1
|
Réveillion F, Montuire S, Maquart PO, Fétiveau C, Bollache L. Variations in the carapace shape of whip spiders (Arachnida: Amblypygi). J Morphol 2022; 283:1003-1014. [PMID: 35670656 DOI: 10.1002/jmor.21485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/03/2022] [Accepted: 05/21/2022] [Indexed: 11/06/2022]
Abstract
Morphological studies often need to reference body size to correctly characterise the shape of organisms. In arthropods, the most commonly used reference for this is the length or width of the carapace, thorax, or the prosoma in the case of chelicerates. However, in the case of animals with unlimited growth, such as whip spiders, this measure could be irrelevant if growth is allometric. In this study, we analyse the ontogenetic modifications in prosoma outline shape in whip spiders during growth and compare the differences in shape between species. Differences are important for the relative prosoma width between species and, in the case of Damon medius, during growth in the juvenile stages, whereas the shape remains stable in mature stages. We conclude that a one-dimensional measure (i.e., length or width) suffices for mature specimens of a single species or family, but for larger studies, or when including immature specimens, at least the prosoma area (within the outline shape) should be used as a size estimator.
Collapse
Affiliation(s)
- Florian Réveillion
- Université de Bourgogne Franche Comté, Dijon, France.,Laboratoire Chrono-Environnement, UMR 6249, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| | - Sophie Montuire
- Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, Dijon, France.,EPHE, PSL University, Dijon, France
| | - Pierre-Olivier Maquart
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | - Loïc Bollache
- Université de Bourgogne Franche Comté, Dijon, France.,Laboratoire Chrono-Environnement, UMR 6249, CNRS, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
2
|
Kuntner M, Coddington JA. Sexual Size Dimorphism: Evolution and Perils of Extreme Phenotypes in Spiders. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:57-80. [PMID: 31573828 DOI: 10.1146/annurev-ento-011019-025032] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sexual size dimorphism is one of the most striking animal traits, and among terrestrial animals, it is most extreme in certain spider lineages. The most extreme sexual size dimorphism (eSSD) is female biased. eSSD itself is probably an epiphenomenon of gendered evolutionary drivers whose strengths and directions are diverse. We demonstrate that eSSD spider clades are aberrant by sampling randomly across all spiders to establish overall averages for female (6.9 mm) and male (5.6 mm) size. At least 16 spider eSSD clades exist. We explore why the literature does not converge on an overall explanation for eSSD and propose an equilibrium model featuring clade- and context-specific drivers of gender size variation. eSSD affects other traits such as sexual cannibalism, genital damage, emasculation, and monogyny with terminal investment. Coevolution with these extreme sexual phenotypes is termed eSSD mating syndrome. Finally, as costs of female gigantism increase with size, eSSD may represent an evolutionary dead end.
Collapse
Affiliation(s)
- Matjaž Kuntner
- Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, SI-1000 Ljubljana, Slovenia;
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0105, USA;
- Evolutionary Zoology Laboratory, Institute of Biology ZRC SAZU, SI-1001 Ljubljana, Slovenia
| | - Jonathan A Coddington
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0105, USA;
| |
Collapse
|
3
|
Chelini MC, Delong JP, Hebets EA. Ecophysiological determinants of sexual size dimorphism: integrating growth trajectories, environmental conditions, and metabolic rates. Oecologia 2019; 191:61-71. [PMID: 31432247 DOI: 10.1007/s00442-019-04488-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/13/2019] [Indexed: 11/24/2022]
Abstract
Sexual size dimorphism (SSD) often results in dramatic differences in body size between females and males. Despite its ecological importance, little is known about the relationship between developmental, physiological, and energetic mechanisms underlying SSD. We take an integrative approach to understand the relationship between developmental trajectories, metabolism, and environmental conditions resulting in extreme female-biased SSD in the crab spider Mecaphesa celer (Thomisidae). We tested for sexual differences in growth trajectories, as well as in the energetics of growth, hypothesizing that female M. celer have lower metabolic rates than males or higher energy assimilation. We also hypothesized that the environment in which spiderlings develop influences the degree of SSD of a population. We tracked growth and resting metabolic rates of female and male spiderlings throughout their ontogeny and quantified the adult size of individuals raised in a combination of two diet and two temperature treatments. We show that M. celer's SSD results from differences in the shape of female and male growth trajectories. While female and male resting metabolic rates did not differ, diet, temperature, and their interaction influenced body size through an interactive effect with sex, with females being more sensitive to the environment than males. We demonstrate that the shape of the growth curve is an important but often overlooked determinant of SSD and that females may achieve larger sizes through a combination of high food ingestion and low activity levels. Our results highlight the need for new models of SSD based on ontogeny, ecology, and behavior.
