1
|
Samanta D, Aungaroon G, Albert GW, Karakas C, Joshi CN, Singh RK, Oluigbo C, Perry MS, Naik S, Reeders PC, Jain P, Abel TJ, Pati S, Shaikhouni A, Haneef Z. Advancing thalamic neuromodulation in epilepsy: Bridging adult data to pediatric care. Epilepsy Res 2024; 205:107407. [PMID: 38996686 DOI: 10.1016/j.eplepsyres.2024.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Thalamic neuromodulation has emerged as a treatment option for drug-resistant epilepsy (DRE) with widespread and/or undefined epileptogenic networks. While deep brain stimulation (DBS) and responsive neurostimulation (RNS) depth electrodes offer means for electrical stimulation of the thalamus in adult patients with DRE, the application of thalamic neuromodulation in pediatric epilepsy remains limited. To address this gap, the Neuromodulation Expert Collaborative was established within the Pediatric Epilepsy Research Consortium (PERC) Epilepsy Surgery Special Interest Group. In this expert review, existing evidence and recommendations for thalamic neuromodulation modalities using DBS and RNS are summarized, with a focus on the anterior (ANT), centromedian(CMN), and pulvinar nuclei of the thalamus. To-date, only DBS of the ANT is FDA approved for treatment of DRE in adult patients based on the results of the pivotal SANTE (Stimulation of the Anterior Nucleus of Thalamus for Epilepsy) study. Evidence for other thalamic neurmodulation indications and targets is less abundant. Despite the lack of evidence, positive responses to thalamic stimulation in adults with DRE have led to its off-label use in pediatric patients. Although caution is warranted due to differences between pediatric and adult epilepsy, the efficacy and safety of pediatric neuromodulation appear comparable to that in adults. Indeed, CMN stimulation is increasingly accepted for generalized and diffuse onset epilepsies, with recent completion of one randomized trial. There is also growing interest in using pulvinar stimulation for temporal plus and posterior quadrant epilepsies with one ongoing clinical trial in Europe. The future of thalamic neuromodulation holds promise for revolutionizing the treatment landscape of childhood epilepsy. Ongoing research, technological advancements, and collaborative efforts are poised to refine and improve thalamic neuromodulation strategies, ultimately enhancing the quality of life for children with DRE.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Gewalin Aungaroon
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregory W Albert
- Department of Neurosurgery, University of Arkansas for Medical Sciences, USA
| | - Cemal Karakas
- Division of Pediatric Neurology, Department of Neurology, Norton Children's Hospital, University of Louisville, Louisville, KY 40202, USA
| | - Charuta N Joshi
- Division of Pediatric Neurology, Childrens Medical Center Dallas, UTSW, USA
| | - Rani K Singh
- Department of Pediatrics, Atrium Health-Levine Children's; Wake Forest University School of Medicine, USA
| | - Chima Oluigbo
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health, Cook Children's Medical Center, Ft Worth, TX, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Puck C Reeders
- Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine and Department of Bioengineering, University of Pittsburgh
| | - Sandipan Pati
- The University of Texas Health Science Center at Houston, USA
| | - Ammar Shaikhouni
- Department of Pediatric Neurosurgery, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Zulfi Haneef
- Neurology Care Line, VA Medical Center, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Kaufmann E, Peltola J, Colon AJ, Lehtimäki K, Majtanik M, Mai JK, Bóné B, Bentes C, Coenen V, Gil-Nagel A, Goncalves-Ferreira AJ, Ryvlin P, Taylor R, Brionne TC, Gielen F, Song S, Boon P. Long-term evaluation of anterior thalamic deep brain stimulation for epilepsy in the European MORE registry. Epilepsia 2024; 65:2438-2458. [PMID: 38837755 DOI: 10.1111/epi.18003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE Short-term outcomes of deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) were reported for people with drug-resistant focal epilepsy (PwE). Because long-term data are still scarce, the Medtronic Registry for Epilepsy (MORE) evaluated clinical routine application of ANT-DBS. METHODS In this multicenter registry, PwE with ANT-DBS were followed up for safety, efficacy, and battery longevity. Follow-up ended after 5 years or upon study closure. Clinical characteristics and stimulation settings were compared between PwE with no benefit, improvers, and responders, that is, PwE with average monthly seizure frequency reduction rates of ≥50%. RESULTS Of 170 eligible PwE, 104, 62, and 49 completed the 3-, 4-, and 5-year follow-up, respectively. Most discontinuations (68%) were due to planned study closure as follow-up beyond 2 years was optional. The 5-year follow-up cohort had a median seizure frequency reduction from 16 per month at baseline to 7.9 per month at 5-year follow-up (p < .001), with most-pronounced effects on focal-to-bilateral tonic-clonic seizures (n = 15, 77% reduction, p = .008). At last follow-up (median 3.5 years), 41% (69/170) of PwE were responders. Unifocal epilepsy (p = .035) and a negative history of epilepsy surgery (p = .002) were associated with larger average monthly seizure frequency reductions. Stimulation settings did not differ between response groups. In 179 implanted PwE, DBS-related adverse events (AEs, n = 225) and serious AEs (n = 75) included deterioration in epilepsy or seizure frequency/severity/type (33; 14 serious), memory/cognitive impairment (29; 3 serious), and depression (13; 4 serious). Five deaths occurred (none were ANT-DBS related). Most AEs (76.3%) manifested within the first 2 years after implantation. Activa PC depletion (n = 37) occurred on average after 45 months. SIGNIFICANCE MORE provides further evidence for the long-term application of ANT-DBS in clinical routine practice. Although clinical benefits increased over time, side effects occurred mainly during the first 2 years. Identified outcome modifiers can help inform PwE selection and management.
