TJ, Kwan P. Moving the field forward: detection of epileptiform abnormalities on scalp electroencephalography using deep learning—clinical application perspectives. Brain Commun 2022; 4:fcac218. [PMID: 36092304 PMCID: PMC9453433 DOI: 10.1093/braincomms/fcac218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The application of deep learning approaches for the detection of interictal epileptiform discharges is a nascent field, with most studies published in the past 5 years. Although many recent models have been published demonstrating promising results, deficiencies in descriptions of data sets, unstandardized methods, variation in performance evaluation and lack of demonstrable generalizability have made it difficult for these algorithms to be compared and progress to clinical validity. A few recent publications have provided a detailed breakdown of data sets and relevant performance metrics to exemplify the potential of deep learning in epileptiform discharge detection. This review provides an overview of the field and equips computer and data scientists with a synopsis of EEG data sets, background and epileptiform variation, model evaluation parameters and an awareness of the performance metrics of high impact and interest to the trained clinical and neuroscientist EEG end user. The gold standard and inter-rater disagreements in defining epileptiform abnormalities remain a challenge in the field, and a hierarchical proposal for epileptiform discharge labelling options is recommended. Standardized descriptions of data sets and reporting metrics are a priority. Source code-sharing and accessibility to public EEG data sets will increase the rigour, quality and progress in the field and allow validation and real-world clinical translation.
Collapse
Affiliation(s)
- Mubeen Janmohamed
- Department of Neuroscience, Central Clinical School, Monash University , Melbourne, VIC 3004 , Australia
- Department of Neurology, Alfred Health , Melbourne, VIC 3004 , Australia
- Department of Neurology, The Royal Melbourne Hospital , Melbourne, VIC 3050 , Australia
| | - Duong Nhu
- Department of Data Science and AI, Faculty of IT, Monash University , Clayton, VIC 3800 , Australia
| | - Levin Kuhlmann
- Department of Data Science and AI, Faculty of IT, Monash University , Clayton, VIC 3800 , Australia
| | - Amanda Gilligan
- Neurosciences Clinical Institute, Epworth Healthcare Hospital , Melbourne, VIC 3121 , Australia
| | - Chang Wei Tan
- Department of Data Science and AI, Faculty of IT, Monash University , Clayton, VIC 3800 , Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University , Melbourne, VIC 3004 , Australia
- Department of Neurology, Alfred Health , Melbourne, VIC 3004 , Australia
- Department of Medicine, Austin Health, The University of Melbourne , Melbourne, VIC 3084 , Australia
- Comprehensive Epilepsy Program, Department of Neurology, Austin Health , Melbourne, VIC 3084 , Australia
| | - Terence J O’Brien
- Department of Neuroscience, Central Clinical School, Monash University , Melbourne, VIC 3004 , Australia
- Department of Neurology, Alfred Health , Melbourne, VIC 3004 , Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University , Melbourne, VIC 3004 , Australia
- Department of Neurology, Alfred Health , Melbourne, VIC 3004 , Australia
| |
Collapse
|
17
|
Besné GM, Horrillo-Maysonnial A, Nicolás MJ, Capell-Pascual F, Urrestarazu E, Artieda J, Valencia M. An interactive framework for the detection of ictal and interictal activities: Cross-species and stand-alone implementation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 218:106728. [PMID: 35299138 DOI: 10.1016/j.cmpb.2022.106728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/03/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Despite advances on signal analysis and artificial intelligence, visual inspection is the gold standard in event detection on electroencephalographic recordings. This process requires much time of clinical experts on both annotating and training new experts for this same task. In scenarios where epilepsy is considered, the need for automatic tools is more prominent, as both seizures and interictal events can occur on hours- or days-long recordings. Although other solutions have already been proposed, most of them are not integrated on clinical and basic science environments due to their complexity and required specialization. Here we present a pipeline that arises from coordinated efforts between life-science researchers, clinicians and data scientists to develop an interactive and iterative workflow to train machine-learning tools for the automatic detection of electroencephalographic events in a variety of scenarios. METHODS The approach consists on a series of subsequent steps covering data loading and configuration, event annotation, model training/re-training and event detection. With slight modifications, the combination of these blocks can cope with a variety of scenarios. To illustrate the flexibility and robustness of the approach, three datasets from clinical (patients of Dravet Syndrome) and basic research environments (mice model of the same disease) were evaluated. From them, and in response to researchers' daily needs, four real world examples of interictal event detection and seizure classification tasks were selected and processed. RESULTS Results show that the current approach was of great aid for event annotation and model development. It was capable of creating custom machine-learning solutions for each scenario with slight adjustments on the analysis protocol, easily accessible to users without programming skills. Final annotator similarity metrics reached values above 80% on all cases of use, reaching 92.3% on interictal event detection on human recordings. CONCLUSIONS The presented framework is easily adaptable to multiple real world scenarios and the interactive and ease-to-use approach makes it manageable to clinical and basic researches without programming skills. Nevertheless, it is conceived so data scientists can optimize it for specific scenarios, improving the knowledge transfer between these fields.
