1
|
Gavnholt L, Gesche J, Cerulli Irelli E, Krøigård T, Mangaard SB, Di Bonaventura C, Rubboli G, Röttger R, Beier CP. Unsupervised clustering of a deeply phenotyped cohort of adults with idiopathic generalized epilepsy. Epilepsia 2024. [PMID: 39724391 DOI: 10.1111/epi.18225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Idiopathic generalized epilepsy (IGE) in adults comprise juvenile myoclonic epilepsy (JME), juvenile absence epilepsy (JAE), and epilepsy with generalized tonic-clonic seizures alone (EGTCS), which are defined by their seizure types but also cover a broad endophenotype of symptoms. Controversy exists on whether adult IGE is a group of distinct diseases or a clinical spectrum of one disease. Here, we used a deeply phenotyped cohort to test the hypothesis that IGE comprises three distinct clinical entities. METHODS Patients (>18 years old) with IGE were recruited between 2016 and 2020 at Odense University Hospital and the Danish Epilepsy Center. Complete data were available for basic demographics, imaging, social status, and treatment response. Subjects were offered neuropsychological screening (including symptoms of psychiatric disease). Electroencephalograms (EEGs) were reanalyzed, and missing data were imputed. After selecting the features and normalizing the data, the dataset and an identical randomized dataset were subjected to k-means cluster analysis. RESULTS The dataset comprised 502 patients and 22 distinct nonoverlapping clinical features. Elbow and gap analyses revealed an optimal number of clusters of 1; the features with the highest eigenvalues were age at diagnosis and self-reported executive dysfunction. Applying k-means clustering yielded three low-quality clusters as assessed by silhouette score (mean = .400 ± .01). The corresponding mean silhouette score for the randomized control dataset was .390 (±.002). Age at diagnosis was associated with the epileptic discharges on EEG and treatment response. Self-reported executive dysfunction showed associations with psychiatric symptoms and impulsivity. JME, JAE, and EGTCS were loosely associated with the clusters (k = .088, p = .002) but showed a specific distribution within a matrix defined by age at diagnosis and self-reported executive dysfunction. SIGNIFICANCE IGE in adults is best described as a continuum of symptoms, where age at diagnosis and executive dysfunction are two main factors explaining most of its clinical variability. The seizure-defined syndromes cover different patient groups within the clinical spectrum.
Collapse
Affiliation(s)
- Line Gavnholt
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Joanna Gesche
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Thomas Krøigård
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Neurophysiology, Odense University Hospital, Odense, Denmark
| | | | | | - Guido Rubboli
- Danish Epilepsy Center, member of European Reference Network EpiCARE, Dianalund, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Richard Röttger
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Christoph Patrick Beier
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Open Patient Data Explorative Network, Odense University Hospital, Odense, Denmark
- Brain Research-Interdisciplinary Guided Excellence, Odense University Hospital, Odense, Denmark
| |
Collapse
|
2
|
Harboe L, Hansen OA, Døssing MK, Kjeldsen MJ, Beier CP. Intensive treatment course to identify pseudoresistant epilepsy and expedite surgery referrals - A prospective intervention study. Seizure 2024; 123:51-56. [PMID: 39488104 DOI: 10.1016/j.seizure.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
INTRODUCTION A significant proportion of patients do not achieve seizure freedom despite treatment attempts with two different anti-seizure medications (ASMs). A subset may not truly have drug-resistant epilepsy ("pseudoresistant"), while rapid referral of patients with genuine drug-resistant epilepsy to surgery is mandated. This study was designed to evaluate a structured and intensive treatment course with the objective of promptly identifying cases of pseudoresistance and accelerating the time to referral to epilepsy surgery. METHODS From May 2017 to February 2021, this prospective interventional study recruited consecutive adult patients with epilepsy treated at Odense University Hospital, Denmark, who had at least one seizure per month despite attempts with two or more ASMs. The predefined endpoint was improvement in seizure activity. Secondary endpoints were referral to epilepsy surgery, patients with pseudoresistance, and achievement of seizure freedom. RESULTS Of the 41 patients enrolled, 39 completed the study. The intervention comprised a initial seizure documentation, specialist evaluation, EEG monitoring as required, and an individualized plan for intensive treatment. The plans included e.g., optimization of medical treatment, seizure classification, and improvement of medication adherence. The subsequent intensive treatment (1-4 contacts/month; 1-13 contacts in total) was led by epilepsy nurses that executed the treatment plan. The intervention significantly improved seizure control, with 41.1 % of patients achieving seizure freedom and an additional 17.8 % of patients experiencing reduced seizure frequency. One-third of the patients turned out to be "pseudoresistant" due to various reasons, including wrong classification of seizures and inadequate adherence to ASMs. Ten patients were offered a referral for epilepsy surgery at the end of the study after an average of 34.8 weeks. CONCLUSION This study demonstrates the efficacy of a standardized, intensive treatment course involving epilepsy nurses in identifying and managing patients with persisting seizures despite treatment attempts with two ASMs. This approach led to favourable seizure outcomes and facilitated expedited referrals for epilepsy surgery where appropriate.
Collapse
Affiliation(s)
- Line Harboe
- Department of Neurology, Odense University Hospital, Denmark
| | - Ole Abildgaard Hansen
- Department of Neurology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Denmark; Centre for Innovative Medical Technology, University of Southern Denmark
| | | | - Marianne Juel Kjeldsen
- Department of Neurology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Denmark
| | - Christoph Patrick Beier
- Department of Neurology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Denmark; Centre for Innovative Medical Technology, University of Southern Denmark.
| |
Collapse
|
3
|
Li R, Zhao D, Li N, Lin W. Long-term phenobarbital treatment is effective in working-age patients with epilepsy in rural Northeast China: a 10-year follow-up study. Front Neurol 2024; 15:1429964. [PMID: 39507625 PMCID: PMC11538064 DOI: 10.3389/fneur.2024.1429964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Effective management of epilepsy in working-age patients is essential to reduce the burden on individuals, families, and communities. This study aimed to assess the long-term efficacy of phenobarbital (PB) in working-age patients with epilepsy in rural Northeast China and identify the risk factors for seizures during treatment. Methods Patients aged 18-65 years diagnosed with convulsive epilepsy in rural areas of Jilin Province between 2010 and 2024 were included, and demographic and clinical data were recorded. Seizure frequency, self-efficacy, adherence, and adverse events (AEs) were assessed monthly. Results Of the 3,568 participants, 288 (8.1%) withdrew from the study and 159 (4.5%) died. During the first year of treatment, 75.2% of patients experienced a ≥50% reduction in seizure frequency compared with baseline (considered as treatment effectiveness); 53.7% of patients were seizure-free. By the tenth year, 97.7% of patients showed treatment effectiveness, and 89.6% were seizure-free. Self-efficacy was improved in 37.8% of patients in the first year and in 72% of patients by the tenth year. The independent risk factors for seizures during treatment were higher baseline seizure frequency [odds ratio (OR) = 1.431, 95% confidence interval (CI): 1.122-1.824], presence of multiple seizure types (OR = 1.367, 95% CI: 1.023-1.826), and poor adherence (OR = 14.806, 95% CI: 3.495-62.725), with significant differences observed in the first, third, and fifth years. The most commonly reported AEs were drowsiness (43.3%), dizziness (25.0%), and headaches (17.0%), most of which were mild and decreased over time. Age at enrollment was the only factor influencing withdrawal (hazard ratio = 0.984, 95% CI: 0.973-0.996, p = 0.010), with a substantial number of patients who withdrew (32.6%) relocating for work. Cardiovascular disease was the primary cause of death, and age at enrollment was the only risk factor (hazard ratio = 1.026, 95% CI: 1.009-1.043, p = 0.002). Discussion Working-age adults with epilepsy demonstrated a favorable response and tolerability to PB monotherapy. Baseline seizure frequency, seizure type, and adherence consistently predicted prognosis throughout the treatment period. Withdrawal was mainly explained by work-related pressures in this age group. Therefore, it is essential to implement interventions that support patient adherence to therapy and maintain stable regimens.