Collapse
Affiliation(s)
- Elisabeth Kaufmann
- Department of Neurology, Epilepsy Center, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jukka Peltola
- Department of Neurology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Albert J Colon
- Academic Center for Epileptology Kempenhaeghe/Maastricht UMC+, Maastricht, The Netherlands
| | - Kai Lehtimäki
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Milan Majtanik
- MRX-Brain GmbH, Düsseldorf, Germany
- Department of Informatics, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Jürgen K Mai
- MRX-Brain GmbH, Düsseldorf, Germany
- Department of Neuroanatomy, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Beata Bóné
- Medical School, University of Pécs, Pécs, Hungary
| | - Carla Bentes
- Department of Neurosciences and Mental Health, Centro de Referência para a área de Epilepsia Refratária (Epicare Member), Hospital de Santa Maria- Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
- Faculdade de Medicina, Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal
| | - Volker Coenen
- Department of Stereotactic and Functional Neurosurgery, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Antonio Gil-Nagel
- Epilepsy Program, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | | | - Philippe Ryvlin
- Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Rod Taylor
- MRC/CSO Social and Public Health Sciences Unit & Robertson Centre for Biostatistics, Institute of Health and Well Being, University of Glasgow, Glasgow, UK
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Thomas C Brionne
- Clinical Department, Medtronic Internal Trading Sàrl, Tolochenaz, Switzerland
| | - Frans Gielen
- Medtronic Bakken Research Center, Maastricht, The Netherlands
| | - Shannon Song
- Department of Neurology, Medtronic Operational Headquarters, Minneapolis, Minnesota, USA
| | - Paul Boon
- Department of Neurology, Ghent University Hospital-Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Sharma A, Parfyonov M, Tiefenbach J, Hogue O, Nero N, Jehi L, Serletis D, Bingaman W, Gupta A, Rammo R. Predictors of therapeutic response following thalamic neuromodulation for drug-resistant pediatric epilepsy: A systematic review and individual patient data meta-analysis. Epilepsia 2024; 65:542-555. [PMID: 38265348 DOI: 10.1111/epi.17883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
We sought to perform a systematic review and individual participant data meta-analysis to identify predictors of treatment response following thalamic neuromodulation in pediatric patients with medically refractory epilepsy. Electronic databases (MEDLINE, Ovid, Embase, and Cochrane) were searched, with no language or data restriction, to identify studies reporting seizure outcomes in pediatric populations following deep brain stimulation (DBS) or responsive neurostimulation (RNS) implantation in thalamic nuclei. Studies featuring individual participant data of patients with primary or secondary generalized drug-resistant epilepsy were included. Response to therapy was defined as >50% reduction in seizure frequency from baseline. Of 417 citations, 21 articles reporting on 88 participants were eligible. Mean age at implantation was 13.07 ± 3.49 years. Fifty (57%) patients underwent DBS, and 38 (43%) RNS. Sixty (68%) patients were implanted in centromedian nucleus and 23 (26%) in anterior thalamic nucleus, and five (6%) had both targets implanted. Seventy-four (84%) patients were implanted bilaterally. The median time to last follow-up was 12 months (interquartile range = 6.75-26.25). Sixty-nine percent of patients achieved response to treatment. Age, target, modality, and laterality had no significant association with response in univariate logistic regression. Until thalamic neuromodulation gains widespread approval for use in pediatric patients, data on efficacy will continue to be limited to small retrospective cohorts and case series. The inherent bias of these studies can be overcome by using individual participant data. Thalamic neuromodulation appears to be a safe and effective treatment for epilepsy. Larger, prolonged prospective, multicenter studies are warranted to further evaluate the efficacy of DBS over RNS in this patient population where resection for curative intent is not a safe option.