Collapse
Affiliation(s)
- Guillermo M Besné
- Program of Neuroscience, Universidad de Navarra, CIMA, Avenida Pío XII, 55, 31008 Navarra, Pamplona, Spain
| | | | - María Jesús Nicolás
- Program of Neuroscience, Universidad de Navarra, CIMA, Avenida Pío XII, 55, 31008 Navarra, Pamplona, Spain
| | - Ferran Capell-Pascual
- Program of Neuroscience, Universidad de Navarra, CIMA, Avenida Pío XII, 55, 31008 Navarra, Pamplona, Spain
| | - Elena Urrestarazu
- Clinical Neurophysiology Section, Clínica Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Julio Artieda
- Program of Neuroscience, Universidad de Navarra, CIMA, Avenida Pío XII, 55, 31008 Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Miguel Valencia
- Program of Neuroscience, Universidad de Navarra, CIMA, Avenida Pío XII, 55, 31008 Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Institute of Data Science and Artificial Intelligence, Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
18
|
EEG Oscillatory Power and Complexity for Epileptic Seizure Detection. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monitoring patients at risk of epileptic seizure is critical for optimal treatment and ensuing the reduction of seizure risk and complications. In general, seizure detection is done manually in hospitals and involves time-consuming visual inspection and interpretation by experts of electroencephalography (EEG) recordings. The purpose of this study is to investigate the pertinence of band-limited spectral power and signal complexity in order to discriminate between seizure and seizure-free EEG brain activity. The signal complexity and spectral power are evaluated in five frequency intervals, namely, the delta, theta, alpha, beta, and gamma bands, to be used as EEG signal feature representation. Classification of seizure and seizure-free data was performed by prevalent potent classifiers. Substantial comparative performance evaluation experiments were performed on a large EEG data record of 341 patients in the Temple University Hospital EEG seizure database. Based on statistically validated criteria, results show the efficiency of band-limited spectral power and signal complexity when using random forest and gradient-boosting decision tree classifiers (95% of the area under the curve (AUC) and 91% for both F-measure and accuracy). These results support the use of these automatic classification schemes to assist the practicing neurologist interpret EEG records more accurately and without tedious visual inspection.
Collapse
|
19
|
Automated seizure detection in an EMU setting: Are software packages ready for implementation? Seizure 2022; 96:13-17. [PMID: 35042003 DOI: 10.1016/j.seizure.2022.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE We assessed whether automated detection software, combined with live observation, enabled reliable seizure detection using three commercial software packages: Persyst, Encevis and BESA. METHODS Two hundred and eighty-six prolonged EEG records of individuals aged 16-86 years, collected between August 2019 and January 2020, were retrospectively processed using all three packages. The reference standard included all seizures mentioned in the clinical report supplemented with true detections made by the software and not previously detected by clinical physiologists. Sensitivity was measured for offline review by clinical physiologists and software seizure detection, both in combination with live monitoring in an EMU setting, for all three software packages at record and seizure level. RESULTS The database contained 249 seizures in 64 records. The sensitivity of seizure detection was 98% for Encevis and Persyst, and 95% for BESA, when a positive results was defined as detection at least one of the seizures occurring within an individual record. When positivity was defined as recognition of all seizures, sensitivity was 93% for Persyst, 88% for Encevis and 84% for BESA. Clinical physiologists' review had a sensitivity of 100% at record level and 98% at seizure level. The median false positive rate per record was 1.7 for Persyst, 2.4 for BESA and 5.5 for Encevis per 24 h. CONCLUSION Automated seizure detection software does not perform as well as technicians do. However, it can be used in an EMU setting when the user is aware of its weaknesses. This assessment gives future users helpful insight into these strengths and weaknesses. The Persyst software performs best.