Collapse
Affiliation(s)
| | | | | | - Weihong Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Crespo Pimentel B, Kuchukhidze G, Xiao F, Caciagli L, Hoefler J, Rainer L, Kronbichler M, Vollmar C, Duncan JS, Trinka E, Koepp MJ, Wandschneider B. Quantitative MRI Measures and Cognitive Function in People With Drug-Resistant Juvenile Myoclonic Epilepsy. Neurology 2024; 103:e209802. [PMID: 39303180 PMCID: PMC11446167 DOI: 10.1212/wnl.0000000000209802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Neuroimaging studies have so far identified structural changes in individuals with juvenile myoclonic epilepsy (JME) when compared with controls. However, the underlying mechanisms of drug-resistant JME remain unknown. In this study, we aimed at characterizing the structural underpinnings of drug-resistant JME using MRI-derived cortical morphologic markers. METHODS In this prospective cross-sectional 2-center study, T1-weighted MRI and neuropsychological measures of verbal memory and executive function were obtained in individuals with drug-resistant and drug-responsive JME recruited from epilepsy outpatient clinics and healthy controls. We performed vertexwise measurements of cortical thickness, surface area, and local gyrification index (LGI). Vertexwise group comparisons were corrected for multiple comparisons at a familywise error (FWE) of 0.05. The neuropsychological profile of disease subgroups was analyzed through principal component analysis. RESULTS We studied 42 individuals with drug-resistant JME (mean age 29 ± 11 years, 50% female), 37 with drug-responsive JME (mean age 34 ± 10, years, 59% female), and 71 healthy controls (mean age 21 ± 9 years, 61% female). Surface area was increased in participants with drug-resistant JME in the left temporal lobe (Cohen d = 0.82 [-0.52 to -1.12], pFWE < 0.05) when compared with the drug-responsive group. Although no cortical thickness changes were observed between disease subgroups, drug-resistant and drug-sensitive participants showed discrete cortical thinning against controls (Cohen d = -0.42 [-0.83 to -0.01], pFWE < 0.05; Cohen d = -0.57 [-1.03 to -0.11], pFWE < 0.05, respectively). LGI was increased in the left temporal and occipital lobes in drug-resistant participants (Cohen d = 0.60 [0.34-0.86], pFWE < 0.05) when contrasting against drug-sensitive participants, but not controls. The composite executive function score was reduced in drug-resistant individuals compared with controls and drug-sensitive individuals (-1.74 [-2.58 to -0.90], p < 0.001 and -1.29 [-2.25 to -0.33], p < 0.01, respectively). Significant correlations were observed between executive function impairment and increased surface area in the precuneus and medial prefrontal regions (r = -0.79, pFWE < 0.05) in participants with drug-resistant JME. DISCUSSION We identified a developmental phenotype in individuals with drug-resistant JME characterized by changes in cortical surface area and folding complexity, the extent of which correlates with executive dysfunction. No association was observed between cortical thickness and disease severity. Our findings support a neurodevelopmental basis for drug resistance and cognitive impairment in JME.
Collapse
Affiliation(s)
- Bernardo Crespo Pimentel
- From the Department of Neurology, Neurointensive Care and Neurorehabilitation (B.C.P., G.K., J.H., L.R., E.T.), Neuroscience Institute (B.C.P., G.K., J.H., M.K., E.T.), and Department of Child and Adolescent Psychiatry (L.R.), Christian Doppler University Hospital, Paracelsus Medical University, Centre for Neuroscience Salzburg, Member of the European Reference Network, EpiCARE, Austria; Department of Clinical & Experimental Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), Chalfont St. Peter, United Kingdom; Department of Neurology (L.C.), Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Switzerland; Department of Psychology (M.K.), University of Salzburg, Austria; Department of Neurology (C.V.), Epilepsy Center, University Hospital of the Ludwig-Maximilians-University of Munich, Germany; Department of Public Health, Health Services Research and Health Technology Assessment (E.T.), UMIT-University of Health Sciences, Medical Informatics and Technology, Hall in Tirol; and Karl Landsteiner Institute for Neurorehabilitation and Space Neurology (E.T.), Salzburg, Austria
| | - Giorgi Kuchukhidze
- From the Department of Neurology, Neurointensive Care and Neurorehabilitation (B.C.P., G.K., J.H., L.R., E.T.), Neuroscience Institute (B.C.P., G.K., J.H., M.K., E.T.), and Department of Child and Adolescent Psychiatry (L.R.), Christian Doppler University Hospital, Paracelsus Medical University, Centre for Neuroscience Salzburg, Member of the European Reference Network, EpiCARE, Austria; Department of Clinical & Experimental Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), Chalfont St. Peter, United Kingdom; Department of Neurology (L.C.), Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Switzerland; Department of Psychology (M.K.), University of Salzburg, Austria; Department of Neurology (C.V.), Epilepsy Center, University Hospital of the Ludwig-Maximilians-University of Munich, Germany; Department of Public Health, Health Services Research and Health Technology Assessment (E.T.), UMIT-University of Health Sciences, Medical Informatics and Technology, Hall in Tirol; and Karl Landsteiner Institute for Neurorehabilitation and Space Neurology (E.T.), Salzburg, Austria
| | - Fenglai Xiao
- From the Department of Neurology, Neurointensive Care and Neurorehabilitation (B.C.P., G.K., J.H., L.R., E.T.), Neuroscience Institute (B.C.P., G.K., J.H., M.K., E.T.), and Department of Child and Adolescent Psychiatry (L.R.), Christian Doppler University Hospital, Paracelsus Medical University, Centre for Neuroscience Salzburg, Member of the European Reference Network, EpiCARE, Austria; Department of Clinical & Experimental Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), Chalfont St. Peter, United Kingdom; Department of Neurology (L.C.), Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Switzerland; Department of Psychology (M.K.), University of Salzburg, Austria; Department of Neurology (C.V.), Epilepsy Center, University Hospital of the Ludwig-Maximilians-University of Munich, Germany; Department of Public Health, Health Services Research and Health Technology Assessment (E.T.), UMIT-University of Health Sciences, Medical Informatics and Technology, Hall in Tirol; and Karl Landsteiner Institute for Neurorehabilitation and Space Neurology (E.T.), Salzburg, Austria
| | - Lorenzo Caciagli
- From the Department of Neurology, Neurointensive Care and Neurorehabilitation (B.C.P., G.K., J.H., L.R., E.T.), Neuroscience Institute (B.C.P., G.K., J.H., M.K., E.T.), and Department of Child and Adolescent Psychiatry (L.R.), Christian Doppler University Hospital, Paracelsus Medical University, Centre for Neuroscience Salzburg, Member of the European Reference Network, EpiCARE, Austria; Department of Clinical & Experimental Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), Chalfont St. Peter, United Kingdom; Department of Neurology (L.C.), Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Switzerland; Department of Psychology (M.K.), University of Salzburg, Austria; Department of Neurology (C.V.), Epilepsy Center, University Hospital of the Ludwig-Maximilians-University of Munich, Germany; Department of Public Health, Health Services Research and Health Technology Assessment (E.T.), UMIT-University of Health Sciences, Medical Informatics and Technology, Hall in Tirol; and Karl Landsteiner Institute for Neurorehabilitation and Space Neurology (E.T.), Salzburg, Austria
| | - Julia Hoefler