Collapse
Affiliation(s)
- Akshay Sharma
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Maksim Parfyonov
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Jakov Tiefenbach
- Center for Neurologic Restoration, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Neil Nero
- Education Institute, Floyd D. Loop Alumni Library, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lara Jehi
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Demitre Serletis
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William Bingaman
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Ajay Gupta
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Richard Rammo
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Center for Neurologic Restoration, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Yang JC, Yang AI, Gross RE. Sensing-Enabled Deep Brain Stimulation in Epilepsy. Neurosurg Clin N Am 2024; 35:119-123. [PMID: 38000835 DOI: 10.1016/j.nec.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Deep brain stimulation has demonstrated efficacy in reducing seizure frequency in patients with drug-resistant epilepsy who may otherwise not be candidates for other surgical procedures. Recently, a clinical device that can monitor neural activity in the form of local field potentials around the deep brain stimulator lead implant site has been introduced. While this technology has been clinically adopted in other disorders treated with deep brain stimulation, such as Parkinson's disease, its application in epilepsy remains unclear. Previous research using investigational devices has suggested that specific frequency bands may correlate with clinical response to deep brain stimulation in epilepsy, but features of the clinical device may prevent its use. The authors present their experience with using this technology in epilepsy patients and describe some of its limitations. Ultimately, novel biomarkers will need to be identified to elucidate how neural activity at deep brain stimulation sites may change with clinical response.
Collapse
Affiliation(s)
- Jimmy C Yang
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Neurosurgery, Emory University, 1365 Clifton Road NE, Suite B6200, Atlanta, GA 30322, USA.
| | - Andrew I Yang
- Department of Neurosurgery, Emory University, 1365 Clifton Road NE, Suite B6200, Atlanta, GA 30322, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, 1365 Clifton Road NE, Suite B6200, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, 1365 Clifton Road NE, Suite B6200, Atlanta, GA 30322
| |
Collapse
|
5
|
Fields MC, Eka O, Schreckinger C, Dugan P, Asaad WF, Blum AS, Bullinger K, Willie JT, Burdette DE, Anderson C, Quraishi IH, Gerrard J, Singh A, Lee K, Yoo JY, Ghatan S, Panov F, Marcuse LV. A multicenter retrospective study of patients treated in the thalamus with responsive neurostimulation. Front Neurol 2023; 14:1202631. [PMID: 37745648 PMCID: PMC10516547 DOI: 10.3389/fneur.2023.1202631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/19/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction For drug resistant epilepsy patients who are either not candidates for resective surgery or have already failed resective surgery, neuromodulation is a promising option. Neuromodulatory approaches include responsive neurostimulation (RNS), deep brain stimulation (DBS), and vagal nerve stimulation (VNS). Thalamocortical circuits are involved in both generalized and focal onset seizures. This paper explores the use of RNS in the centromedian nucleus of the thalamus (CMN) and in the anterior thalamic nucleus (ANT) of patients with drug resistant epilepsy. Methods This is a retrospective multicenter study from seven different epilepsy centers in the United States. Patients that had unilateral or bilateral thalamic RNS leads implanted in the CMN or ANT for at least 6 months were included. Primary objectives were to describe the implant location and determine changes in the frequency of disabling seizures at 6 months, 1 year, 2 years, and > 2 years. Secondary objectives included documenting seizure free periods, anti-seizure medication regimen changes, stimulation side effects, and serious adverse events. In addition, the global clinical impression scale was completed. Results Twelve patients had at least one lead placed in the CMN, and 13 had at least one lead placed in the ANT. The median baseline seizure frequency was 15 per month. Overall, the median seizure reduction was 33% at 6 months, 55% at 1 year, 65% at 2 years, and 74% at >2 years. Seizure free intervals of at least 3 months occurred in nine patients. Most patients (60%, 15/25) did not have a change in anti-seizure medications post RNS placement. Two serious adverse events were recorded, one related to RNS implantation. Lastly, overall functioning seemed to improve with 88% showing improvement on the global clinical impression scale. Discussion Meaningful seizure reduction was observed in patients who suffer from drug resistant epilepsy with unilateral or bilateral RNS in either the ANT or CMN of the thalamus. Most patients remained on their pre-operative anti-seizure medication regimen. The device was well tolerated with few side effects. There were rare serious adverse events. Most patients showed an improvement in global clinical impression scores.
