1
|
Li Y, Sun Z. Phenotypic and genomic insights into the pathogenicity and antimicrobial resistance of an Enterobacter roggenkampii strain isolated from diseased silver arowana (Osteoglossum bicirrhosum). JOURNAL OF FISH DISEASES 2024; 47:e13898. [PMID: 38014710 DOI: 10.1111/jfd.13898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Enterobacter roggenkampii is an opportunistic pathogen that causes infections in a wide range of hosts. A bacterial strain named EOBSR_19 was isolated from diseased silver arowana, Osteoglossum bicirrhosum. This bacterium was identified as E. roggenkampii based on the phenotypic characteristics and sequence analysis of the16S rDNA and gyrB genes. Average nucleotide identity and phylogenetic analysis based on the whole genome sequence further confirmed the bacterial taxonomy of EOBSR_19. Artificial experimental infection indicated that EOBSR_19 was pathogenic to fish. Antimicrobial susceptibility test showed it was multi-drug resistant. The EOBSR_19 was found to be resistant to 18 antibiotics belonging to quinolones, macrolides, sulfonamides, aminoglycosides, and β-lactams classes. The whole genome sequencing analysis showed that EOBSR_19 carried 730 virulence genes that were annotated for different functional modules, such as adhesion and invasion, secretion system, siderophore transport system and bacterial toxin. Among them, the virulence genes related to adhesion and invasion were the most abundant. In addition, drug resistance genes involved in multiple mechanisms of antimicrobial resistance were identified in its genomics, including multidrug resistance efflux pumps, antibiotic inactivating enzymes, and antibiotic binding site mutations. Its genomic analysis via whole-genome sequencing provided insights into the pathogenicity and antimicrobial resistance.
Collapse
Affiliation(s)
- Yuerui Li
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
| | - Zhongshi Sun
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
2
|
Lusiastuti AM, Suhermanto A, Hastilestari BR, Suryanto S, Mawardi M, Sugiani D, Syahidah D, Sudaryatma PE, Caruso D. Impact of temperature on the virulence of Streptococcus agalactiae in Indonesian aquaculture: A better vaccine design is required. Vet World 2024; 17:682-689. [PMID: 38680157 PMCID: PMC11045521 DOI: 10.14202/vetworld.2024.682-689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/28/2024] [Indexed: 05/01/2024] Open
Abstract
Due to their poikilothermic nature, fish are very sensitive to changes in temperature. Due to climate change, the average global temperature has increased by 1.5°C in the last century, which may have caused an increase in farmed fish mortality recently. Predictions using the model estimate that a 1°C increase in temperature could cause 3%-4% and 4%-6% mortality due to infectious diseases in organisms living in warm and temperate waters, respectively. There is a need to determine whether there is a relationship between increasing environmental temperature and disease virulence. This review examines the influence and impact of increasing temperatures due to climate change on the physiology and pathogenicity of Streptococcus agalactiae, which causes streptococcosis in tilapia and causes significant economic losses. Changes in the pathogenicity of S. agalactiae, especially its virulence properties due to increasing temperature, require changes in the composition design of the fish vaccine formula to provide better protection through the production of protective antibodies.
Collapse
Affiliation(s)
- Angela Mariana Lusiastuti
- Research Center for Veterinary Sciences, National Research and Innovation Agency, KST BRIN Soekarno Cibinong Bogor, 16911, Jawa Barat, Indonesia
| | - Achmad Suhermanto
- The Marine and Fisheries Polytechnic Karawang, The Ministry of Marine Affairs and Fisheries Indonesia
| | | | - Suryanto Suryanto
- Research Center for Fisheries, National Research and Innovation Agency, Indonesia
| | - Mira Mawardi
- Main Center for Freshwater Aquaculture – The Ministry of Marine Affairs and Fisheries, Jl. Selabintana No. 37, Selabatu, Kec. Cikole, Kota Sukabumi, Jawa Barat 43114, Indonesia
| | - Desy Sugiani
- Research Center for Veterinary Sciences, National Research and Innovation Agency, KST BRIN Soekarno Cibinong Bogor, 16911, Jawa Barat, Indonesia
| | - Dewi Syahidah
- Research Center for Veterinary Sciences, National Research and Innovation Agency, KST BRIN Soekarno Cibinong Bogor, 16911, Jawa Barat, Indonesia
| | | | - Domenico Caruso
- ISEM, Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
3
|
Ashrafi R, Bruneaux M, Sundberg LR, Hoikkala V, Karvonen A. Multispecies coinfections and presence of antibiotics shape resistance and fitness costs in a pathogenic bacterium. Mol Ecol 2023; 32:4447-4460. [PMID: 37303030 DOI: 10.1111/mec.17040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Increasing antimicrobial resistance (AMR) poses a challenge for treatment of bacterial diseases. In real life, bacterial infections are typically embedded within complex multispecies communities and influenced by the environment, which can shape costs and benefits of AMR. However, knowledge of such interactions and their implications for AMR in vivo is limited. To address this knowledge gap, we investigated fitness-related traits of a pathogenic bacterium (Flavobacterium columnare) in its fish host, capturing the effects of bacterial antibiotic resistance, coinfections between bacterial strains and metazoan parasites (fluke Diplostomum pseudospathaceum) and antibiotic exposure. We quantified real-time replication and virulence of sensitive and resistant bacteria and demonstrate that both bacteria can benefit from coinfection in terms of persistence and replication, depending on the coinfecting partner and antibiotic presence. We also show that antibiotics can benefit resistant bacteria by increasing bacterial replication under coinfection with flukes. These results emphasize the importance of diverse, inter-kingdom coinfection interactions and antibiotic exposure in shaping costs and benefits of AMR, supporting their role as significant contributors to spread and long-term persistence of resistance.
