1
|
Euclide PT, Kuhl H, Wilson CC, Scribner KT, Miller LM, Stott W, Larson WA. Human Impacts on Great Lakes Walleye Sander vitreus Structure, Diversity and Local Adaptation. Mol Ecol 2024:e17558. [PMID: 39487667 DOI: 10.1111/mec.17558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 11/04/2024]
Abstract
Artificial propagation and wild release may influence the genetic integrity of wild populations. This practice has been prevalent in fisheries for centuries and is often termed 'stocking'. In the Laurentian Great Lakes (Great Lakes here-on), walleye populations faced declines from the 1950s to the 1970s, prompting extensive stocking efforts for restoration. By the mid-2010s, walleye populations showed signs of recovery, but the genetic legacy of stocking on population structure at the genomic level remains unclear. Using a dataset of 45,600 genome-aligned SNP loci genotyped in 1075 walleye individuals, we investigated the genetic impacts of over 50 years of stocking across the Great Lakes. Population structure was associated with both natural geographic barriers and stocking from non-native sources. Admixture between Lake Erie walleye and walleye from the re-populated Tittabawassee River indicate that stocking may have re-distributed putatively adaptive alleles around the Great Lakes. Genome scans identified FST outliers and evidence of selective sweeps, indicating local adaptation of spawning populations is likely. Notably, one genomic region showed strong differentiation between Muskegon River and walleye from the Tittabawassee River, which was re-populated by Muskegon strain walleye, suggesting admixture and selection both impact the observed genetic diversity. Overall, our study underscores how artificial propagation and translocations can significantly alter the evolutionary trajectory of populations. The findings highlight the complex interplay between stocking practices and population genetic diversity, emphasising the need for careful management strategies to preserve the genetic integrity of wild populations amidst conservation efforts.
Collapse
Affiliation(s)
- Peter T Euclide
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, USA
- Illinois-Indiana Sea Grant, Purdue University, West Lafayette, Indiana, USA
| | - Heiner Kuhl
- Department IV Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Chris C Wilson
- Science and Research Branch, Ontario Ministry of Natural Resources, Trent University, Peterborough, Ontario, Canada
| | - Kim T Scribner
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Loren M Miller
- Minnesota Department of Natural Resource, Saint Paul, Minnesota, USA
| | - Wendylee Stott
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - Wesley A Larson
- Auke Bay Laboratories, National Marine Fisheries Service, Alaska Fisheries Science Center, National Oceanographic and Atmospheric Administration, Juneau, Alaska, USA
| |
Collapse
|
2
|
Masuda T, Shimono Y, Kishi D, Koizumi I. Evaluation of genetic consequences of stocking on the southern-margin populations of white-spotted charr. Ecol Evol 2024; 14:e70140. [PMID: 39130102 PMCID: PMC11311121 DOI: 10.1002/ece3.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/03/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
Coldwater-adapted freshwater fishes, especially their populations along warm-range margins, are most vulnerable to the climate oscillations associated with global warming. Stocking is a major strategy for avoiding the extinction of these species. However, while stocking can reverse the decline of isolated populations, it may also result in a loss of genetic diversity in the native local population due to the introgressive replacement of hatchery genes. To plan an adequate strategy for conserving locally adapted populations, the genetic impacts of stocking on native lineages should be evaluated from small river branches to wide-ranging drainage areas. We investigated the population genetic structure of white-spotted charr (Salvelinus leucomaenis) within its southern range (Lake Biwa basin, Japan). By applying genome-wide SNP analysis to the population's genetic structure, we assessed the extent of genetic introgression resulting from stocking. White-spotted charr in the Lake Biwa watershed constitutes a distinctive genetic group, within which apparent genetic differentiation was observed. The hatchery-reared fish line commonly used for supplementation stocking in the catchment was discernable from the native population, enabling us to analyze genetic introgression across the entire drainage area. Admixed individuals resulting from hatchery introgression were observed in most of the stocked sites that showed relatively high heterozygosity and nucleotide diversity. However, their genetic differentiation was much lower than that of native populations. The supplementation history as well as the road availability contributed substantially to the introgression of hatchery genes. Populations with the native genetic structure remained in the upstream regions of the tested rivers. However, their heterozygosity and nucleotide diversity were low when compared with that of the populations with hatchery supplementation. Our results shed light on the genetic impacts of stocking on isolated native populations and suggest that conventional supplementation methods cannot preserve a unique biodiversity in the distribution margin.