Collapse
Affiliation(s)
- Madeline C Fields
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Onome Eka
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Patricia Dugan
- Department of Neurology, Langone Medical Center, New York University, New York, NY, United States
| | - Wael F Asaad
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Andrew S Blum
- Department of Neurology, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Katie Bullinger
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Jon T Willie
- Department of Neurosurgery, School of Medicine, Washington University in St Louis, St. Louis, MO, United States
| | - David E Burdette
- Department of Neurosciences, Corewell Health, Grand Rapids, MI, United States
| | - Christopher Anderson
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Imran H Quraishi
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States
| | - Jason Gerrard
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Anuradha Singh
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kyusang Lee
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ji Yeoun Yoo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Saadi Ghatan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lara V Marcuse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Yan H, Wang X, Zhang X, Qiao L, Gao R, Ni D, Shu W, Xu C, Ren L, Yu T. Deep brain stimulation for patients with refractory epilepsy: nuclei selection and surgical outcome. Front Neurol 2023; 14:1169105. [PMID: 37251216 PMCID: PMC10213517 DOI: 10.3389/fneur.2023.1169105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Objective By studying the surgical outcome of deep brain stimulation (DBS) of different target nuclei for patients with refractory epilepsy, we aimed to explore a clinically feasible target nucleus selection strategy. Methods We selected patients with refractory epilepsy who were not eligible for resective surgery. For each patient, we performed DBS on a thalamic nucleus [anterior nucleus of the thalamus (ANT), subthalamic nucleus (STN), centromedian nucleus (CMN), or pulvinar nucleus (PN)] selected based on the location of the patient's epileptogenic zone (EZ) and the possible epileptic network involved. We monitored the clinical outcomes for at least 12 months and analyzed the clinical characteristics and seizure frequency changes to assess the postoperative efficacy of DBS on the different target nuclei. Results Out of the 65 included patients, 46 (70.8%) responded to DBS. Among the 65 patients, 45 underwent ANT-DBS, 29 (64.4%) responded to the treatment, and four (8.9%) of them reported being seizure-free for at least 1 year. Among the patients with temporal lobe epilepsy (TLE, n = 36) and extratemporal lobe epilepsy (ETLE, n = 9), 22 (61.1%) and 7 (77.8%) responded to the treatment, respectively. Among the 45 patients who underwent ANT-DBS, 28 (62%) had focal to bilateral tonic-clonic seizures (FBTCS). Of these 28 patients, 18 (64%) responded to the treatment. Out of the 65 included patients, 16 had EZ related to the sensorimotor cortex and underwent STN-DBS. Among them, 13 (81.3%) responded to the treatment, and two (12.5%) were seizure-free for at least 6 months. Three patients had Lennox-Gastaut syndrome (LGS)-like epilepsy and underwent CMN-DBS; all of them responded to the treatment (seizure frequency reductions: 51.6%, 79.6%, and 79.5%). Finally, one patient with bilateral occipital lobe epilepsy underwent PN-DBS, reducing the seizure frequency by 69.7%. Significance ANT-DBS is effective for patients with TLE or ETLE. In addition, ANT-DBS is effective for patients with FBTCS. STN-DBS might be an optimal treatment for patients with motor seizures, especially when the EZ overlaps the sensorimotor cortex. CMN and PN may be considered modulating targets for patients with LGS-like epilepsy or occipital lobe epilepsy, respectively.
