1
|
Zimmerman SJ, Aldridge CL, O'Donnell MS, Edmunds DR, Coates PS, Prochazka BG, Fike JA, Cross TB, Fedy BC, Oyler-McCance SJ. A genetic warning system for a hierarchically structured wildlife monitoring framework. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2787. [PMID: 36482030 DOI: 10.1002/eap.2787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Genetic variation is a well-known indicator of population fitness yet is not typically included in monitoring programs for sensitive species. Additionally, most programs monitor populations at one scale, which can lead to potential mismatches with ecological processes critical to species' conservation. Recently developed methods generating hierarchically nested population units (i.e., clusters of varying scales) for greater sage-grouse (Centrocercus urophasianus) have identified population trend declines across spatiotemporal scales to help managers target areas for conservation. The same clusters used as a proxy for spatial scale can alert managers to local units (i.e., neighborhood-scale) with low genetic diversity, further facilitating identification of management targets. We developed a genetic warning system utilizing previously developed hierarchical population units to identify management-relevant areas with low genetic diversity within the greater sage-grouse range. Within this warning system we characterized conservation concern thresholds based on values of genetic diversity and developed a statistical model for microsatellite data to robustly estimate these values for hierarchically nested populations. We found that 41 of 224 neighborhood-scale clusters had low genetic diversity, 23 of which were coupled with documented local population trend decline. We also found evidence of cross-scale low genetic diversity in the small and isolated Washington population, unlikely to be reversed through typical local management actions alone. The combination of low genetic diversity and a declining population suggests relatively high conservation concern. Our findings could further facilitate conservation action prioritization in combination with population trend assessments and (or) local information, and act as a base-line of genetic diversity for future comparison. Importantly, the approach we used is broadly applicable across taxa.
Collapse
Affiliation(s)
- Shawna J Zimmerman
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Cameron L Aldridge
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Michael S O'Donnell
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - David R Edmunds
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Peter S Coates
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, California, USA
| | - Brian G Prochazka
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, California, USA
| | - Jennifer A Fike
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Todd B Cross
- School of Environment, Resources and Sustainability, University of Waterloo, Waterloo, Ontario, Canada
| | - Bradley C Fedy
- School of Environment, Resources and Sustainability, University of Waterloo, Waterloo, Ontario, Canada
| | - Sara J Oyler-McCance
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Cross TB, Tack JD, Naugle DE, Schwartz MK, Doherty KE, Oyler-McCance SJ, Pritchert RD, Fedy BC. The ties that bind the sagebrush biome: integrating genetic connectivity into range-wide conservation of greater sage-grouse. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220437. [PMID: 36844808 PMCID: PMC9943888 DOI: 10.1098/rsos.220437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Conserving genetic connectivity is fundamental to species persistence, yet rarely is made actionable into spatial planning for imperilled species. Climate change and habitat degradation have added urgency to embrace connectivity into networks of protected areas. Our two-step process integrates a network model with a functional connectivity model, to identify population centres important to maintaining genetic connectivity then to delineate those pathways most likely to facilitate connectivity thereamong for the greater sage-grouse (Centrocercus urophasianus), a species of conservation concern ranging across eleven western US states and into two Canadian provinces. This replicable process yielded spatial action maps, able to be prioritized by importance to maintaining range-wide genetic connectivity. We used these maps to investigate the efficacy of 3.2 million ha designated as priority areas for conservation (PACs) to encompass functional connectivity. We discovered that PACs encompassed 41.1% of cumulative functional connectivity-twice the amount of connectivity as random-and disproportionately encompassed the highest-connectivity landscapes. Comparing spatial action maps to impedances to connectivity such as cultivation and woodland expansion allows both planning for future management and tracking outcomes from past efforts.