- From the Department of Neurology, Neurointensive Care and Neurorehabilitation (B.C.P., G.K., J.H., L.R., E.T.), Neuroscience Institute (B.C.P., G.K., J.H., M.K., E.T.), and Department of Child and Adolescent Psychiatry (L.R.), Christian Doppler University Hospital, Paracelsus Medical University, Centre for Neuroscience Salzburg, Member of the European Reference Network, EpiCARE, Austria; Department of Clinical & Experimental Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), Chalfont St. Peter, United Kingdom; Department of Neurology (L.C.), Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Switzerland; Department of Psychology (M.K.), University of Salzburg, Austria; Department of Neurology (C.V.), Epilepsy Center, University Hospital of the Ludwig-Maximilians-University of Munich, Germany; Department of Public Health, Health Services Research and Health Technology Assessment (E.T.), UMIT-University of Health Sciences, Medical Informatics and Technology, Hall in Tirol; and Karl Landsteiner Institute for Neurorehabilitation and Space Neurology (E.T.), Salzburg, Austria
| | - Lucas Rainer
- From the Department of Neurology, Neurointensive Care and Neurorehabilitation (B.C.P., G.K., J.H., L.R., E.T.), Neuroscience Institute (B.C.P., G.K., J.H., M.K., E.T.), and Department of Child and Adolescent Psychiatry (L.R.), Christian Doppler University Hospital, Paracelsus Medical University, Centre for Neuroscience Salzburg, Member of the European Reference Network, EpiCARE, Austria; Department of Clinical & Experimental Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), Chalfont St. Peter, United Kingdom; Department of Neurology (L.C.), Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Switzerland; Department of Psychology (M.K.), University of Salzburg, Austria; Department of Neurology (C.V.), Epilepsy Center, University Hospital of the Ludwig-Maximilians-University of Munich, Germany; Department of Public Health, Health Services Research and Health Technology Assessment (E.T.), UMIT-University of Health Sciences, Medical Informatics and Technology, Hall in Tirol; and Karl Landsteiner Institute for Neurorehabilitation and Space Neurology (E.T.), Salzburg, Austria
| | - Martin Kronbichler
- From the Department of Neurology, Neurointensive Care and Neurorehabilitation (B.C.P., G.K., J.H., L.R., E.T.), Neuroscience Institute (B.C.P., G.K., J.H., M.K., E.T.), and Department of Child and Adolescent Psychiatry (L.R.), Christian Doppler University Hospital, Paracelsus Medical University, Centre for Neuroscience Salzburg, Member of the European Reference Network, EpiCARE, Austria; Department of Clinical & Experimental Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), Chalfont St. Peter, United Kingdom; Department of Neurology (L.C.), Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Switzerland; Department of Psychology (M.K.), University of Salzburg, Austria; Department of Neurology (C.V.), Epilepsy Center, University Hospital of the Ludwig-Maximilians-University of Munich, Germany; Department of Public Health, Health Services Research and Health Technology Assessment (E.T.), UMIT-University of Health Sciences, Medical Informatics and Technology, Hall in Tirol; and Karl Landsteiner Institute for Neurorehabilitation and Space Neurology (E.T.), Salzburg, Austria
| | - Christian Vollmar
- From the Department of Neurology, Neurointensive Care and Neurorehabilitation (B.C.P., G.K., J.H., L.R., E.T.), Neuroscience Institute (B.C.P., G.K., J.H., M.K., E.T.), and Department of Child and Adolescent Psychiatry (L.R.), Christian Doppler University Hospital, Paracelsus Medical University, Centre for Neuroscience Salzburg, Member of the European Reference Network, EpiCARE, Austria; Department of Clinical & Experimental Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), Chalfont St. Peter, United Kingdom; Department of Neurology (L.C.), Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Switzerland; Department of Psychology (M.K.), University of Salzburg, Austria; Department of Neurology (C.V.), Epilepsy Center, University Hospital of the Ludwig-Maximilians-University of Munich, Germany; Department of Public Health, Health Services Research and Health Technology Assessment (E.T.), UMIT-University of Health Sciences, Medical Informatics and Technology, Hall in Tirol; and Karl Landsteiner Institute for Neurorehabilitation and Space Neurology (E.T.), Salzburg, Austria
| | - John S Duncan
- From the Department of Neurology, Neurointensive Care and Neurorehabilitation (B.C.P., G.K., J.H., L.R., E.T.), Neuroscience Institute (B.C.P., G.K., J.H., M.K., E.T.), and Department of Child and Adolescent Psychiatry (L.R.), Christian Doppler University Hospital, Paracelsus Medical University, Centre for Neuroscience Salzburg, Member of the European Reference Network, EpiCARE, Austria; Department of Clinical & Experimental Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), Chalfont St. Peter, United Kingdom; Department of Neurology (L.C.), Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Switzerland; Department of Psychology (M.K.), University of Salzburg, Austria; Department of Neurology (C.V.), Epilepsy Center, University Hospital of the Ludwig-Maximilians-University of Munich, Germany; Department of Public Health, Health Services Research and Health Technology Assessment (E.T.), UMIT-University of Health Sciences, Medical Informatics and Technology, Hall in Tirol; and Karl Landsteiner Institute for Neurorehabilitation and Space Neurology (E.T.), Salzburg, Austria
| | - Eugen Trinka
- From the Department of Neurology, Neurointensive Care and Neurorehabilitation (B.C.P., G.K., J.H., L.R., E.T.), Neuroscience Institute (B.C.P., G.K., J.H., M.K., E.T.), and Department of Child and Adolescent Psychiatry (L.R.), Christian Doppler University Hospital, Paracelsus Medical University, Centre for Neuroscience Salzburg, Member of the European Reference Network, EpiCARE, Austria; Department of Clinical & Experimental Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), Chalfont St. Peter, United Kingdom; Department of Neurology (L.C.), Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Switzerland; Department of Psychology (M.K.), University of Salzburg, Austria; Department of Neurology (C.V.), Epilepsy Center, University Hospital of the Ludwig-Maximilians-University of Munich, Germany; Department of Public Health, Health Services Research and Health Technology Assessment (E.T.), UMIT-University of Health Sciences, Medical Informatics and Technology, Hall in Tirol; and Karl Landsteiner Institute for Neurorehabilitation and Space Neurology (E.T.), Salzburg, Austria
| | - Matthias J Koepp
- From the Department of Neurology, Neurointensive Care and Neurorehabilitation (B.C.P., G.K., J.H., L.R., E.T.), Neuroscience Institute (B.C.P., G.K., J.H., M.K., E.T.), and Department of Child and Adolescent Psychiatry (L.R.), Christian Doppler University Hospital, Paracelsus Medical University, Centre for Neuroscience Salzburg, Member of the European Reference Network, EpiCARE, Austria; Department of Clinical & Experimental Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), Chalfont St. Peter, United Kingdom; Department of Neurology (L.C.), Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Switzerland; Department of Psychology (M.K.), University of Salzburg, Austria; Department of Neurology (C.V.), Epilepsy Center, University Hospital of the Ludwig-Maximilians-University of Munich, Germany; Department of Public Health, Health Services Research and Health Technology Assessment (E.T.), UMIT-University of Health Sciences, Medical Informatics and Technology, Hall in Tirol; and Karl Landsteiner Institute for Neurorehabilitation and Space Neurology (E.T.), Salzburg, Austria
| | - Britta Wandschneider