Collapse
Affiliation(s)
- Hao Yan
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Zhang
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Qiao
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Runshi Gao
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Duanyu Ni
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Shu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cuiping Xu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liankun Ren
- Department of Neurology, Comprehensive Epilepsy Center of Beijing, Beijing Key Laboratory of Neuromodulation, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Yu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Xue T, Wang S, Chen S, Wang H, Liu C, Shi L, Bai Y, Zhang C, Han C, Zhang J. Subthalamic nucleus stimulation attenuates motor seizures via modulating the nigral orexin pathway. Front Neurosci 2023; 17:1157060. [PMID: 37214393 PMCID: PMC10196042 DOI: 10.3389/fnins.2023.1157060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Background Focal motor seizures that originate in the motor region are a considerable challenge because of the high risk of permanent motor deficits after resection. Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a potential treatment for motor epilepsy that may enhance the antiepileptic actions of the substantia nigra pars reticulata (SNr). Orexin and its receptors have a relationship with both STN-DBS and epilepsy. We aimed to investigate whether and how STN inputs to the SNr regulate seizures and the role of the orexin pathway in this process. Methods A penicillin-induced motor epileptic model in adult male C57BL/6 J mice was established to evaluate the efficacy of STN-DBS in modulating seizure activities. Optogenetic and chemogenetic approaches were employed to regulate STN-SNr circuits. Selective orexin receptor type 1 and 2 antagonists were used to inhibit the orexin pathway. Results First, we found that high-frequency ipsilateral or bilateral STN-DBS was effective in reducing seizure activity in the penicillin-induced motor epilepsy model. Second, inhibition of STN excitatory neurons and STN-SNr projections alleviates seizure activities, whereas their activation amplifies seizure activities. In addition, activation of the STN-SNr circuits also reversed the protective effect of STN-DBS on motor epilepsy. Finally, we observed that STN-DBS reduced the elevated expression of orexin and its receptors in the SNr during seizures and that using a combination of selective orexin receptor antagonists also reduced seizure activity. Conclusion STN-DBS helps reduce motor seizure activity by inhibiting the STN-SNr circuit. Additionally, orexin receptor antagonists show potential in suppressing motor seizure activity and may be a promising therapeutic option in the future.
Collapse
Affiliation(s)
- Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shujun Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huizhi Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chong Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunkui Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunlei Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis 2023; 179:106045. [PMID: 36809846 DOI: 10.1016/j.nbd.2023.106045] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Neuromodulation (neurostimulation) is a relatively new and rapidly growing treatment for refractory epilepsy. Three varieties are approved in the US: vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). This article reviews thalamic DBS for epilepsy. Among many thalamic sub-nuclei, DBS for epilepsy has been targeted to the anterior nucleus (ANT), centromedian nucleus (CM), dorsomedial nucleus (DM) and pulvinar (PULV). Only ANT is FDA-approved, based upon a controlled clinical trial. Bilateral stimulation of ANT reduced seizures by 40.5% at three months in the controlled phase (p = .038) and 75% by 5 years in the uncontrolled phase. Side effects related to paresthesias, acute hemorrhage, infection, occasional increased seizures, and usually transient effects on mood and memory. Efficacy was best documented for focal onset seizures in temporal or frontal lobe. CM stimulation may be useful for generalized or multifocal seizures and PULV for posterior limbic seizures. Mechanisms of DBS for epilepsy are largely unknown, but animal work points to changes in receptors, channels, neurotransmitters, synapses, network connectivity and neurogenesis. Personalization of therapies, in terms of connectivity of the seizure onset zone to the thalamic sub- nucleus and individual characteristics of the seizures, might lead to improved efficacy. Many questions remain about DBS, including the best candidates for different types of neuromodulation, the best targets, the best stimulation parameters, how to minimize side effects and how to deliver current noninvasively. Despite the questions, neuromodulation provides useful new opportunities to treat people with refractory seizures not responding to medicines and not amenable to resective surgery.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by Courtesy, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Room 4865, Palo Alto, CA 94304, USA.
| |
Collapse
|
9
|
Lundstrom BN, Osman GM, Starnes K, Gregg NM, Simpson HD. Emerging approaches in neurostimulation for epilepsy. Curr Opin Neurol 2023; 36:69-76. [PMID: 36762660 PMCID: PMC9992108 DOI: 10.1097/wco.0000000000001138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW Neurostimulation is a quickly growing treatment approach for epilepsy patients. We summarize recent approaches to provide a perspective on the future of neurostimulation. RECENT FINDINGS Invasive stimulation for treatment of focal epilepsy includes vagus nerve stimulation, responsive neurostimulation of the cortex and deep brain stimulation of the anterior nucleus of the thalamus. A wide range of other targets have been considered, including centromedian, central lateral and pulvinar thalamic nuclei; medial septum, nucleus accumbens, subthalamic nucleus, cerebellum, fornicodorsocommissure and piriform cortex. Stimulation for generalized onset seizures and mixed epilepsies as well as increased efforts focusing on paediatric populations have emerged. Hardware with more permanently implanted lead options and sensing capabilities is emerging. A wider variety of programming approaches than typically used may improve patient outcomes. Finally, noninvasive brain stimulation with its favourable risk profile offers the potential to treat increasingly diverse epilepsy patients. SUMMARY Neurostimulation for the treatment of epilepsy is surprisingly varied. Flexibility and reversibility of neurostimulation allows for rapid innovation. There remains a continued need for excitability biomarkers to guide treatment and innovation. Neurostimulation, a part of bioelectronic medicine, offers distinctive benefits as well as unique challenges.