Collapse
Affiliation(s)
- Todd B. Cross
- School of Environment, Resources and Sustainability, University of Waterloo, Waterloo, Ontario, Canada
| | - Jason D. Tack
- Habitat and Population Evaluation Team, US Fish and Wildlife Service, 32 Campus Drive, Missoula, MT, USA
| | - David E. Naugle
- W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Michael K. Schwartz
- USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, 800 East Beckwith Avenue, Missoula, MT, USA
| | | | | | - Ronald D. Pritchert
- Habitat and Population Evaluation Team, US Fish and Wildlife Service, 3425 Miriam Avenue, Bismarck, ND, USA
| | - Bradley C. Fedy
- School of Environment, Resources and Sustainability, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
New strategies for characterizing genetic structure in wide-ranging, continuously distributed species: A Greater Sage-grouse case study. PLoS One 2022; 17:e0274189. [PMID: 36099302 PMCID: PMC9469985 DOI: 10.1371/journal.pone.0274189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Characterizing genetic structure across a species’ range is relevant for management and conservation as it can be used to define population boundaries and quantify connectivity. Wide-ranging species residing in continuously distributed habitat pose substantial challenges for the characterization of genetic structure as many analytical methods used are less effective when isolation by distance is an underlying biological pattern. Here, we illustrate strategies for overcoming these challenges using a species of significant conservation concern, the Greater Sage-grouse (Centrocercus urophasianus), providing a new method to identify centers of genetic differentiation and combining multiple methods to help inform management and conservation strategies for this and other such species. Our objectives were to (1) describe large-scale patterns of population genetic structure and gene flow and (2) to characterize genetic subpopulation centers across the range of Greater Sage-grouse. Samples from 2,134 individuals were genotyped at 15 microsatellite loci. Using standard STRUCTURE and spatial principal components analyses, we found evidence for four or six areas of large-scale genetic differentiation and, following our novel method, 12 subpopulation centers of differentiation. Gene flow was greater, and differentiation reduced in areas of contiguous habitat (eastern Montana, most of Wyoming, much of Oregon, Nevada, and parts of Idaho). As expected, areas of fragmented habitat such as in Utah (with 6 subpopulation centers) exhibited the greatest genetic differentiation and lowest effective migration. The subpopulation centers defined here could be monitored to maintain genetic diversity and connectivity with other subpopulation centers. Many areas outside subpopulation centers are contact zones where different genetic groups converge and could be priorities for maintaining overall connectivity. Our novel method and process of leveraging multiple different analyses to find common genetic patterns provides a path forward to characterizing genetic structure in wide-ranging, continuously distributed species.
Collapse
|
4
|
Applying novel connectivity networks to wood turtle populations to provide comprehensive conservation management strategies for species at risk. PLoS One 2022; 17:e0271797. [PMID: 35960725 PMCID: PMC9374220 DOI: 10.1371/journal.pone.0271797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Genetic diversity within and among populations is frequently used in prioritization processes to rank populations based on their vulnerability or distinctiveness, however, connectivity and gene flow are rarely considered within these frameworks. Using a wood turtle (Glyptemys insculpta) population graph, we introduce BRIDES as a new tool to evaluate populations for conservation purpose without focusing solely on individual nodes. BRIDES characterizes different types of shortest paths among the nodes of a subgraph and compares the shortest paths among the same nodes in a complete network. The main objectives of this study were to (1) introduce a BRIDES selection process to assist conservation biologists in the prioritization of populations, and (2) use different centrality indices and node removal statistics to compare BRIDES results and assess gene flow among wood turtle populations. We constructed six population subgraphs and used a stepwise selection algorithm to choose the optimal number of additional nodes, representing different populations, required to maximize network connectivity under different weighting schemes. Our results demonstrate the robustness of the BRIDES selection process for a given scenario, while inconsistencies were observed among node-based metrics. Results showed repeated selection of certain wood turtle populations, which could have not been predicted following only genetic diversity and distinctiveness estimation, node-based metrics and node removal analysis. Contrary to centrality measures focusing on static networks, BRIDES allowed for the analysis of evolving networks. To our knowledge, this study is the first to apply graph theory for turtle conservation genetics. We show that population graphs can reveal complex gene flow dynamics and population resiliency to local extinction. As such, BRIDES offers an interesting complement to node-based metrics and node removal to better understand the global processes at play when addressing population prioritization frameworks.