Collapse
Affiliation(s)
- Taro Masuda
- Laboratory of Marine Biology, Division of Applied Biological Science, Faculty of AgricultureSetsunan UniversityHirakata, OsakaJapan
| | - Yoshiko Shimono
- Laboratory of Weed Science, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Daisuke Kishi
- Gero Branch, Gifu Prefectural Research Institute for Fisheries and Aquatic EnvironmentsGifuJapan
| | - Itsuro Koizumi
- Faculty of Environmental Earth ScienceHokkaido UniversitySapporoHokkaidoJapan
| |
Collapse
|
3
|
Reed TE, Kane A, McGinnity P, O'Sullivan RJ. Competitive interactions affect introgression and population viability amidst maladaptive hybridization. Evol Appl 2024; 17:e13746. [PMID: 38957310 PMCID: PMC11217556 DOI: 10.1111/eva.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/03/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
The deliberate release of captive-bred individuals, the accidental escape of domesticated strains, or the invasion of closely related conspecifics into wild populations can all lead to introgressive hybridization, which poses a challenge for conservation and wildlife management. Rates of introgression and the magnitude of associated demographic impacts vary widely across ecological contexts. However, the reasons for this variation remain poorly understood. One rarely considered phenomenon in this context is soft selection, wherein relative trait values determine success in intraspecific competition for a limiting resource. Here we develop an eco-genetic model explicitly focussed on understanding the influence of such competitive interactions on the eco-evolutionary dynamics of wild populations experiencing an influx of foreign/domesticated individuals. The model is applicable to any taxon that experiences natural or human-mediated inputs of locally maladapted genotypes ('intrusion'), in addition to phenotype-dependent competition for a limiting resource (e.g. breeding sites, feeding territories). The effects of both acute and chronic intrusion depended strongly on the relative competitiveness of intruders versus locals. When intruders were competitively inferior, density-dependent regulation limited their reproductive success (ability to compete for limited spawning sites), which prevented strong introgression or population declines from occurring. In contrast, when intruders were competitively superior, this amplified introgression and led to increased maladaptation of the admixed population. This had negative consequences for population size and population viability. The results were sensitive to the intrusion level, the magnitude of reproductive excess, trait heritability and the extent to which intruders were maladapted relative to locals. Our findings draw attention to under-appreciated interactions between phenotype-dependent competitive interactions and maladaptive hybridization, which may be critical to determining the impact captive breeding programmes and domesticated escapees can have on otherwise self-sustaining wild populations.
Collapse
Affiliation(s)
- Thomas Eric Reed
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| | - Adam Kane
- School of Biology and Environmental Science and Earth InstituteUniversity College DublinDublinIreland
| | - Philip McGinnity
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- Marine Institute, Furnace, Newport, CoMayoIreland
| | - Ronan James O'Sullivan
- Human Diversity Consortium, Faculty of Physiology and Genetics, Department of BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
4
|
Houle C, Gossieaux P, Bernatchez L, Audet C, Garant D. Transgenerational effects on body size and survival in Brook charr ( Salvelinus fontinalis). Evol Appl 2023; 16:1061-1070. [PMID: 37216032 PMCID: PMC10197224 DOI: 10.1111/eva.13553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Higher temperatures are now observed in several ecosystems and act as new selective agents that shape traits and fitness of individuals. Transgenerational effects may be important in modulating adaptation of future generations and buffering negative impacts of temperature changes. The potential for these effects may be important in freshwater fish species, as temperature is a key abiotic component of their environment. Yet, still, relatively few studies have assessed the presence and importance of transgenerational effects under natural conditions. The purpose of this study was to test how parental thermal conditions influenced offspring growth and survival following stocking in Brook charr (Salvelinus fontinalis). To do so, part of the breeders were exposed to a "cold" treatment while others were exposed to a "warm" treatment during the final steps of gonad maturation (constant 2°C difference between treatments along the seasonal temperature decrease). The impact on offspring of a selection treatment targeting production traits of interest (absence of sexual maturation at 1+, combined with increased growth) in breeders was also evaluated. After 7-8 months of growth in captivity, offspring were stocked in natural lakes. Their growth and survival were assessed about a year later. Offspring from "cold" breeders showed lower survival than those from "warm" breeders and the selection treatment had no effect on survival. However, the selection treatment was linked to lower Fulton's condition index, which, in turn, was positively correlated to survival in lakes. This study highlights the importance of working in ecological/industrial context to fully assess the different impacts of transgenerational effects on traits and survival. Our results also have important implications for stocking practices used to support the sport fishing industry.