Collapse
Affiliation(s)
| | | | - Keith Starnes
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Hugh D Simpson
- Department of Neurology, Alfred Health
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Olaciregui Dague K, Witt JA, von Wrede R, Helmstaedter C, Surges R. DBS of the ANT for refractory epilepsy: A single center experience of seizure reduction, side effects and neuropsychological outcomes. Front Neurol 2023; 14:1106511. [PMID: 36970547 PMCID: PMC10033684 DOI: 10.3389/fneur.2023.1106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
ObjectiveEvaluation of the antiseizure efficacy, side effects and neuropsychological effects of Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT). ANT-DBS is a treatment option for patients with difficult-to-treat epilepsy. Though several works outline the cognitive and/or mood effects of ANT-DBS for the treatment of epilepsy, data on the intersection between antiseizure efficacy, cognitive and undesired effects are scarce.MethodsWe retrospectively analyzed the data of our cohort of 13 patients. Post-implantation seizure frequencies were measured at 6 months, 12 months and last follow-up, as well as averaged throughout follow-up. These values were then compared with mean seizure frequencies in the 6 months before implantation. To address acute cognitive effects of DBS a baseline assessment was performed after implantation and before stimulation, and a follow-up assessment was conducted under DBS. The long-term effects of DBS on cognition were assessed by comparing the preoperative neuropsychological profile with a long-term follow-up under DBS.ResultsIn the entire cohort, 54.5% of patients were responders, with an average seizure reduction of 73.6%. One of these patients achieved temporary seizure freedom and near-total seizure reduction during the entire follow-up. Seizure reduction of <50% was achieved in 3 patients. Non-responders suffered an average seizure increase of 27.3%. Eight of twenty-two active electrodes (36,4%) were off-target. Two of our patients had both electrodes implanted off-target. When removing these two patients from the analysis and averaging seizure frequency during the entire follow-up period, four patients (44.4%) were responders and three experienced a seizure reduction of <50%. Intolerable side effects arose in 5 patients, mostly psychiatric. Regarding acute cognitive effects of DBS, only one patient showed a significant decline in executive functions. Long-term neuropsychological effects included significant intraindividual changes in verbal learning and memory. Figural memory, attention and executive functions, confrontative naming and mental rotation were mostly unchanged, and improved in few cases.SignificanceIn our cohort, more than half of patients were responders. Psychiatric side effects seem to have been more prevalent compared to other published cohorts. This may be partially explained by a relatively high occurrence of off-target electrodes.
Collapse
|
11
|
O’Donnell CM, Swanson SJ, Carlson CE, Raghavan M, Pahapill PA, Anderson CT. Responsive Neurostimulation of the Anterior Thalamic Nuclei in Refractory Genetic Generalized Epilepsy: A Case Series. Brain Sci 2023; 13:brainsci13020324. [PMID: 36831867 PMCID: PMC9954640 DOI: 10.3390/brainsci13020324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023] Open
Abstract
Genetic generalized epilepsies (GGEs) are thought to represent disorders of thalamocortical networks. There are currently no well-established non-pharmacologic treatment options for patients with drug-resistant GGE. NeuroPace's Responsive Neurostimulation (RNS) System was approved by the United States Food and Drug Administration to treat focal seizures with up to two ictal foci. We report on three adults with drug-resistant GGE who were treated with thalamic RNS. Given the severity of their epilepsies and the potential ictogenic role of the thalamus in the pathophysiology of GGE, the RNS System was palliatively implanted with leads in the bilateral anterior thalamic nuclei (ANT) of these patients. The ANT was selected because it was demonstrated to be a safe target. We retrospectively evaluated metrics including seizure frequency over 18-32 months. One patient required explantation due to infection. The other two patients were clinical responders. By the end of the observation period reported here, one patient was seizure-free for over 9 months. All three self-reported an improved quality of life. The clinical response observed in these patients provides 'proof-of-principle' that GGE may be treatable with responsive thalamic stimulation. Our results support proceeding to a larger study investigating the efficacy and safety of thalamic RNS in drug-resistant GGE.