- From the Department of Neurology, Neurointensive Care and Neurorehabilitation (B.C.P., G.K., J.H., L.R., E.T.), Neuroscience Institute (B.C.P., G.K., J.H., M.K., E.T.), and Department of Child and Adolescent Psychiatry (L.R.), Christian Doppler University Hospital, Paracelsus Medical University, Centre for Neuroscience Salzburg, Member of the European Reference Network, EpiCARE, Austria; Department of Clinical & Experimental Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), UCL Queen Square Institute of Neurology, London; Chalfont Centre for Epilepsy (B.C.P., F.X., L.C., J.S.D., M.J.K., B.W.), Chalfont St. Peter, United Kingdom; Department of Neurology (L.C.), Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University of Bern, Switzerland; Department of Psychology (M.K.), University of Salzburg, Austria; Department of Neurology (C.V.), Epilepsy Center, University Hospital of the Ludwig-Maximilians-University of Munich, Germany; Department of Public Health, Health Services Research and Health Technology Assessment (E.T.), UMIT-University of Health Sciences, Medical Informatics and Technology, Hall in Tirol; and Karl Landsteiner Institute for Neurorehabilitation and Space Neurology (E.T.), Salzburg, Austria
| |
Collapse
|
5
|
Varlamova EG, Kuldaeva VP, Mitina NN, Gavrish MS, Kondakova EV, Tarabykin VS, Babaev AA, Turovsky EA. Generation and Characterization of Three Novel Mouse Mutant Strains Susceptible to Audiogenic Seizures. Cells 2024; 13:1747. [PMID: 39513854 PMCID: PMC11545774 DOI: 10.3390/cells13211747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The mechanisms of epileptogenesis after brain injury, ischemic stroke, or brain tumors have been extensively studied. As a result, many effective antiseizure drugs have been developed. However, there are still many patients who are resistant to therapy. The molecular and genetic bases regarding such drug-resistant seizures have been poorly elucidated. In many cases, heavy seizures are instigated by brain development malformations and often caused by gene mutations. Such malformations can be demonstrated in mouse models by generating mutant strains. One of the most potent mutagens is ENU (N-ethyl-N-nitrosourea). In the present study, we describe three novel mutant strains generated by ENU-directed mutagenesis. Two of these strains present a very strong epileptic phenotype triggered by audiogenic stimuli (G9-1 and S5-1 strains). The third mouse strain is characterized by behavioral disorders and hyperexcitation of neuronal networks. We identified changes in the expression of those genes encoding neurotransmission proteins in the cerebral cortexes of these mice. It turned out that the G9-1 strain demonstrated the strongest disruptions in the expression of those genes encoding plasma membrane channels, excitatory glutamate receptors, and protein kinases. On the other hand, the number of GABAergic neurons was also affected by the mutation. All three lines are characterized by increased anxiety, excitability, and suppressed motor and orientational-exploratory activities. On the other hand, the strains with an epileptic phenotype-G9-1 and S5-1ave reduced learning ability, and the A9-2 mice line retains high learning ability.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Vera P. Kuldaeva
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Natalia N. Mitina
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Maria S. Gavrish
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Victor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Alexei A. Babaev
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (V.P.K.); (N.N.M.); (M.S.G.); (E.V.K.); (V.S.T.); (A.A.B.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| |
Collapse
|
6
|
Ellis CA, Tu D, Oliver KL, Mefford HC, Hauser WA, Buchhalter J, Epstein MP, Cao Q, Berkovic SF, Ottman R. Familial aggregation of seizure outcomes in four familial epilepsy cohorts. Epilepsia 2024; 65:2030-2040. [PMID: 38738647 PMCID: PMC11251848 DOI: 10.1111/epi.18004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE To assess the possible effects of genetics on seizure outcome by estimating the familial aggregation of three outcome measures: seizure remission, history of ≥4 tonic-clonic seizures, and seizure control for individuals taking antiseizure medication. METHODS We analyzed families containing multiple persons with epilepsy in four previously collected retrospective cohorts. Seizure remission was defined as being 5 and 10 years seizure-free at last observation. Total number of tonic-clonic seizures was dichotomized at <4 and ≥4 seizures. Seizure control in patients taking antiseizure medication was defined as no seizures for 1, 2, and 3 years. We used Bayesian generalized linear mixed-effects model (GLMM) to estimate the intraclass correlation coefficient (ICC) of the family-specific random effect, controlling for epilepsy type, age at epilepsy onset, and age at last data collection as fixed effects. We analyzed each cohort separately and performed meta-analysis using GLMMs. RESULTS The combined cohorts included 3644 individuals with epilepsy from 1463 families. A history of ≥4 tonic-clonic seizures showed strong familial aggregation in three separate cohorts and meta-analysis (ICC .28, 95% confidence interval [CI] .21-.35, Bayes factor 8 × 1016). Meta-analyses did not reveal significant familial aggregation of seizure remission (ICC .08, 95% CI .01-.17, Bayes factor 1.46) or seizure control for individuals taking antiseizure medication (ICC .13, 95% CI 0-.35, Bayes factor 0.94), with heterogeneity among cohorts. SIGNIFICANCE A history of ≥4 tonic-clonic seizures aggregated strongly in families, suggesting a genetic influence, whereas seizure remission and seizure control for individuals taking antiseizure medications did not aggregate consistently in families. Different seizure outcomes may have different underlying biology and risk factors. These findings should inform the future molecular genetic studies of seizure outcomes.
Collapse
Affiliation(s)
- Colin A. Ellis
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA USA
| | - Danni Tu
- Department of Biostatistics, Epidemiology, & Informatics, University of Pennsylvania, Philadelphia PA USA
| | - Karen L. Oliver
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
- Population Health and Immunity Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, the University of Melbourne, Melbourne, VIC, Australia
| | - Heather C. Mefford
- Department of Cell and Molecular Biology, St Jude Children’s Research Hospital, Memphis TN USA
| | - W. Allen Hauser
- Departments of Neurology and Epidemiology, and the Gertrude H. Sergievsky Center, Columbia University Irving Medical Center, New York NY USA
| | | | - Michael P. Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Quy Cao
- Department of Biostatistics, Epidemiology, & Informatics, University of Pennsylvania, Philadelphia PA USA
| | | | | | - Samuel F. Berkovic
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville VIC, Australia
| | - Ruth Ottman
- Departments of Neurology and Epidemiology, and the Gertrude H. Sergievsky Center, Columbia University Irving Medical Center, New York NY USA
- Division of Translational Epidemiology and Mental Health Equity, New York State Psychiatric Institute, New York NY USA
| |
Collapse
|
7
|
Paramonova AI, Lysova KD, Timechko EE, Senchenko GV, Sapronova MR, Dmitrenko DV. Cognitive impairment in childhood-onset epilepsy. EPILEPSY AND PAROXYSMAL CONDITIONS 2024; 16:54-68. [DOI: 10.17749/2077-8333/epi.par.con.2024.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
In pediatric practice, epilepsy holds one of the leading places among neurological pathologies. Along with seizures, a child's intellectual impairment lowering quality of life plays a crucial role in social disintegration. Cognitive impairments occuring in idiopathic generalized epilepsies (IGE) and self-limited epilepsy with centrotemporal spikes (SeLECTS) considered benign have been widely investigated. However, available data suggest that such disorders result in multiple persistent alterations in the cognitive sphere. In this case, features of the epilepsy etiopathogenesis account for disease early onset and profoundly remodeled structures involved in the implementation of cognitive functions. Current review is aimed to summarizing data regarding developmental mechanisms and range of cognitive impairment in IGE and SeLECTS.