Collapse
|
5
|
O'Donnell MS, Edmunds DR, Aldridge CL, Heinrichs JA, Monroe AP, Coates PS, Prochazka BG, Hanser SE, Wiechman LA. Defining fine‐scaled population structure among continuously distributed populations. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - David R. Edmunds
- U.S. Geological Survey Fort Collins Science Center Fort Collins Colorado USA
| | - Cameron L. Aldridge
- U.S. Geological Survey Fort Collins Science Center Fort Collins Colorado USA
| | - Julie A. Heinrichs
- Natural Resource Ecology Laboratory Colorado State University, Fort Collins, CO in cooperation with the U.S. Geological Survey, Fort Collins Science Center Fort Collins Colorado USA
| | - Adrian P. Monroe
- U.S. Geological Survey Fort Collins Science Center Fort Collins Colorado USA
| | - Peter S. Coates
- U.S. Geological Survey, Western Ecological Research Center Dixon Field Station Dixon California USA
| | - Brian G. Prochazka
- U.S. Geological Survey, Western Ecological Research Center Dixon Field Station Dixon California USA
| | - Steve E. Hanser
- U.S. Geological Survey Fort Collins Science Center Fort Collins Colorado USA
| | - Lief A. Wiechman
- U.S. Geological Survey Ecosystems Mission Area Fort Collins Colorado USA
| |
Collapse
|
6
|
Integrating the effects of driving forces on ecosystem services into ecological management: A case study from Sichuan Province, China. PLoS One 2022; 17:e0270365. [PMID: 35737732 PMCID: PMC9223388 DOI: 10.1371/journal.pone.0270365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
Driving forces are the factors that lead to the observed changes in the quantity and quality of ecosystem services (ESs). The relationship between driving forces and ESs involves considerable scale-related information. Place-based ecological management requires this information to support local sustainable development. Despite the importance of scale in ES research, most studies have only examined the association between ESs and their drivers at a single level, and few studies have examined this relationship at various scales or analyzed spatial heterogeneity. The purpose of this paper is to explore the significance of the scale-dependent effects of drivers on ESs for localized ecological management. The biophysical values of ESs were calculated using several ecological simulation models. The effects of driving forces on ESs were explored using the geographically weighted regression (GWR) model. Variations in the effects of driving forces on ESs were examined at three scales: provincial, ecoregional, and subecoregional scales. Finally, canonical correlation analysis was used to identify the major environmental factors associated with these variations in each ecoregion. Our results show that (1) the distribution of soil conservation and water yield is highly heterogeneous; (2) four driving forces have significant positive and negative impacts on soil conservation and water yield, and their effects on the two services vary spatially (p < 0.05); (3) the impacts of drivers on ESs vary across different spatial scales, with a corresponding shift in the related environmental factors; and (4) in the study area, at the provincial scale, physical, topographical, and biophysical factors were key factors associated with the variations in the relationship between ESs and drivers, and at the ecoregional and subecoregional scales, physical, socioeconomic, topographical, and biophysical factors all contributed to these changes. Our results suggest that significant differences in topographical conditions (e.g., altitude, slope) can be incorporated for exploring the relationship between drivers and ESs and optimizing ecological management at the provincial scale, whereas significant differences in physical and socioeconomic conditions (e.g., urbanization levels, human activity, vegetation coverage) are more meaningful for localized ecological management at the ecoregional and subecological scales. These findings provide a basis for understanding the relationship between drivers and ESs at multiple scales as well as guidelines for improving localized ecological management and achieving sustainable development.
Collapse
|
7
|
Zimmerman SJ, Aldridge CL, Hooten MB, Oyler-McCance SJ. Scale-dependent influence of the sagebrush community on genetic connectivity of the sagebrush obligate Gunnison sage-grouse. Mol Ecol 2022; 31:3267-3285. [PMID: 35501946 PMCID: PMC9325045 DOI: 10.1111/mec.16470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022]
Abstract
Habitat fragmentation and degradation impacts an organism's ability to navigate the landscape, ultimately resulting in decreased gene flow and increased extinction risk. Understanding how landscape composition impacts gene flow (i.e., connectivity) and interacts with scale is essential to conservation decision‐making. We used a landscape genetics approach implementing a recently developed statistical model based on the generalized Wishart probability distribution to identify the primary landscape features affecting gene flow and estimate the degree to which each component influences connectivity for Gunnison sage‐grouse (Centrocercus minimus). We were interested in two spatial scales: among distinct populations rangewide and among leks (i.e., breeding grounds) within the largest population, Gunnison Basin. Populations and leks are nested within a landscape fragmented by rough terrain and anthropogenic features, although requisite sagebrush habitat is more contiguous within populations. Our best fit models for each scale confirm the importance of sagebrush habitat in connectivity, although the important sagebrush characteristics differ. For Gunnison Basin, taller shrubs and higher quality nesting habitat were the primary drivers of connectivity, while more sagebrush cover and less conifer cover facilitated connectivity rangewide. Our findings support previous assumptions that Gunnison sage‐grouse range contraction is largely the result of habitat loss and degradation. Importantly, we report direct estimates of resistance for landscape components that can be used to create resistance surfaces for prioritization of specific locations for conservation or management (i.e., habitat preservation, restoration, or development) or as we demonstrated, can be combined with simulation techniques to predict impacts to connectivity from potential management actions.