Collapse
|
20
|
Davey Z, Gupta PB, Li DR, Nayak RU, Govindarajan P. Rapid Response EEG: Current State and Future Directions. Curr Neurol Neurosci Rep 2022; 22:839-846. [PMID: 36434488 PMCID: PMC9702853 DOI: 10.1007/s11910-022-01243-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW To critically appraise the literature on the application, methods, and advances in emergency electroencephalography (EEG). RECENT FINDINGS The development of rapid EEG (rEEG) technologies and other reduced montage approaches, along with advances in machine learning over the past decade, has increased the rate and access to EEG acquisition. These achievements have made EEG in the emergency setting a practical diagnostic technique for detecting seizures, suspected nonconvulsive status epilepticus (NCSE), altered mental status, stroke, and in the setting of sedation. Growing evidence supports using EEG to expedite medical decision-making in the setting of suspected acute neurological injury. This review covers approaches to acquiring EEG in the emergency setting in the adult and pediatric populations. We also cover the clinical impact of this data, the time associated with emergency EEG, and the costs of acquiring EEG in these settings. Finally, we discuss the advances in artificial intelligence for rapid electrophysiological interpretation.
Collapse
Affiliation(s)
- Zachary Davey
- grid.414467.40000 0001 0560 6544Department of Neurology, Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Pranjal Bodh Gupta
- grid.240952.80000000087342732Department of Emergency Medicine, Stanford Medicine, Palo Alto, CA USA
| | - David R. Li
- grid.240952.80000000087342732Department of Emergency Medicine, Stanford Medicine, Palo Alto, CA USA
| | - Rahul Uday Nayak
- grid.240952.80000000087342732Department of Emergency Medicine, Stanford Medicine, Palo Alto, CA USA
| | - Prasanthi Govindarajan
- grid.240952.80000000087342732Department of Emergency Medicine, Stanford Medicine, Palo Alto, CA USA
| |
Collapse
|
21
|
Frankel MA, Lehmkuhle MJ, Spitz MC, Newman BJ, Richards SV, Arain AM. Wearable Reduced-Channel EEG System for Remote Seizure Monitoring. Front Neurol 2021; 12:728484. [PMID: 34733229 PMCID: PMC8558398 DOI: 10.3389/fneur.2021.728484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Epitel has developed Epilog, a miniature, wireless, wearable electroencephalography (EEG) sensor. Four Epilog sensors are combined as part of Epitel's Remote EEG Monitoring platform (REMI) to create 10 channels of EEG for remote patient monitoring. REMI is designed to provide comprehensive spatial EEG recordings that can be administered by non-specialized medical personnel in any medical center. The purpose of this study was to determine how accurate epileptologists are at remotely reviewing Epilog sensor EEG in the 10-channel “REMI montage,” with and without seizure detection support software. Three board certified epileptologists reviewed the REMI montage from 20 subjects who wore four Epilog sensors for up to 5 days alongside traditional video-EEG in the EMU, 10 of whom experienced a total of 24 focal-onset electrographic seizures and 10 of whom experienced no seizures or epileptiform activity. Epileptologists randomly reviewed the same datasets with and without clinical decision support annotations from an automated seizure detection algorithm tuned to be highly sensitive. Blinded consensus review of unannotated Epilog EEG in the REMI montage detected people who were experiencing electrographic seizure activity with 90% sensitivity and 90% specificity. Consensus detection of individual focal onset seizures resulted in a mean sensitivity of 61%, precision of 80%, and false detection rate (FDR) of 0.002 false positives per hour (FP/h) of data. With algorithm seizure detection annotations, the consensus review mean sensitivity improved to 68% with a slight increase in FDR (0.005 FP/h). As seizure detection software, the automated algorithm detected people who were experiencing electrographic seizure activity with 100% sensitivity and 70% specificity, and detected individual focal onset seizures with a mean sensitivity of 90% and mean false alarm rate of 0.087 FP/h. This is the first study showing epileptologists' ability to blindly review EEG from four Epilog sensors in the REMI montage, and the results demonstrate the clinical potential to accurately identify patients experiencing electrographic seizures. Additionally, the automated algorithm shows promise as clinical decision support software to detect discrete electrographic seizures in individual records as accurately as FDA-cleared predicates.
Collapse
Affiliation(s)
| | | | - Mark C Spitz
- Neurology, University of Colorado Anschutz Medical Center, Aurora, CO, United States
| | - Blake J Newman
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Sindhu V Richards
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Amir M Arain
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|