Collapse
Affiliation(s)
| | - K. D. Lysova
- Voino-Yasenetsky Krasnoyarsk State Medical University
| | | | | | | | | |
Collapse
|
8
|
Wessel C, Candan FU, Panah PY, Karia S, Sah J, Mutchnick I, Karakas C. Efficacy of vagus nerve stimulation in managing drug-resistant absence epilepsy syndromes. Seizure 2024; 117:60-66. [PMID: 38330751 DOI: 10.1016/j.seizure.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
PURPOSE Around 11% of patients with absence epilepsy develop drug-resistant absence epilepsy (DRAE), and are at increased risk for developing psychiatric and neurologic comorbidities. Current therapeutic options for DRAE are limited. The purpose of this study was to assess the efficacy of vagus nerve stimulation (VNS) in treating DRAE. METHODS Our institution maintains a database of patients who received VNS between 2010 and 2022. We identified DRAE patients who were <18 years of age at seizure onset, were electro-clinically diagnosed with an absence epilepsy syndrome (childhood absence, juvenile absence, or Jeavons Syndrome) by an epileptologist, and had normal brain imaging. The primary outcome measure was post-VNS absence seizure frequency. RESULTS Twenty-six patients (M/F:14/12) were identified. Median age at seizure onset was 7 years (IQR 4-10) and patients experienced seizures for 6 years (IQR 4.3-7.6) before VNS. After VNS, the median absence seizure frequency reduced to 1.5 days (IQR 0.1-3.5) per week from 7 days (IQR 7-7), a 66% reduction seizure frequency. VNS responder rate was 80%, and seven patients achieved seizure freedom. There was no significant effect on VNS efficacy between the time from DRAE diagnosis to VNS placement (p = 0.067) nor the time from first seizure onset to VNS implant (p = 0.80). The median follow-up duration was 4.1 years (IQR 2.4-6.7), without any significant association between follow-up duration and VNS efficacy (r2=0.023) CONCLUSIONS: VNS is effective in managing DRAE. The responder rate was 80%; seizure improvement was independent of age at both seizure onset and latency to VNS after meeting DRAE criteria.
Collapse
Affiliation(s)
- Caitlin Wessel
- University of Louisville School of Medicine, Louisville KY 40202, United States
| | - Feride Un Candan
- Division of Child Neurology, Department of Neurology, University of Louisville School of Medicine, Louisville Kentucky 40202, United States
| | - Paya Yazdan Panah
- University of Louisville School of Medicine, Louisville KY 40202, United States
| | - Samir Karia
- University of Louisville School of Medicine, Louisville KY 40202, United States; Division of Child Neurology, Department of Neurology, University of Louisville School of Medicine, Louisville Kentucky 40202, United States; Norton Neuroscience Institute and Children's Hospital, 615 S Preston Street, 2nd floor, Louisville KY 40241, United States
| | - Jeetendra Sah
- University of Louisville School of Medicine, Louisville KY 40202, United States; Division of Child Neurology, Department of Neurology, University of Louisville School of Medicine, Louisville Kentucky 40202, United States; Norton Neuroscience Institute and Children's Hospital, 615 S Preston Street, 2nd floor, Louisville KY 40241, United States
| | - Ian Mutchnick
- University of Louisville School of Medicine, Louisville KY 40202, United States; University of Louisville Department of Neurosurgery, Louisville KY 40202, United States; Norton Neuroscience Institute and Children's Hospital, 615 S Preston Street, 2nd floor, Louisville KY 40241, United States
| | - Cemal Karakas
- University of Louisville School of Medicine, Louisville KY 40202, United States; Division of Child Neurology, Department of Neurology, University of Louisville School of Medicine, Louisville Kentucky 40202, United States; Norton Neuroscience Institute and Children's Hospital, 615 S Preston Street, 2nd floor, Louisville KY 40241, United States.
| |
Collapse
|
9
|
Nica A. Drug-resistant juvenile myoclonic epilepsy: A literature review. Rev Neurol (Paris) 2024; 180:271-289. [PMID: 38461125 DOI: 10.1016/j.neurol.2024.02.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/11/2024]
Abstract
The ILAE's Task Force on Nosology and Definitions revised in 2022 its definition of juvenile myoclonic epilepsy (JME), the most common idiopathic generalized epilepsy disorder, but this definition may well change again in the future. Although good drug response could almost be a diagnostic criterion for JME, drug resistance (DR) is observed in up to a third of patients. It is important to distinguish this from pseudoresistance, which is often linked to psychosocial problems or psychiatric comorbidities. After summarizing these aspects and the various definitions applied to JME, the present review lists the risk factors for DR-JME that have been identified in numerous studies and meta-analyses. The factors most often cited are absence seizures, young age at onset, and catamenial seizures. By contrast, photosensitivity seems to favor good treatment response, at least in female patients. Current hypotheses on DR mechanisms in JME are based on studies of either simple (e.g., cortical excitability) or more complex (e.g., anatomical and functional connectivity) neurophysiological markers, bearing in mind that JME is regarded as a neural network disease. This research has revealed correlations between the intensity of some markers and DR, and above all shed light on the role of these markers in associated neurocognitive and neuropsychiatric disorders in both patients and their siblings. Studies of neurotransmission have mainly pointed to impaired GABAergic inhibition. Genetic studies have generally been inconclusive. Increasing restrictions have been placed on the use of valproate, the standard antiseizure medication for this syndrome, owing to its teratogenic and developmental risks. Levetiracetam and lamotrigine are prescribed as alternatives, as is vagal nerve stimulation, and there are several other promising antiseizure drugs and neuromodulation methods. The development of better alternative treatments is continuing to take place alongside advances in our knowledge of JME, as we still have much to learn and understand.
Collapse
Affiliation(s)
- A Nica
- Epilepsy Unit, Reference Center for Rare Epilepsies, Neurology Department, Clinical Investigation Center 1414, Rennes University Hospital, Rennes, France; Signal and Image Processing Laboratory (LTSI), INSERM, Rennes University, Rennes, France.
| |
Collapse
|
10
|
Daquin G, Bonini F. The landscape of drug resistant absence seizures in adolescents and adults: Pathophysiology, electroclinical spectrum and treatment options. Rev Neurol (Paris) 2024; 180:256-270. [PMID: 38413268 DOI: 10.1016/j.neurol.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 02/29/2024]
Abstract
The persistence of typical absence seizures (AS) in adolescence and adulthood may reduce the quality of life of patients with genetic generalized epilepsies (GGEs). The prevalence of drug resistant AS is probably underestimated in this patient population, and treatment options are relatively scarce. Similarly, atypical absence seizures in developmental and epileptic encephalopathies (DEEs) may be unrecognized, and often persist into adulthood despite improvement of more severe seizures. These two seemingly distant conditions, represented by typical AS in GGE and atypical AS in DEE, share at least partially overlapping pathophysiological and genetic mechanisms, which may be the target of drug and neurostimulation therapies. In addition, some patients with drug-resistant typical AS may present electroclinical features that lie in between the two extremes represented by these generalized forms of epilepsy.
Collapse
Affiliation(s)
- G Daquin
- Epileptology and Cerebral Rythmology, AP-HM, Timone hospital, Marseille, France
| | - F Bonini
- Epileptology and Cerebral Rythmology, AP-HM, Timone hospital, Marseille, France; Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
11
|
Devinsky O, Elder C, Sivathamboo S, Scheffer IE, Koepp MJ. Idiopathic Generalized Epilepsy: Misunderstandings, Challenges, and Opportunities. Neurology 2024; 102:e208076. [PMID: 38165295 PMCID: PMC11097769 DOI: 10.1212/wnl.0000000000208076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/19/2023] [Indexed: 01/03/2024] Open
Abstract
The idiopathic generalized epilepsies (IGE) make up a fifth of all epilepsies, but <1% of epilepsy research. This skew reflects misperceptions: diagnosis is straightforward, pathophysiology is understood, seizures are easily controlled, epilepsy is outgrown, morbidity and mortality are low, and surgical interventions are impossible. Emerging evidence reveals that patients with IGE may go undiagnosed or misdiagnosed with focal epilepsy if EEG or semiology have asymmetric or focal features. Genetic, electrophysiologic, and neuroimaging studies provide insights into pathophysiology, including overlaps and differences from focal epilepsies. IGE can begin in adulthood and patients have chronic and drug-resistant seizures. Neuromodulatory interventions for drug-resistant IGE are emerging. Rates of psychiatric and other comorbidities, including sudden unexpected death in epilepsy, parallel those in focal epilepsy. IGE is an understudied spectrum for which our diagnostic sensitivity and specificity, scientific understanding, and therapies remain inadequate.