Collapse
Affiliation(s)
- Carly M. O’Donnell
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Correspondence:
| | - Sara J. Swanson
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Chad E. Carlson
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Manoj Raghavan
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Peter A. Pahapill
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Christopher Todd Anderson
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Alcala-Zermeno JL, Gregg NM, Starnes K, Mandrekar JN, Van Gompel JJ, Miller K, Worrell G, Lundstrom BN. Invasive neuromodulation for epilepsy: Comparison of multiple approaches from a single center. Epilepsy Behav 2022; 137:108951. [PMID: 36327647 PMCID: PMC9934010 DOI: 10.1016/j.yebeh.2022.108951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Drug-resistant epilepsy (DRE) patients not amenable to epilepsy surgery can benefit from neurostimulation. Few data compare different neuromodulation strategies. OBJECTIVE Compare five invasive neuromodulation strategies for the treatment of DRE: anterior thalamic nuclei deep brain stimulation (ANT-DBS), centromedian thalamic nuclei DBS (CM-DBS), responsive neurostimulation (RNS), chronic subthreshold stimulation (CSS), and vagus nerve stimulation (VNS). METHODS Single center retrospective review and phone survey for patients implanted with invasive neuromodulation for 2004-2021. RESULTS N = 159 (ANT-DBS = 38, CM-DBS = 19, RNS = 30, CSS = 32, VNS = 40). Total median seizure reduction (MSR) was 61 % for the entire cohort (IQR 5-90) and in descending order: CSS (85 %), CM-DBS (63 %), ANT-DBS (52 %), RNS (50 %), and VNS (50 %); p = 0.07. The responder rate was 60 % after a median follow-up time of 26 months. Seizure severity, life satisfaction, and quality of sleep were improved. Cortical stimulation (RNS and CSS) was associated with improved seizure reduction compared to subcortical stimulation (ANT-DBS, CM-DBS, and VNS) (67 % vs. 52 %). Effectiveness was similar for focal epilepsy vs. generalized epilepsy, closed-loop vs. open-loop stimulation, pediatric vs. adult cases, and high frequency (>100 Hz) vs. low frequency (<100 Hz) stimulation settings. Delivered charge per hour varied widely across approaches but was not correlated with improved seizure reduction. CONCLUSIONS Multiple invasive neuromodulation approaches are available to treat DRE, but little evidence compares the approaches. This study used a uniform approach for single-center results and represents an effort to compare neuromodulation approaches.
Collapse
Affiliation(s)
- Juan Luis Alcala-Zermeno
- Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Neurology, Jefferson Medical College, Thomas Jefferson University, 901 Walnut Street, Suite 400, Philadelphia, PA 19107, USA.
| | - Nicholas M. Gregg
- Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Keith Starnes
- Division of Child and Adolescent Neurology, Department of Neurology, 200 First St SW, Rochester, MN 55905, USA.
| | - Jayawant N. Mandrekar
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Jamie J. Van Gompel
- Department of Neurologic Surgery, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Kai Miller
- Department of Neurologic Surgery, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Greg Worrell
- Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Brian N. Lundstrom
- Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| |
Collapse
|
13
|
Simpson HD, Schulze-Bonhage A, Cascino GD, Fisher RS, Jobst BC, Sperling MR, Lundstrom BN. Practical considerations in epilepsy neurostimulation. Epilepsia 2022; 63:2445-2460. [PMID: 35700144 PMCID: PMC9888395 DOI: 10.1111/epi.17329] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/02/2023]
Abstract
Neuromodulation is a key therapeutic tool for clinicians managing patients with drug-resistant epilepsy. Multiple devices are available with long-term follow-up and real-world experience. The aim of this review is to give a practical summary of available neuromodulation techniques to guide the selection of modalities, focusing on patient selection for devices, common approaches and techniques for initiation of programming, and outpatient management issues. Vagus nerve stimulation (VNS), deep brain stimulation of the anterior nucleus of the thalamus (DBS-ANT), and responsive neurostimulation (RNS) are all supported by randomized controlled trials that show safety and a significant impact on seizure reduction, as well as a suggestion of reduction in the risk of sudden unexplained death in epilepsy (SUDEP). Significant seizure reductions are observed after 3 months for DBS, RNS, and VNS in randomized controlled trials, and efficacy appears to improve with time out to 7 to 10 years of follow-up for all modalities, albeit in uncontrolled follow-up or retrospective studies. A significant number of patients experience seizure-free intervals of 6 months or more with all three modalities. Number and location of epileptogenic foci are important factors affecting efficacy, and together with comorbidities such as severe mood or sleep disorders, may influence the choice of modality. Programming has evolved-DBS is typically initiated at lower current/voltage than used in the pivotal trial, whereas target charge density is lower with RNS, however generalizable optimal parameters are yet to be defined. Noninvasive brain stimulation is an emerging stimulation modality, although it is currently not used widely. In summary, clinical practice has evolved from those established in pivotal trials. Guidance is now available for clinicians who wish to expand their approach, and choice of neuromodulation technique may be tailored to individual patients based on their epilepsy characteristics, risk tolerance, and preferences.