Collapse
Affiliation(s)
- Carolyne Houle
- Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| | | | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébec CityQuébecCanada
| | - Céline Audet
- Institut des Sciences de la Mer de Rimouski (ISMER)Université du Québec à Rimouski (UQAR)RimouskiQuébecCanada
| | - Dany Garant
- Département de BiologieUniversité de SherbrookeSherbrookeQuébecCanada
| |
Collapse
|
5
|
Genomics facilitates evaluation and monitoring of McCloud River Redband Trout (Oncorhynchus mykiss stonei). CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01453-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractThe McCloud River Redband Trout (MRRT; Oncorhynchus mykiss stonei) is a unique subspecies of rainbow trout that inhabits the isolated Upper McCloud River of Northern California. A major threat to MRRT is introgressive hybridization with non-native rainbow trout from historical stocking and contemporary unauthorized introductions. To help address this concern, we collected RAD-sequencing data on 308 total individuals from MRRT and other California O. mykiss populations and examined population structure using Principal Component and admixture analyses. Our results are consistent with previous studies; we found that populations of MRRT in Sheepheaven, Swamp, Edson, and Moosehead creeks are nonintrogressed. Additionally, we saw no evidence of introgression in Dry Creek, and suggest further investigation to determine if it can be considered a core MRRT conservation population. Sheepheaven Creek was previously thought to be the sole historical lineage of MRRT, but our analysis identified three: Sheepheaven, Edson, and Dry creeks, all of which should be preserved. Finally, we discovered diagnostic and polymorphic SNP markers for monitoring introgression and genetic diversity in MRRT. Collectively, our results provide a valuable resource for the conservation and management of MRRT.
Collapse
|
6
|
Conservation Genetics of Mediterranean Brown Trout in Central Italy (Latium): A Multi-Marker Approach. WATER 2022. [DOI: 10.3390/w14060937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brown trout is considered a complex of incipient species, including several phylogenetic lineages, whose natural distribution in the Mediterranean area has been altered, since the beginning of the 1900s, by massive introductions of domestic strains of Atlantic origin to support fisheries. Introduced trout naturalize in new suitable environments and extensively hybridize with native populations. Here, we characterized putatively neutral and adaptive genetic variability and population structure of Mediterranean brown trout from six river catchments in central peninsular Italy, as revealed by both mitochondrial (Control Region) and nuclear (microsatellites, LDH-C1, major histocompatibility complex) markers. We quantified the admixture of wild populations with hatchery strains and evaluated the effects of domestic trout introductions on shaping population genetics. Our analyses indicated: (1) a composite picture of genetic variability in the area, with the presence of all native Mediterranean trout mitochondrial lineages (“Adriatic”, “Mediterranean”, “marmoratus”), various frequencies of allochthonous genotypes and different rates of introgression among sampling sites; (2) asymmetric mito-nuclear introgression; (3) increasing nuclear marker diversity with increasing levels of admixture across populations; (4) strong population structure coupled with relatively low effective population size. Data allowed the identification of five management units and we propose specific actions to support ongoing and future conservation strategies within the examined area.
Collapse
|
7
|
|
8
|
Klütsch CFC, Maduna SN, Polikarpova N, Forfang K, Beddari B, Gjelland KØ, Aspholm PE, Amundsen PA, Hagen SB. Temporal analysis shows relaxed genetic erosion following improved stocking practices in a subarctic transnational brown trout population. Sci Rep 2021; 11:17396. [PMID: 34462480 PMCID: PMC8405680 DOI: 10.1038/s41598-021-96681-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/03/2021] [Indexed: 11/10/2022] Open
Abstract
Maintaining standing genetic variation is a challenge in human-dominated landscapes. We used genetic (i.e., 16 short tandem repeats) and morphological (i.e., length and weight) measurements of 593 contemporary and historical brown trout (Salmo trutta) samples to study fine-scale and short-term impacts of different management practices. These had changed from traditional breeding practices, using the same broodstock for several years, to modern breeding practices, including annual broodstock replacement, in the transnational subarctic Pasvik River. Using population genetic structure analyses (i.e., Bayesian assignment tests, DAPCs, and PCAs), four historical genetic clusters (E2001A-D), likely representing family lineages resulting from different crosses, were found in zone E. These groups were characterized by consistently lower genetic diversity, higher within-group relatedness, lower effective population size, and significantly smaller body size than contemporary stocked (E2001E) and wild fish (E2001F). However, even current breeding practices are insufficient to prevent genetic diversity loss and morphological changes as demonstrated by on average smaller body sizes and recent genetic bottleneck signatures in the modern breeding stock compared to wild fish. Conservation management must evaluate breeding protocols for stocking programs and assess if these can preserve remaining natural genetic diversity and morphology in brown trout for long-term preservation of freshwater fauna.