Collapse
Affiliation(s)
- Orrin Devinsky
- From the Comprehensive Epilepsy Center (O.D., C.E.), New York University School of Medicine, New York, Department of Neuroscience (S.S.), Central Clinical School, Monash University, Melbourne, Department of Neurology (S.S.), Alfred Health, Melbourne; Departments of Medicine and Neurology, The Royal Melbourne Hospital (S.S.), Epilepsy Research Centre, Department of Medicine, Austin Health (I.E.S.), Murdoch Children's Research Institute (I.E.S.), and Department of Pediatrics (I.E.S.), Royal Children's Hospital, The University of Melbourne; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne, Victoria, Australia; and Department of Clinical and Experimental Epilepsy (M.J.K.), University College London Institute of Neurology, United Kingdom
| | - Christopher Elder
- From the Comprehensive Epilepsy Center (O.D., C.E.), New York University School of Medicine, New York, Department of Neuroscience (S.S.), Central Clinical School, Monash University, Melbourne, Department of Neurology (S.S.), Alfred Health, Melbourne; Departments of Medicine and Neurology, The Royal Melbourne Hospital (S.S.), Epilepsy Research Centre, Department of Medicine, Austin Health (I.E.S.), Murdoch Children's Research Institute (I.E.S.), and Department of Pediatrics (I.E.S.), Royal Children's Hospital, The University of Melbourne; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne, Victoria, Australia; and Department of Clinical and Experimental Epilepsy (M.J.K.), University College London Institute of Neurology, United Kingdom
| | - Shobi Sivathamboo
- From the Comprehensive Epilepsy Center (O.D., C.E.), New York University School of Medicine, New York, Department of Neuroscience (S.S.), Central Clinical School, Monash University, Melbourne, Department of Neurology (S.S.), Alfred Health, Melbourne; Departments of Medicine and Neurology, The Royal Melbourne Hospital (S.S.), Epilepsy Research Centre, Department of Medicine, Austin Health (I.E.S.), Murdoch Children's Research Institute (I.E.S.), and Department of Pediatrics (I.E.S.), Royal Children's Hospital, The University of Melbourne; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne, Victoria, Australia; and Department of Clinical and Experimental Epilepsy (M.J.K.), University College London Institute of Neurology, United Kingdom
| | - Ingrid E Scheffer
- From the Comprehensive Epilepsy Center (O.D., C.E.), New York University School of Medicine, New York, Department of Neuroscience (S.S.), Central Clinical School, Monash University, Melbourne, Department of Neurology (S.S.), Alfred Health, Melbourne; Departments of Medicine and Neurology, The Royal Melbourne Hospital (S.S.), Epilepsy Research Centre, Department of Medicine, Austin Health (I.E.S.), Murdoch Children's Research Institute (I.E.S.), and Department of Pediatrics (I.E.S.), Royal Children's Hospital, The University of Melbourne; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne, Victoria, Australia; and Department of Clinical and Experimental Epilepsy (M.J.K.), University College London Institute of Neurology, United Kingdom
| | - Matthias J Koepp
- From the Comprehensive Epilepsy Center (O.D., C.E.), New York University School of Medicine, New York, Department of Neuroscience (S.S.), Central Clinical School, Monash University, Melbourne, Department of Neurology (S.S.), Alfred Health, Melbourne; Departments of Medicine and Neurology, The Royal Melbourne Hospital (S.S.), Epilepsy Research Centre, Department of Medicine, Austin Health (I.E.S.), Murdoch Children's Research Institute (I.E.S.), and Department of Pediatrics (I.E.S.), Royal Children's Hospital, The University of Melbourne; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne, Victoria, Australia; and Department of Clinical and Experimental Epilepsy (M.J.K.), University College London Institute of Neurology, United Kingdom
| |
Collapse
|
12
|
Warren AEL, Tobochnik S, Chua MMJ, Singh H, Stamm MA, Rolston JD. Neurostimulation for Generalized Epilepsy: Should Therapy be Syndrome-specific? Neurosurg Clin N Am 2024; 35:27-48. [PMID: 38000840 PMCID: PMC10676463 DOI: 10.1016/j.nec.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Current applications of neurostimulation for generalized epilepsy use a one-target-fits-all approach that is agnostic to the specific epilepsy syndrome and seizure type being treated. The authors describe similarities and differences between the 2 "archetypes" of generalized epilepsy-Lennox-Gastaut syndrome and Idiopathic Generalized Epilepsy-and review recent neuroimaging evidence for syndrome-specific brain networks underlying seizures. Implications for stimulation targeting and programming are discussed using 5 clinical questions: What epilepsy syndrome does the patient have? What brain networks are involved? What is the optimal stimulation target? What is the optimal stimulation paradigm? What is the plan for adjusting stimulation over time?
Collapse
Affiliation(s)
- Aaron E L Warren
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Steven Tobochnik
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa M J Chua
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hargunbir Singh
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michaela A Stamm
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Abstract
Intracranial neuromodulation is an evolving therapy for patients with drug-resistant epilepsy (DRE). Deep brain stimulation (DBS) is now available as a therapy for patients with DRE and focal-onset seizures in select health care systems; however, there remains a substantial need of efficacy data before DBS can be more widely adopted into routine clinical practice. This review and commentary focuses on a particular shifting paradigm: DBS as a therapy for children with generalized-onset seizures.
Collapse
Affiliation(s)
- Rory J Piper
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurosurgery, Great Ormond Street Hospital, London, UK.
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | - Martin M Tisdall
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Neurosurgery, Great Ormond Street Hospital, London, UK
| |
Collapse
|
14
|
Cerulli Irelli E, Gesche J, Schlabitz S, Fortunato F, Catania C, Morano A, Labate A, Vorderwülbecke BJ, Gambardella A, Baykan B, Holtkamp M, Di Bonaventura C, Beier CP. Epilepsy with generalized tonic-clonic seizures alone: Electroclinical features and prognostic patterns. Epilepsia 2024; 65:84-94. [PMID: 37872695 DOI: 10.1111/epi.17809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE Epilepsy with generalized tonic-clonic seizures alone (GTCA) is a common but poorly characterized idiopathic generalized epilepsy (IGE) syndrome. Hence, we investigated electroclinical features, seizure outcome, and antiseizure medication (ASM) withdrawal in a large cohort of GTCA patients. METHODS In this multicenter retrospective study, GTCA patients defined according to the diagnostic criteria of the International League Against Epilepsy (2022) were included. We investigated prognostic patterns, drug resistance at the last visit, and ASM withdrawal, along with their prognostic factors. RESULTS We included 247 patients with a median (interquartile range [IQR]) age at onset of 17 years (13-22) and a median follow-up duration of 10 years (IQR = 5-20). Drug resistance at the last visit was observed in 40 (16.3%) patients, whereas the median latency to achieve 2-year remission was 24 months (IQR = 24-46.5) with a median number of 1 (IQR = 1-2) ASM. During the long-term follow-up (i.e., 202 patients followed ≥5-years after the first ASM trial), 69 (34.3%) patients displayed an early remission pattern and 36 (17.9%) patients displayed a late remission pattern, whereas 16 (8%) and 73 (36.3%) individuals had no-remission and relapsing-remitting patterns, respectively. Catamenial seizures and morning predominance of generalized tonic-clonic seizures (GTCS) independently predicted drug resistance at the last visit according to multivariable logistic regression. Treatment withdrawal was attempted in 63 (25.5%) patients, with 59 (93.7%) of them having at least a 12-month follow-up after ASM discontinuation. At the last visit, 49 (83%) of those patients had experienced GTCS recurrence. A longer duration of seizure freedom was the only factor predicting a higher chance of successful ASM withdrawal according to multivariable Cox regression. SIGNIFICANCE GTCA could be considered a relatively easily manageable IGE syndrome, with a low rate of drug resistance and a high prevalence of early response to treatment. Nevertheless, a considerable proportion of patients experience relapsing patterns of seizure control, highlighting the need for appropriate counseling and lifestyle recommendations.