Collapse
Affiliation(s)
- Marie-Claire Chelini
- School of Natural Sciences, University of California, Merced, SE1 243, 5200 N Lake Rd, Merced, CA, 95343, USA.
| | - John P Delong
- School of Biological Sciences, University of Nebraska-Lincoln, 324 Manter Hall, Lincoln, NE, 68588-0118, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, 324 Manter Hall, Lincoln, NE, 68588-0118, USA
| |
Collapse
|
4
|
Chelini MC, Hebets E. Field evidence challenges the often-presumed relationship between early male maturation and female-biased sexual size dimorphism. Ecol Evol 2017; 7:9592-9601. [PMID: 29187992 PMCID: PMC5696407 DOI: 10.1002/ece3.3450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022] Open
Abstract
Female‐biased sexual size dimorphism (SSD) is often considered an epiphenomenon of selection for the increased mating opportunities provided by early male maturation (i.e., protandry). Empirical evidence of the adaptive significance of protandry remains nonetheless fairly scarce. We use field data collected throughout the reproductive season of an SSD crab spider, Mecaphesa celer, to test two hypotheses: Protandry provides fitness benefits to males, leading to female‐biased SSD, or protandry is an indirect consequence of selection for small male size/large female size. Using field‐collected data, we modeled the probability of mating success for females and males according to their timing of maturation. We found that males matured earlier than females and the proportion of virgin females decreased abruptly early in the season, but unexpectedly increased afterward. Timing of female maturation was not related to clutch size, but large females tended to have more offspring than small females. Timing of female and male maturation was inversely related to size at adulthood, as early‐maturing individuals were larger than late‐maturing ones, suggesting that both sexes exhibit some plasticity in their developmental trajectories. Such plasticity indicates that protandry could co‐occur with any degree and direction of SSD. Our calculation of the probability of mating success along the season shows multiple male maturation time points with similar predicted mating success. This suggests that males follow multiple strategies with equal success, trading‐off access to virgin females with intensity of male–male competition. Our results challenge classic hypotheses linking protandry and female‐biased SSD, and emphasize the importance of directly testing the often‐assumed relationships between co‐occurring animal traits.
Collapse
Affiliation(s)
| | - Eileen Hebets
- School of Biological Sciences University of Nebraska - Lincoln Lincoln NE USA
| |
Collapse
|
5
|
Chelini MC, Hebets EA. Polyandry in the absence of fitness benefits in a species with female-biased sexual size dimorphism. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Miller DW, Jones AD, Goldston JS, Rowe MP, Rowe AH. Sex Differences in Defensive Behavior and Venom of The Striped Bark Scorpion Centruroides vittatus (Scorpiones: Buthidae). Integr Comp Biol 2016; 56:1022-1031. [PMID: 27471227 DOI: 10.1093/icb/icw098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Studies of venom variability have advanced from describing the mechanisms of action and relative potency of medically important toxins to understanding the ecological and evolutionary causes of the variability itself. While most studies have focused on differences in venoms among taxa, populations, or age-classes, there may be intersexual effects as well. Striped bark scorpions (Centruroides vittatus) provide a good model for examining sex differences in venom composition and efficacy, as this species exhibits dramatic sexual dimorphism in both size and defensive behavior; when threatened by an enemy, larger, slower females stand and fight while smaller, fleeter males prefer to run. We here add evidence suggesting that male and female C. vittatus indeed have different defensive propensities; when threatened via an electrical stimulus, females were more likely to sting than were males. We reasoned that intersexual differences in defensive phenotypes would select for venoms with different functions in the two sexes; female venoms should be effective at predator deterrence, whereas male venoms, less utilized defensively, might be better suited to capturing prey or courting females. This rationale led to our predictions that females would inject more venom and/or possess more painful venom than males. We were wrong. While females do inject more venom than males in a defensive sting, females are also larger; when adjusted for body size, male and female C. vittatus commit equal masses of venom in a sting to a potential enemy. Additionally, house mice (Mus musculus) find an injection of male venom more irritating than an equal amount of female venom, likely because male venom contains more of the toxins that induce pain. Taken together, our results suggest that identifying the ultimate causes of venom variability will, as we move beyond adaptive storytelling, be hard-won.
Collapse
Affiliation(s)
- D W Miller
- *Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - A D Jones
- Department of Biochemistry and Molecular Biology, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - J S Goldston
- *Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - M P Rowe
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - A H Rowe
- Neuroscience Program and Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|