Collapse
Affiliation(s)
- Cornelya F C Klütsch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Svanhovd, Norway.
| | - Simo N Maduna
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Svanhovd, Norway
| | | | - Kristin Forfang
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Svanhovd, Norway
| | - Benedicte Beddari
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Svanhovd, Norway
| | | | - Paul Eric Aspholm
- Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Svanhovd, Norway
| | - Per-Arne Amundsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Snorre B Hagen
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Svanhovd, Norway.
| |
Collapse
|
9
|
|
10
|
Leitwein M, Cayuela H, Bernatchez L. Associative Overdominance and Negative Epistasis Shape Genome-Wide Ancestry Landscape in Supplemented Fish Populations. Genes (Basel) 2021; 12:genes12040524. [PMID: 33916757 PMCID: PMC8065892 DOI: 10.3390/genes12040524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
The interplay between recombination rate, genetic drift and selection modulates variation in genome-wide ancestry. Understanding the selective processes at play is of prime importance toward predicting potential beneficial or negative effects of supplementation with domestic strains (i.e., human-introduced strains). In a system of lacustrine populations supplemented with a single domestic strain, we documented how population genetic diversity and stocking intensity produced lake-specific patterns of domestic ancestry by taking the species’ local recombination rate into consideration. We used 552 Brook Charr (Salvelinus fontinalis) from 22 small lacustrine populations, genotyped at ~32,400 mapped SNPs. We observed highly variable patterns of domestic ancestry between each of the 22 populations without any consistency in introgression patterns of the domestic ancestry. Our results suggest that such lake-specific ancestry patterns were mainly due to variable associative overdominance (AOD) effects among populations (i.e., potential positive effects due to the masking of possible deleterious alleles in low recombining regions). Signatures of AOD effects were also emphasized by highly variable patterns of genetic diversity among and within lakes, potentially driven by predominant genetic drift in those small isolated populations. Local negative effects such as negative epistasis (i.e., potential genetic incompatibilities between the native and the introduced population) potentially reflecting precursory signs of outbreeding depression were also observed at a chromosomal scale. Consequently, in order to improve conservation practices and management strategies, it became necessary to assess the consequences of supplementation at the population level by taking into account both genetic diversity and stocking intensity when available.
Collapse
|
11
|
Domestication and feralization influence the distribution and phenotypes of escaped ornamental fish. Biol Invasions 2021. [DOI: 10.1007/s10530-020-02415-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
White SL, Hanks EM, Wagner T. A novel quantitative framework for riverscape genetics. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02147. [PMID: 32338800 DOI: 10.1002/eap.2147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/08/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Riverscape genetics, which applies concepts in landscape genetics to riverine ecosystems, lack appropriate quantitative methods that address the spatial autocorrelation structure of linear stream networks and account for bidirectional geneflow. To address these challenges, we present a general framework for the design and analysis of riverscape genetic studies. Our framework starts with the estimation of pairwise genetic distance at sample sites and the development of a spatially structured ecological network (SSEN) on which riverscape covariates are measured. We then introduce the novel bidirectional geneflow in riverscapes (BGR) model that uses principles of isolation-by-resistance to quantify the effects of environmental covariates on genetic connectivity, with spatial covariance defined using simultaneous autoregressive models on the SSEN and the generalized Wishart distribution to model pairwise distance matrices arising through a random walk model of geneflow. We highlight the utility of this framework in an analysis of riverscape genetics for brook trout (Salvelinus fontinalis) in north central Pennsylvania, USA. Using the fixation index (FST ) as the measure of genetic distance, we estimated the effects of 12 riverscape covariates on geneflow by evaluating the relative support of eight competing BGR models. We then compared the performance of the top-ranked BGR model to results obtained from comparable analyses using multiple regression on distance matrices (MRM) and the program STRUCTURE. We found that the BGR model had more power to detect covariate effects, particularly for variables that were only partial barriers to geneflow and/or uncommon in the riverscape, making it more informative for assessing patterns of population connectivity and identifying threats to species conservation. This case study highlights the utility of our modeling framework over other quantitative methods in riverscape genetics, particularly the ability to rigorously test hypotheses about factors that influence geneflow and probabilistically estimate the effect of riverscape covariates, including stream flow direction. This framework is flexible across taxa and riverine networks, is easily executable, and provides intuitive results that can be used to investigate the likely outcomes of current and future management scenarios.