Collapse
Affiliation(s)
| | - Joanna Gesche
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Sophie Schlabitz
- Epilepsy Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Cecilia Catania
- Department of Human Neurosciences, Sapienza University, Rome, Italy
| | | | - Angelo Labate
- Neurophysiopathology and Movement Disorders Clinic, University of Messina, Messina, Italy
| | - Bernd J Vorderwülbecke
- Epilepsy Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Betül Baykan
- Departments of Neurology and Clinical Neurophysiology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Martin Holtkamp
- Epilepsy Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christoph P Beier
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
15
|
Auvin S, Galanopoulou AS, Moshé SL, Potschka H, Rocha L, Walker MC. Revisiting the concept of drug-resistant epilepsy: A TASK1 report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2891-2908. [PMID: 37676719 PMCID: PMC10836613 DOI: 10.1111/epi.17751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Despite progress in the development of anti-seizure medications (ASMs), one third of people with epilepsy have drug-resistant epilepsy (DRE). The working definition of DRE, proposed by the International League Against Epilepsy (ILAE) in 2010, helped identify individuals who might benefit from presurgical evaluation early on. As the incidence of DRE remains high, the TASK1 workgroup on DRE of the ILAE/American Epilepsy Society (AES) Joint Translational Task Force discussed the heterogeneity and complexity of its presentation and mechanisms, the confounders in drawing mechanistic insights when testing treatment responses, and barriers in modeling DRE across the lifespan and translating across species. We propose that it is necessary to revisit the current definition of DRE, in order to transform the preclinical and clinical research of mechanisms and biomarkers, to identify novel, effective, precise, pharmacologic treatments, allowing for earlier recognition of drug resistance and individualized therapies.
Collapse
Affiliation(s)
| | - Stéphane Auvin
- Institut Universitaire de France, Paris, France; Paediatric Neurology, Assistance Publique - Hôpitaux de Paris, EpiCARE ERN Member, Robert-Debré Hospital, Paris, France; University Paris-Cité, Paris, France
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Luisa Rocha
- Pharmacobiology Department. Center for Research and Advanced Studies (CINVESTAV). Mexico City, Mexico
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
16
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Autophagy and autophagy signaling in Epilepsy: possible role of autophagy activator. Mol Med 2023; 29:142. [PMID: 37880579 PMCID: PMC10598971 DOI: 10.1186/s10020-023-00742-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Autophagy is an explicit cellular process to deliver dissimilar cytoplasmic misfolded proteins, lipids and damaged organelles to the lysosomes for degradation and elimination. The mechanistic target of rapamycin (mTOR) is the main negative regulator of autophagy. The mTOR pathway is involved in regulating neurogenesis, synaptic plasticity, neuronal development and excitability. Exaggerated mTOR activity is associated with the development of temporal lobe epilepsy, genetic and acquired epilepsy, and experimental epilepsy. In particular, mTOR complex 1 (mTORC1) is mainly involved in epileptogenesis. The investigation of autophagy's involvement in epilepsy has recently been conducted, focusing on the critical role of rapamycin, an autophagy inducer, in reducing the severity of induced seizures in animal model studies. The induction of autophagy could be an innovative therapeutic strategy in managing epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its role in status epilepticus (SE) is perplexing and might be beneficial or detrimental. Therefore, the present review aims to revise the possible role of autophagy in epilepsy.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran university, Najran, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
17
|
Jiang T, Zhang X, Zhang M, Liu M, Zhu H, Sun Y. Drug-resistant idiopathic generalized epilepsy: A meta-analysis of prevalence and risk factors. Epilepsy Behav 2023; 146:109364. [PMID: 37523796 DOI: 10.1016/j.yebeh.2023.109364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Idiopathic generalized epilepsy (IGE) is a common epilepsy syndrome with early age onset and generally good seizure outcomes. This study aims to determine the incidence and predictive risk factors for drug-resistant IGE. METHODS We systematically searched three databases (PubMed, Embase, and Cochrane Library) in November 2022 and included 12 eligible studies which reported long-term outcomes (mean = 14.05) after antiseizure medications (ASMs) from 2001 to 2020. We defined drug resistance as the persistence of any seizure despite ASMs treatment (whether as monotherapies or in combination) given the criteria of drug resistance varied in original studies. A random-effects model was used to evaluate the prevalence of refractory IGE. Studies reporting potential poor prognostic factors were included for subsequent subgroup meta-analysis. RESULTS The pooled prevalence of drug resistance in IGE cohorts was 27% (95% CI: 0.19-0.36). Subgroup analysis of the risk factors revealed that the psychiatric comorbidities (odds ratio (OR): 4.87, 95% confidence interval (CI): 2.97-7.98), combined three seizure types (absences, myoclonic jerks, and generalized tonic-clonic seizures) (OR: 5.37, 95% CI: 3.16-9.13), the presence of absence seizure (OR: 4.38, 95% CI: 2.64-7.28), generalized polyspike trains (GPT) (OR: 4.83, 95% CI: 2.42-9.64), sex/catamenial epilepsy (OR: 3.25, 95% CI: 1.97-5.37), and status epilepticus (OR: 5.94, 95% CI: 2.23-15.85) increased the risk of poor prognosis. Other factors, including age onset, family history, and side effects of ASMs, were insignificantly associated with a higher incidence of refractory IGE. CONCLUSION Drug resistance is a severe complication of IGE. Further standardized research about clinical and electroencephalography factors is warranted.
Collapse
Affiliation(s)
- Tong Jiang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Xiaohan Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Mengwen Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Min Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Haifang Zhu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Yanping Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
18
|
Asadi-Pooya AA, Farazdaghi M. Idiopathic generalized epilepsies: Which seizure type is more difficult to control? J Clin Neurosci 2023; 114:93-96. [PMID: 37348286 DOI: 10.1016/j.jocn.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVES The purpose of the current study was to investigate that which seizure type is more difficult to be brought under control with antiseizure medication treatment in patients with idiopathic generalized epilepsy (IGE). METHODS This was a retrospective study of a large database of patients with epilepsy, which was built over more than a decade. All patients with a diagnosis of IGE, with at least 12 months of follow-up at our center, were studied at the epilepsy center at Shiraz University of Medical Sciences, Shiraz, Iran, from 2008 until 2022. RESULTS 358 patients were included. The seizure types were generalized tonic-clonic seizures (GTCSs) (in 87.2%), myoclonic seizures (in 57.5%), and absence seizures (in 51.7%). Among patients who had GTCSs (N = 312), 160 patients (51.3%) became free of this seizure type. Among patients who had myoclonic seizures (N = 206), 122 patients (59.2%) became seizure-free. Among patients who had absences (N = 185), 127 patients (68.6%) became seizure-free. The difference between the groups was significant (p = 0.0007). Receiving valproate was significantly associated with a myoclonus-free status (compared with other drugs). SIGNIFICANCE The likelihood of achieving seizure control is different for various seizure types in patients with IGE (achievement of seizure control is less likely for GTCSs and more likely for absences). Antiseizure drug efficacy should be considered along with other variables (e.g., sex) when selecting an ASM for a patient with IGE. Specifically designed clinical trials are needed to develop more efficacious and safe drugs to treat various syndromes of IGE.
