Zawar I. Unlocking the Mysteries of Slumber: Unveiling the Intricate Ties Between Sleep, Epilepsy, and Cognition.
Epilepsy Curr 2024;
24:185-187. [PMID:
38898912 PMCID:
PMC11185211 DOI:
10.1177/15357597241232883]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Interaction of Interictal Epileptiform Activity With Sleep Spindles Is Associated With Cognitive Deficits and Adverse Surgical Outcome in Pediatric Focal Epilepsy Yu H, Kim W, Park DK, Phi JH, Lim BC, Chae JH, Kim SK, Kim KJ, Provenzano FA, Khodagholy D, Gelinas JN. Epilepsia . 2024;65(1):190-203. doi:10.1111/epi.17810 . PMID: 37983643 Objective: Temporal coordination between oscillations enables intercortical communication and is implicated in cognition. Focal epileptic activity can affect distributed neural networks and interfere with these interactions. Refractory pediatric epilepsies are often accompanied by substantial cognitive comorbidity, but mechanisms and predictors remain mostly unknown. Here, we investigate oscillatory coupling across large-scale networks in the developing brain. Methods: We analyzed large-scale intracranial electroencephalographic recordings in children with medically refractory epilepsy undergoing presurgical workup (n = 25, aged 3–21 years). Interictal epileptiform discharges (IEDs), pathologic high-frequency oscillations (HFOs), and sleep spindles were detected. Spatiotemporal metrics of oscillatory coupling were determined and correlated with age, cognitive function, and postsurgical outcome. Results: Children with epilepsy demonstrated significant temporal coupling of both IEDs and HFOs to sleep spindles in discrete brain regions. HFOs were associated with stronger coupling patterns than IEDs. These interactions involved tissue beyond the clinically identified epileptogenic zone and were ubiquitous across cortical regions. Increased spatial extent of coupling was most prominent in older children. Poor neurocognitive function was significantly correlated with high IED–spindle coupling strength and spatial extent; children with strong pathologic interactions additionally had decreased likelihood of postoperative seizure freedom. Significance: Our findings identify pathologic large-scale oscillatory coupling patterns in the immature brain. These results suggest that such intercortical interactions could predict risk for adverse neurocognitive and surgical outcomes, with the potential to serve as novel therapeutic targets to restore physiologic development.
Altered Sleep Microarchitecture and Cognitive Impairment in Patients With Temporal Lobe Epilepsy Bender AC, Jaleel A, Pellerin KR, Moguilner S, Sarkis RA, Cash SS, Lam AD. Neurology . 2023;101(23):e2376-e2387. doi:10.1212/WNL.0000000000207942 . PMID: 37848332 Background and Objectives: To investigate the spatiotemporal characteristics of sleep waveforms in temporal lobe epilepsy (TLE) and examine their association with cognition. Methods: In this retrospective, cross-sectional study, we examined overnight EEG data from adult patients with TLE and nonepilepsy comparisons (NECs) admitted to the epilepsy monitoring unit at Mass General Brigham hospitals. Automated algorithms were used to characterize sleep macroarchitecture (sleep stages) and microarchitecture (spindles, slow oscillations [SOs]) on scalp EEG and to detect hippocampal interictal epileptiform discharges (hIEDs) from foramen ovale electrodes simultaneously recorded in a subset of patients with TLE. We examined the association of sleep features and hIEDs with memory and executive function from clinical neuropsychological evaluations. Results: A total of 81 adult patients with TLE and 28 NEC adult patients were included with similar mean ages. There were no significant differences in sleep macroarchitecture between groups, including relative time spent in each sleep stage, sleep efficiency, and sleep fragmentation. By contrast, the spatiotemporal characteristics of sleep microarchitecture were altered in TLE compared with NEC and were associated with cognitive impairments. Specifically, we observed a 30% reduction in spindle density in patients with TLE compared with NEC, which was significantly associated with worse memory performance. Spindle-SO coupling strength was also reduced in TLE and, in contrast to spindles, was associated with diminished executive function. We found no significant association between sleep macroarchitectural and microarchitectural parameters and hIEDs. Discussion: There is a fundamental alteration of sleep microarchitecture in TLE, characterized by a reduction in spindle density and spindle-SO coupling, and these changes may contribute to neurocognitive comorbidity in this disorder.
Collapse