Collapse
Affiliation(s)
- Shannon L White
- Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ephraim M Hanks
- Department of Statistics, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
13
|
Lehnert SJ, Baillie SM, MacMillan J, Paterson IG, Buhariwalla CF, Bradbury IR, Bentzen P. Multiple decades of stocking has resulted in limited hatchery introgression in wild brook trout ( Salvelinus fontinalis) populations of Nova Scotia. Evol Appl 2020; 13:1069-1089. [PMID: 32431753 PMCID: PMC7232767 DOI: 10.1111/eva.12923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Many populations of freshwater fishes are threatened with losses, and increasingly, the release of hatchery individuals is one strategy being implemented to support wild populations. However, stocking of hatchery individuals may pose long-term threats to wild populations, particularly if genetic interactions occur between wild and hatchery individuals. One highly prized sport fish that has been heavily stocked throughout its range is the brook trout (Salvelinus fontinalis). In Nova Scotia, Canada, hatchery brook trout have been stocked since the early 1900s, and despite continued stocking efforts, populations have suffered declines in recent decades. Before this study, the genetic structure of brook trout populations in the province was unknown; however, given the potential negative consequences associated with hatchery stocking, it is possible that hatchery programs have adversely affected the genetic integrity of wild populations. To assess the influence of hatchery supplementation on wild populations, we genotyped wild brook trout from 12 river systems and hatchery brook trout from two major hatcheries using 100 microsatellite loci. Genetic analyses of wild trout revealed extensive population genetic structure among and within river systems and significant isolation-by-distance. Hatchery stocks were genetically distinct from wild populations, and most populations showed limited to no evidence of hatchery introgression (<5% hatchery ancestry). Only a single location had a substantial number of hatchery-derived trout and was located in the only river where a local strain is used for supplementation. The amount of hatchery stocking within a watershed did not influence the level of hatchery introgression. Neutral genetic structure of wild populations was influenced by geography with some influence of climate and stocking indices. Overall, our study suggests that long-term stocking has not significantly affected the genetic integrity of wild trout populations, highlighting the variable outcomes of stocking and the need to evaluate the consequences on a case-by-case basis.
Collapse
Affiliation(s)
- Sarah J. Lehnert
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | - Shauna M. Baillie
- Marine Gene Probe LabBiology DepartmentDalhousie UniversityHalifaxNSCanada
| | - John MacMillan
- Inland Fisheries DivisionNova Scotia Department of Fisheries and AquaculturePictouNSCanada
| | - Ian G. Paterson
- Marine Gene Probe LabBiology DepartmentDalhousie UniversityHalifaxNSCanada
| | - Colin F. Buhariwalla
- Inland Fisheries DivisionNova Scotia Department of Fisheries and AquaculturePictouNSCanada
| | - Ian R. Bradbury
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
- Marine Gene Probe LabBiology DepartmentDalhousie UniversityHalifaxNSCanada
| | - Paul Bentzen
- Marine Gene Probe LabBiology DepartmentDalhousie UniversityHalifaxNSCanada
| |
Collapse
|
14
|
Miller WL, Walter WD. Can genetic assignment tests provide insight on the influence of captive egression on the epizootiology of chronic wasting disease? Evol Appl 2020; 13:715-726. [PMID: 32211062 PMCID: PMC7086050 DOI: 10.1111/eva.12895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/23/2023] Open
Abstract
Identifying the sources of ongoing and novel disease outbreaks is critical for understanding the diffusion of epizootic diseases. Identifying infection sources is difficult when few physical differences separate individuals with different origins. Genetic assignment procedures show great promise for assessing transmission dynamics in such situations. Here, we use genetic assignment tests to determine the source of chronic wasting disease infections in free-ranging white-tailed deer (Odocoileus virginianus) populations. Natural dispersal is thought to facilitate the geographic diffusion of chronic wasting disease, but egression from captive cervid populations represents an alternative source of infection that is difficult to detect due to physical similarities with wild deer. Simulated reference populations were created based on allele frequencies from 1,912 empirical microsatellite genotypes collected in four sampling subregions and five captive facilities. These reference populations were used to assess the likelihood of ancestry and assignment of 1,861 free-ranging deer (1,834 noninfected and 27 infected) and 51 captive individuals to captive or wild populations. The ancestry (Q) and assignment scores (A) for free-ranging deer to wild populations were high (average Q wild = 0.913 and average A wild = 0.951, respectively), but varied among subregions (Q wild = 0.800-0.947, A wild = 0.857-0.976). These findings suggest that captive egression and admixture are rare, but risk may not be spatially uniform. Ancestry and assignment scores for two free-ranging deer with chronic wasting disease sampled in an area where chronic wasting disease was previously unobserved in free-ranging herds indicated a higher likelihood of assignment and proportion of ancestry attributable to captive populations. While we cannot directly assign these individuals to infected facilities, these findings suggest that rare egression events may influence the epizootiology of chronic wasting disease in free-ranging populations. Continued disease surveillance and genetic analyses may further elucidate the relative disease risk attributable to captive and wild sources.