Collapse
Affiliation(s)
- Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Mohsen Farazdaghi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Mangaard S, Gesche J, Krøigård T, Beier CP. Association of symptoms of psychiatric disease and electroencephalographic patterns in idiopathic generalized epilepsy. Epilepsy Behav 2023; 145:109293. [PMID: 37315408 DOI: 10.1016/j.yebeh.2023.109293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Idiopathic generalized epilepsies (IGE) are genetic epilepsies with alterations of thalamo-frontocortical circuits that play a major role in seizure generation and propagation. Psychiatric diseases and drug resistance are strongly associated, but it remains unknown if they are symptoms of the same pathophysiological process. Hypothesizing that the same network alterations are associated with the frequency of epileptic discharges (ED) and psychiatric symptoms, we here tested the association of self-reported psychiatric symptoms and IGE severity estimated by electroencephalographic (EEG) biomarkers. METHODS Idiopathic generalized epilepsies patients were asked to fill out four validated psychiatric screening tools assessing symptoms of personality disorders (Standard Assessment of Personality- Abbreviated Scale), depression (Major Depression Inventory), impulsiveness (Barratt Impulsiveness Scale), and anxiety (brief Epilepsy Anxiety Survey Instrument). Blinded to results and clinical data on the patients, we analyzed the patients' EEGs, assessed, and quantified ED. The number and duration of ED divided by the duration of the EEG served as a proxy for the severity of IGE that was correlated with the results of the psychiatric screening. RESULTS Paired data from 64 patients were available for analysis. The duration of EDs per minute EEG was inversely associated with the time since the last seizure. The number of patients with generalized polyspike trains (n = 2), generalized paroxysmal fast activity (n = 3), and prolonged epileptiform discharges (n = 10) were too low for statistically meaningful analyses. Self-reported symptoms of depression, personality disorder, and impulsivity were not associated with EDs. In contrast, the duration of EDs per minute EEG was associated with self-reported symptoms of anxiety in univariate analyses, not significant, however, following adjustment for time since the last seizure in regression models. SIGNIFICANCE Self-reported symptoms of psychiatric diseases were not strongly associated with EDs as the best available quantifiable biomarker of IGE severity. As expected, the duration of EDs per minute and anxiety was inversely associated with time since the last seizure. Our data argue against a direct link between the frequency of EDs - as an objective proxy of IGE severity - and psychiatric symptoms.
Collapse
Affiliation(s)
- Sofie Mangaard
- Department of Neurology, Odense University Hospital, Denmark
| | - Joanna Gesche
- Department of Neurology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Denmark
| | - Thomas Krøigård
- Department of Neurophysiology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Denmark
| | - Christoph P Beier
- Department of Neurology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Denmark; OPEN, University of Southern Denmark, Denmark.
| |
Collapse
|
20
|
Chong D, Jones NC, Schittenhelm RB, Anderson A, Casillas-Espinosa PM. Multi-omics Integration and Epilepsy: Towards a Better Understanding of Biological Mechanisms. Prog Neurobiol 2023:102480. [PMID: 37286031 DOI: 10.1016/j.pneurobio.2023.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/09/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
The epilepsies are a group of complex neurological disorders characterised by recurrent seizures. Approximately 30% of patients fail to respond to anti-seizure medications, despite the recent introduction of many new drugs. The molecular processes underlying epilepsy development are not well understood and this knowledge gap impedes efforts to identify effective targets and develop novel therapies against epilepsy. Omics studies allow a comprehensive characterisation of a class of molecules. Omics-based biomarkers have led to clinically validated diagnostic and prognostic tests for personalised oncology, and more recently for non-cancer diseases. We believe that, in epilepsy, the full potential of multi-omics research is yet to be realised and we envisage that this review will serve as a guide to researchers planning to undertake omics-based mechanistic studies.
Collapse
Affiliation(s)
- Debbie Chong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia; Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, 3000, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, 3004, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility and Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Alison Anderson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia; Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, 3000, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, 3004, Victoria, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia; Department of Medicine (The Royal Melbourne Hospital), The University of Melbourne, 3000, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, 3004, Victoria, Australia
| |
Collapse
|
21
|
Jeppesen JM, Sandvei CM, Beier CP, Gesche J. Neuropsychological profile and drug treatment response in Idiopathic Generalized Epilepsy. Seizure 2023; 109:12-17. [PMID: 37178660 DOI: 10.1016/j.seizure.2023.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
PURPOSE The endophenotype of Idiopathic Generalized Epilepsies (IGE) comprises distinct neuropsychological deficits compared to normal controls. It is unknown if the severity of features of the endophenotype correlates with resistance to anti-seizure medication. Therefore, we here studied the association of neuropsychological profiles with treatment response. METHODS We evaluated 106 Danish patients aged ≥18 and diagnosed with IGE using a neuropsychological test battery comprising tests for executive dysfunction, visual attention, episodic memory, and verbal comprehension. Tests were complemented by the Purdue Pegboard test. Patients with suspected ongoing psychogenic non-epileptic seizures were excluded. RESULTS At testing, 72 patients were seizure free, and 34 patients had recent seizures despite anti-seizure medication. As compared to age corrected Danish normative values, IGE patients showed significant impairments in semantic fluency and performed significantly worse in the Purdue Pegboard test. The vocabulary subtest of the WAIS-IV suggested lower verbal comprehension in IGE patients. We found no signs of memory impairment. Comparisons between results of the test battery, drug resistance, and the different IGE subsyndromes revealed consistent null-associations in various predefined and exploratory univariate and multivariate analyses. CONCLUSION We here found and confirmed the distinct neuropsychological profile comprising impaired executive functions, reduced psychomotor speed, and normal memory previously described in juvenile myoclonic epilepsy. This profile was, however, not restricted to juvenile myoclonic epilepsy but equally affected all IGE patients. The neuropsychological deficits were not significantly associated with drug treatment outcome.
Collapse
Affiliation(s)
| | | | - Christoph P Beier
- Department of Neurology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; OPEN - Open Patient Data Explorative Network, Odense, Denmark.
| | - Joanna Gesche
- Department of Neurology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
22
|
O’Donnell CM, Swanson SJ, Carlson CE, Raghavan M, Pahapill PA, Anderson CT. Responsive Neurostimulation of the Anterior Thalamic Nuclei in Refractory Genetic Generalized Epilepsy: A Case Series. Brain Sci 2023; 13:brainsci13020324. [PMID: 36831867 PMCID: PMC9954640 DOI: 10.3390/brainsci13020324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023] Open
Abstract
Genetic generalized epilepsies (GGEs) are thought to represent disorders of thalamocortical networks. There are currently no well-established non-pharmacologic treatment options for patients with drug-resistant GGE. NeuroPace's Responsive Neurostimulation (RNS) System was approved by the United States Food and Drug Administration to treat focal seizures with up to two ictal foci. We report on three adults with drug-resistant GGE who were treated with thalamic RNS. Given the severity of their epilepsies and the potential ictogenic role of the thalamus in the pathophysiology of GGE, the RNS System was palliatively implanted with leads in the bilateral anterior thalamic nuclei (ANT) of these patients. The ANT was selected because it was demonstrated to be a safe target. We retrospectively evaluated metrics including seizure frequency over 18-32 months. One patient required explantation due to infection. The other two patients were clinical responders. By the end of the observation period reported here, one patient was seizure-free for over 9 months. All three self-reported an improved quality of life. The clinical response observed in these patients provides 'proof-of-principle' that GGE may be treatable with responsive thalamic stimulation. Our results support proceeding to a larger study investigating the efficacy and safety of thalamic RNS in drug-resistant GGE.
Collapse
Affiliation(s)
- Carly M. O’Donnell
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Correspondence:
| | - Sara J. Swanson
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Chad E. Carlson
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Manoj Raghavan
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Peter A. Pahapill
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Christopher Todd Anderson
- Department of Neurology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|