Collapse
Affiliation(s)
- Shawna J Zimmerman
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Cameron L Aldridge
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Mevin B Hooten
- Department of Statistics and Data Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Sara J Oyler-McCance
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| |
Collapse
|
8
|
Oh KP, Aldridge CL, Forbey JS, Dadabay CY, Oyler-McCance SJ. Conservation Genomics in the Sagebrush Sea: Population Divergence, Demographic History, and Local Adaptation in Sage-Grouse (Centrocercus spp.). Genome Biol Evol 2020; 11:2023-2034. [PMID: 31135036 DOI: 10.1093/gbe/evz112] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
Sage-grouse are two closely related iconic species of the North American West, with historically broad distributions across sagebrush-steppe habitat. Both species are dietary specialists on sagebrush during winter, with presumed adaptations to tolerate the high concentrations of toxic secondary metabolites that function as plant chemical defenses. Marked range contraction and declining population sizes since European settlement have motivated efforts to identify distinct population genetic variation, particularly that which might be associated with local genetic adaptation and dietary specialization of sage-grouse. We assembled a reference genome and performed whole-genome sequencing across sage-grouse from six populations, encompassing both species and including several populations on the periphery of the species ranges. Population genomic analyses reaffirmed genome-wide differentiation between greater and Gunnison sage-grouse, revealed pronounced intraspecific population structure, and highlighted important differentiation of a small isolated population of greater sage-grouse in the northwest of the range. Patterns of genome-wide differentiation were largely consistent with a hypothesized role of genetic drift due to limited gene flow among populations. Inferred ancient population demography suggested persistent declines in effective population sizes that have likely contributed to differentiation within and among species. Several genomic regions with single-nucleotide polymorphisms exhibiting extreme population differentiation were associated with candidate genes linked to metabolism of xenobiotic compounds. In vitro activity of enzymes isolated from sage-grouse livers supported a role for these genes in detoxification of sagebrush, suggesting that the observed interpopulation variation may underlie important local dietary adaptations, warranting close consideration for conservation strategies that link sage-grouse to the chemistry of local sagebrush.
Collapse
Affiliation(s)
- Kevin P Oh
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado
| | - Cameron L Aldridge
- Natural Resource Ecology Laboratory and Department of Ecosystem Sciences, Colorado State University in cooperation with U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado
| | | | | | | |
Collapse
|
9
|
Ricca MA, Coates PS. Integrating Ecosystem Resilience and Resistance Into Decision Support Tools for Multi-Scale Population Management of a Sagebrush Indicator Species. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Kozakiewicz CP, Burridge CP, Funk WC, Salerno PE, Trumbo DR, Gagne RB, Boydston EE, Fisher RN, Lyren LM, Jennings MK, Riley SPD, Serieys LEK, VandeWoude S, Crooks KR, Carver S. Urbanization reduces genetic connectivity in bobcats (Lynx rufus) at both intra- and interpopulation spatial scales. Mol Ecol 2019; 28:5068-5085. [PMID: 31613411 DOI: 10.1111/mec.15274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 01/02/2023]
Abstract
Urbanization is a major factor driving habitat fragmentation and connectivity loss in wildlife. However, the impacts of urbanization on connectivity can vary among species and even populations due to differences in local landscape characteristics, and our ability to detect these relationships may depend on the spatial scale at which they are measured. Bobcats (Lynx rufus) are relatively sensitive to urbanization and the status of bobcat populations is an important indicator of connectivity in urban coastal southern California. We genotyped 271 bobcats at 13,520 SNP loci to conduct a replicated landscape resistance analysis in five genetically distinct populations. We tested urban and natural factors potentially influencing individual connectivity in each population separately, as well as study-wide. Overall, landscape genomic effects were most frequently detected at the study-wide spatial scale, with urban land cover (measured as impervious surface) having negative effects and topographic roughness having positive effects on gene flow. The negative effect of urban land cover on connectivity was also evident when populations were analyzed separately despite varying substantially in spatial area and the proportion of urban development, confirming a pervasive impact of urbanization largely independent of spatial scale. The effect of urban development was strongest in one population where stream habitat had been lost to development, suggesting that riparian corridors may help mitigate reduced connectivity in urbanizing areas. Our results demonstrate the importance of replicating landscape genetic analyses across populations and considering how landscape genetic effects may vary with spatial scale and local landscape structure.
Collapse
Affiliation(s)
| | | | - W Chris Funk
- Department of Biology, Colorado State University, Fort Collins, CO, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | | | - Daryl R Trumbo
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Roderick B Gagne
- Wildlife Genomics and Disease Ecology Laboratory, Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA.,Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Erin E Boydston
- Western Ecological Research Center, U.S. Geological Survey, Thousand Oaks, CA, USA
| | - Robert N Fisher
- Western Ecological Research Center, U.S. Geological Survey, San Diego, CA, USA
| | - Lisa M Lyren
- Western Ecological Research Center, U.S. Geological Survey, Thousand Oaks, CA, USA
| | - Megan K Jennings
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Seth P D Riley
- National Park Service, Santa Monica Mountains National Recreation Area, Thousand Oaks, CA, USA
| | - Laurel E K Serieys
- Department of Environmental Studies, University of California Santa Cruz, Santa Cruz, CA, USA.,Institute for Communities and Wildlife in Africa, Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kevin R Crooks
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA.,Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|