Collapse
Affiliation(s)
- Roghaieh Ashrafi
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Matthieu Bruneaux
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Ville Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Anssi Karvonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
4
|
Pulkkinen K, Ketola T, Laakso J, Mappes J, Sundberg L. Rich resource environment of fish farms facilitates phenotypic variation and virulence in an opportunistic fish pathogen. Evol Appl 2022; 15:417-428. [PMID: 35386393 PMCID: PMC8965373 DOI: 10.1111/eva.13355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/05/2022] Open
Abstract
Phenotypic variation is suggested to facilitate the persistence of environmentally growing pathogens under environmental change. Here, we hypothesized that the intensive farming environment induces higher phenotypic variation in microbial pathogens than natural environment, because of high stochasticity for growth and stronger survival selection compared to the natural environment. We tested the hypothesis with an opportunistic fish pathogen Flavobacterium columnare isolated either from fish farms or from natural waters. We measured growth parameters of two morphotypes from all isolates in different resource concentrations and two temperatures relevant for the occurrence of disease epidemics at farms and tested their virulence using a zebrafish (Danio rerio) infection model. According to our hypothesis, isolates originating from the fish farms had higher phenotypic variation in growth between the morphotypes than the isolates from natural waters. The difference was more pronounced in higher resource concentrations and the higher temperature, suggesting that phenotypic variation is driven by the exploitation of increased outside-host resources at farms. Phenotypic variation of virulence was not observed based on isolate origin but only based on morphotype. However, when in contact with the larger fish, the less virulent morphotype of some of the isolates also had high virulence. As the less virulent morphotype also had higher growth rate in outside-host resources, the results suggest that both morphotypes can contribute to F. columnare epidemics at fish farms, especially with current prospects of warming temperatures. Our results suggest that higher phenotypic variation per se does not lead to higher virulence, but that environmental conditions at fish farms could select isolates with high phenotypic variation in bacterial population and hence affect evolution in F. columnare at fish farms. Our results highlight the multifaceted effects of human-induced environmental alterations in shaping epidemiology and evolution in microbial pathogens.
Collapse
Affiliation(s)
- Katja Pulkkinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Tarmo Ketola
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Jouni Laakso
- Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of HelsinkiHelsinkiFinland
| | - Johanna Mappes
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
- Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of HelsinkiHelsinkiFinland
| | - Lotta‐Riina Sundberg
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
- Nanoscience CenterUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
5
|
Levesque DL, Nowack J, Boyles JG. Body Temperature Frequency Distributions: A Tool for Assessing Thermal Performance in Endotherms? Front Physiol 2021; 12:760797. [PMID: 34721082 PMCID: PMC8551754 DOI: 10.3389/fphys.2021.760797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
There is increasing recognition that rather than being fully homeothermic, most endotherms display some degree of flexibility in body temperature. However, the degree to which this occurs varies widely from the relatively strict homeothermy in species, such as humans to the dramatic seasonal hibernation seen in Holarctic ground squirrels, to many points in between. To date, attempts to analyse this variability within the framework generated by the study of thermal performance curves have been lacking. We tested if frequency distribution histograms of continuous body temperature measurements could provide a useful analogue to a thermal performance curve in endotherms. We provide examples from mammals displaying a range of thermoregulatory phenotypes, break down continuous core body temperature traces into various components (active and rest phase modes, spreads and skew) and compare these components to hypothetical performance curves. We did not find analogous patterns to ectotherm thermal performance curves, in either full datasets or by breaking body temperature values into more biologically relevant components. Most species had either bimodal or right-skewed (or both) distributions for both active and rest phase body temperatures, indicating a greater capacity for mammals to tolerate body temperatures elevated above the optimal temperatures than commonly assumed. We suggest that while core body temperature distributions may prove useful in generating optimal body temperatures for thermal performance studies and in various ecological applications, they may not be a good means of assessing the shape and breath of thermal performance in endotherms. We also urge researchers to move beyond only using mean body temperatures and to embrace the full variability in both active and resting temperatures in endotherms.
