1
|
Vanoye CG, Abramova TV, DeKeyser JM, Ghabra NF, Oudin MJ, Burge CB, Helbig I, Thompson CH, George AL. Molecular and cellular context influences SCN8A variant function. JCI Insight 2024; 9:e177530. [PMID: 38771640 PMCID: PMC11383174 DOI: 10.1172/jci.insight.177530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Pathogenic variants in SCN8A, which encodes the voltage-gated sodium (NaV) channel NaV1.6, associate with neurodevelopmental disorders, including developmental and epileptic encephalopathy. Previous approaches to determine SCN8A variant function may be confounded by use of a neonatally expressed, alternatively spliced isoform of NaV1.6 (NaV1.6N) and engineered mutations rendering the channel tetrodotoxin (TTX) resistant. We investigated the impact of SCN8A alternative splicing on variant function by comparing the functional attributes of 15 variants expressed in 2 developmentally regulated splice isoforms (NaV1.6N, NaV1.6A). We employed automated patch clamp recording to enhance throughput, and developed a neuronal cell line (ND7/LoNav) with low levels of endogenous NaV current to obviate the need for TTX-resistance mutations. Expression of NaV1.6N or NaV1.6A in ND7/LoNav cells generated NaV currents with small, but significant, differences in voltage dependence of activation and inactivation. TTX-resistant versions of both isoforms exhibited significant functional differences compared with the corresponding WT channels. We demonstrated that many of the 15 disease-associated variants studied exhibited isoform-dependent functional effects, and that many of the studied SCN8A variants exhibited functional properties that were not easily classified as either gain- or loss-of-function. Our work illustrates the value of considering molecular and cellular context when investigating SCN8A variants.
Collapse
Affiliation(s)
- Carlos G. Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tatiana V. Abramova
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nora F. Ghabra
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Christopher B. Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher H. Thompson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Gauer L, Baer S, Valenti-Hirsch MP, De Saint-Martin A, Hirsch E. Drug-resistant generalized epilepsies: Revisiting the frontiers of idiopathic generalized epilepsies. Rev Neurol (Paris) 2024; 180:290-297. [PMID: 38508955 DOI: 10.1016/j.neurol.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
The 2017 International League Against Epilepsy (ILAE) classification suggested that the term "genetic generalized epilepsies" (GGEs) should be used for the broad group of epilepsies with so-called "generalized" seizure types and "generalized" spike-wave activity on EEG, based on a presumed genetic etiology. Within this framework, idiopathic generalized epilepsies (IGEs) are described as a subset of GGEs and include only four epileptic syndromes: childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy, and epilepsy with generalized tonic-clonic seizures alone. The recent 2022 ILAE definition of IGEs is based on the current state of knowledge and reflects a community consensus and is designed to evolve as knowledge advances. The term "frontiers of IGEs" refers to the actual limits of our understanding of these four syndromes. Indeed, among patients presenting with a syndrome compatible with the 2022 definition of IGEs, we still observe a significant proportion of patients presenting with specific clinical features, refractory seizures, or drug-resistant epilepsies. This leads to the discussion of the boundaries of IGEs and GGEs, or what is accepted within a clinical spectrum of a definite IGE. Here, we discuss several entities that have been described in the literature for many years and that may either constitute rare features of IGEs or a distinct differential diagnosis. Their recognition by clinicians may allow a more individualized approach and improve the management of patients presenting with such entities.
Collapse
Affiliation(s)
- L Gauer
- Hôpitaux Universitaires de Strasbourg, Neurology department, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Reference Centre for Rare Epilepsies (CRéER), Strasbourg, France.
| | - S Baer
- Hôpitaux Universitaires de Strasbourg, Pediatric Neurology Department, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Reference Centre for Rare Epilepsies (CRéER), Strasbourg, France
| | - M-P Valenti-Hirsch
- Hôpitaux Universitaires de Strasbourg, Neurology department, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Reference Centre for Rare Epilepsies (CRéER), Strasbourg, France
| | - A De Saint-Martin
- Hôpitaux Universitaires de Strasbourg, Pediatric Neurology Department, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Reference Centre for Rare Epilepsies (CRéER), Strasbourg, France
| | - E Hirsch
- Hôpitaux Universitaires de Strasbourg, Neurology department, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Reference Centre for Rare Epilepsies (CRéER), Strasbourg, France
| |
Collapse
|
3
|
Vanoye CG, Abramova TV, DeKeyser JM, Ghabra NF, Oudin MJ, Burge CB, Helbig I, Thompson CH, George AL. Molecular and Cellular Context Influences SCN8A Variant Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566702. [PMID: 38014225 PMCID: PMC10680676 DOI: 10.1101/2023.11.11.566702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Pathogenic variants in SCN8A , which encodes the voltage-gated sodium (Na V ) channel Na V 1.6, are associated with neurodevelopmental disorders including epileptic encephalopathy. Previous approaches to determine SCN8A variant function may be confounded by the use of a neonatal-expressed alternatively spliced isoform of Na V 1.6 (Na V 1.6N), and engineered mutations to render the channel tetrodotoxin (TTX) resistant. In this study, we investigated the impact of SCN8A alternative splicing on variant function by comparing the functional attributes of 15 variants expressed in two developmentally regulated splice isoforms (Na V 1.6N, Na V 1.6A). We employed automated patch clamp recording to enhance throughput, and developed a novel neuronal cell line (ND7/LoNav) with low levels of endogenous Na V current to obviate the need for TTX-resistance mutations. Expression of Na V 1.6N or Na V 1.6A in ND7/LoNav cells generated Na V currents that differed significantly in voltage-dependence of activation and inactivation. TTX-resistant versions of both isoforms exhibited significant functional differences compared to the corresponding wild-type (WT) channels. We demonstrated that many of the 15 disease-associated variants studied exhibited isoform-dependent functional effects, and that many of the studied SCN8A variants exhibited functional properties that were not easily classified as either gain- or loss-of-function. Our work illustrates the value of considering molecular and cellular context when investigating SCN8A variants.
Collapse
|