Hoffman CR, Sitvarin MI, Rypstra AL. Information from familiar and related conspecifics affects foraging in a solitary wolf spider.
Oecologia 2015;
181:359-67. [PMID:
26497123 DOI:
10.1007/s00442-015-3460-x]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/16/2015] [Indexed: 11/27/2022]
Abstract
As neighbours become familiar with one another, they can divert attention away from one another and focus on other activities. Since familiarity is a likely mechanism by which animals recognise relatives, both kinship and prior association with conspecifics should allow individuals to increase foraging. We attempted to determine if the interference observed among conspecific foragers could be mitigated by familiarity and/or kinship. Because Pardosa milvina wolf spiders are sensitive to chemotactile cues deposited on substrates by other spiders, we used cues to manipulate the information available to focal spiders. We first verified that animals could use these cues to differentiate relatives and familiar conspecifics. We then documented foraging in the presence of all combinations of related and familiar animal cues. Test spiders were slower foragers, less likely to capture prey, and consumed less of each prey item when on cues from unfamiliar kin, but were faster and more effective foragers on cues from familiar non-kin. Their reactions to familiar kin and unfamiliar non-kin were intermediate. High foraging intensity on familiar cues is consistent with the idea that animals pay less attention to neighbours after some prior association. Lower foraging effort in the presence of cues from relatives may be an attempt to reduce kin competition by shifting attention toward dispersal or to provide increased access to prey for hungry relatives nearby. These findings reveal that information from conspecifics mediates social interactions among individuals and affects foraging in ways that can influence their role in the food web.
Collapse