Collapse
Affiliation(s)
- William L. Miller
- Pennsylvania Cooperative Fish and Wildlife Research UnitDepartment of Ecosystem Science and ManagementIntercollege Graduate Degree Program in EcologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - W. David Walter
- U.S. Geological SurveyPennsylvania Cooperative Fish and Wildlife Research UnitThe Pennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
15
|
Beer SD, Cornett S, Austerman P, Trometer B, Hoffman T, Bartron ML. Genetic diversity, admixture, and hatchery influence in Brook Trout ( Salvelinus fontinalis) throughout western New York State. Ecol Evol 2019; 9:7455-7479. [PMID: 31346416 PMCID: PMC6635958 DOI: 10.1002/ece3.5237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/22/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023] Open
Abstract
Although Brook Trout are distributed across most of eastern North America, population numbers have declined in many regions due to habitat loss, climate change, and competition with non-native species. In New York State, Brook Trout habitat has been substantially reduced, with many areas showing complete extirpation of Brook Trout populations, predominantly in the western portion of the state. Small, fragmented populations are at risk of genetic diversity loss, inbreeding depression, and reduced fitness, leading to a greater potential for local extirpation. Genetic monitoring is a practical tool that can facilitate further conservation-decision making regarding small populations. In this study, we used 12 microsatellite loci to examine 3,436 sampled Brook Trout, representing 75 sites from the Allegheny, Erie/Niagara, Genesee, Oswego, Lake Ontario, and Susquehanna drainage basins throughout western New York State. Three Brook Trout hatchery strains were also genetically characterized to evaluate the degree of hatchery introgression between wild populations and hatchery strains stocked in the region. Overall, estimates of genetic diversity varied widely: Allelic richness ranged from 2.23 to 7.485, and expected heterozygosity ranged from 0.402 to 0.766. As observed for Brook Trout in other regions, we found a high degree of genetic differentiation among populations, with all comparisons except one showing significant F ST values. Hatchery introgression was found to be minimal, with estimates ranging from 1.96% to 3.10% of wild individuals exhibiting membership proportions to a hatchery strain cluster exceeding 10% (q ≥ 0.10). Results from this investigation can be used to prioritize management efforts for Brook Trout in western New York State and act as a baseline to monitor future population trends.
Collapse
Affiliation(s)
| | - Scott Cornett
- New York State Department of Environmental ConservationAlleganyNew York
| | - Peter Austerman
- New York State Department of Environmental ConservationAvonNew York
| | - Betsy Trometer
- U.S. Fish and Wildlife ServiceLower Great Lakes Fish and Wildlife Conservation OfficeBasomNew York
| | - Thomas Hoffman
- U.S. Fish and Wildlife ServiceLower Great Lakes Fish and Wildlife Conservation OfficeBasomNew York
| | | |
Collapse
|
16
|
Bruce SA, Daniel PC, Krause MK, Henson FG, Pershyn CE, Wright JJ. A methodological approach to the genetic identification of native Brook Trout (Salvelinus fontinalis) populations for conservation purposes. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
17
|
Genetic mixture analyses in support of restoration of a high value recreational fishery for rainbow trout (Oncorhynchus mykiss) from a large lake in interior British Columbia. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01182-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Gossieaux P, Bernatchez L, Sirois P, Garant D. Impacts of stocking and its intensity on effective population size in Brook Charr (Salvelinus fontinalis) populations. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01168-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|