Collapse
Affiliation(s)
- Hugh D. Simpson
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Gregory D. Cascino
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Robert S. Fisher
- Department of Neurology, Stanford Neuroscience Health Center, Palo Alto, CA, USA
| | - Barbara C. Jobst
- Geisel School of Medicine at Dartmouth, Department of Neurology, Dartmouth-Hitchcock Medical Center, NH, USA
| | - Michael R. Sperling
- Division of Epilepsy, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brian N. Lundstrom
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Li Y, Wang J, Wang X, Chen Q, Qin B, Chen J. Reconfiguration of static and dynamic thalamo-cortical network functional connectivity of epileptic children with generalized tonic-clonic seizures. Front Neurosci 2022; 16:953356. [PMID: 35937891 PMCID: PMC9353948 DOI: 10.3389/fnins.2022.953356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/24/2022] [Indexed: 12/05/2022] Open
Abstract
Objective A number of studies in adults and children with generalized tonic-clonic seizure (GTCS) have reported the alterations in morphometry, functional activity, and functional connectivity (FC) in the thalamus. However, the neural mechanisms underlying the alterations in the thalamus of patients with GTCS are not well understood, particularly in children. The aim of the current study was to explore the temporal properties of functional pathways connecting thalamus in children with GTCS. Methods Here, we recruited 24 children with GTCS and 36 age-matched healthy controls. Static and dynamic FC approaches were used to evaluate alterations in the temporal variability of thalamo-cortical networks in children with GTCS. The dynamic effective connectivity (dEC) method was also used to evaluate the directions of the fluctuations in effective connectivity. In addition, the relationships between the dynamic properties and clinical features were assessed. Results The static FC analysis presented significantly decreased connectivity patterns between the bilateral thalamus and between the thalamus and right inferior temporal gyrus. The dynamic connectivity analysis found decreased FC variability in the thalamo-cortical network of children with epilepsy. Dynamic EC analyses identified increased connectivity variability from the frontal gyrus to the bilateral thalamus, and decreased connectivity variability from the right thalamus to the left thalamus and from the right thalamus to the right superior parietal lobe. In addition, correlation analysis revealed that both static FC and connectivity temporal variability in the thalamo-cortical network related to the clinical features (epilepsy duration and epilepsy onset time). Significance Our findings of both increased and decreased connectivity variability in the thalamo-cortical network imply a dynamic restructuring of the functional pathways connecting the thalamus in children with GTCS. These alterations in static and temporal dynamic pathways connecting the bilateral thalamus may extend our understanding of the neural mechanisms underlying the GTCS in children.
Collapse
Affiliation(s)
- Yongxin Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Yongxin Li,
| | - Jianping Wang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Wang
- Epilepsy Center and Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qian Chen
- Department of Pediatric Neurosurgery, Shenzhen Children’s Hospital, Shenzhen, China
| | - Bing Qin
- Epilepsy Center and Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Middlebrooks EH, He X, Grewal SS, Keller SS. Neuroimaging and thalamic connectomics in epilepsy neuromodulation. Epilepsy Res 2022; 182:106916. [PMID: 35367691 DOI: 10.1016/j.eplepsyres.2022.106916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/05/2022] [Accepted: 03/27/2022] [Indexed: 11/03/2022]
Abstract
Neuromodulation is an increasingly utilized therapy for the treatment of people with drug-resistant epilepsy. To date, the most common and effective target has been the thalamus, which is known to play a key role in multiple forms of epilepsy. Neuroimaging has facilitated rapid developments in the understanding of functional targets, surgical and programming techniques, and the effects of thalamic stimulation. In this review, the role of neuroimaging in neuromodulation is explored. First, the structural and functional changes of the thalamus in common epilepsy syndromes are discussed as the rationale for neuromodulation of the thalamus. Next, methods for imaging different thalamic nuclei are presented, as well as rationale for the need of direct surgical targeting rather than reliance on traditional stereotactic coordinates. Lastly, we discuss the potential role of neuroimaging in assessing the effects of thalamic stimulation and as a potential biomarker for neuromodulation outcomes.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| |
Collapse
|