Collapse
Affiliation(s)
- D L Levesque
- School of Biology and Ecology, University of Maine, Orono, ME, United States
| | - J Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - J G Boyles
- Cooperative Wildlife Research Laboratory, Center for Ecology, and School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| |
Collapse
|
6
|
Donati VL, Dalsgaard I, Runtuvuori-Salmela A, Kunttu H, Jørgensen J, Castillo D, Sundberg LR, Middelboe M, Madsen L. Interactions between Rainbow Trout Eyed Eggs and Flavobacterium spp. Using a Bath Challenge Model: Preliminary Evaluation of Bacteriophages as Pathogen Control Agents. Microorganisms 2021; 9:971. [PMID: 33946270 PMCID: PMC8146780 DOI: 10.3390/microorganisms9050971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
The microbial community surrounding fish eyed eggs can harbor pathogenic bacteria. In this study we focused on rainbow trout (Oncorhynchus mykiss) eyed eggs and the potential of bacteriophages against the pathogenic bacteria Flavobacterium psychrophilum and F. columnare. An infection bath method was first established, and the effects of singular phages on fish eggs was assessed (survival of eyed eggs, interaction of phages with eyed eggs). Subsequently, bacteria-challenged eyed eggs were exposed to phages to evaluate their effects in controlling the bacterial population. Culture-based methods were used to enumerate the number of bacteria and/or phages associated with eyed eggs and in the surrounding environment. The results of the study showed that, with our infection model, it was possible to re-isolate F. psychrophilum associated with eyed eggs after the infection procedure, without affecting the survival of the eggs in the short term. However, this was not possible for F. columnare, as this bacterium grows at higher temperatures than the ones recommended for incubation of rainbow trout eyed eggs. Bacteriophages do not appear to negatively affect the survival of rainbow trout eyed eggs and they do not seem to strongly adhere to the surface of eyed eggs either. Finally, the results demonstrated a strong potential for short term (24 h) phage control of F. psychrophilum. However, further studies are needed to explore if phage control can be maintained for a longer period and to further elucidate the mechanisms of interactions between Flavobacteria and their phages in association with fish eggs.
Collapse
Affiliation(s)
- Valentina L. Donati
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (I.D.); (L.M.)
| | - Inger Dalsgaard
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (I.D.); (L.M.)
| | - Anniina Runtuvuori-Salmela
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland; (A.R.-S.); (H.K.); (L.-R.S.)
| | - Heidi Kunttu
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland; (A.R.-S.); (H.K.); (L.-R.S.)
| | - Johanna Jørgensen
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark; (J.J.); (D.C.); (M.M.)
| | - Daniel Castillo
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark; (J.J.); (D.C.); (M.M.)
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland; (A.R.-S.); (H.K.); (L.-R.S.)
| | - Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark; (J.J.); (D.C.); (M.M.)
| | - Lone Madsen
- Unit for Fish and Shellfish Diseases, National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (I.D.); (L.M.)
| |
Collapse
|
7
|
Wu Y, Wang Y, Yang H, Li Q, Gong X, Zhang G, Zhu K. Resident bacteria contribute to opportunistic infections of the respiratory tract. PLoS Pathog 2021; 17:e1009436. [PMID: 33740012 PMCID: PMC8011790 DOI: 10.1371/journal.ppat.1009436] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/31/2021] [Accepted: 03/01/2021] [Indexed: 01/26/2023] Open
Abstract
Opportunistic pathogens frequently cause volatile infections in hosts with compromised immune systems or a disrupted normal microbiota. The commensalism of diverse microorganisms contributes to colonization resistance, which prevents the expansion of opportunistic pathogens. Following microbiota disruption, pathogens promptly adapt to altered niches and obtain growth advantages. Nevertheless, whether and how resident bacteria modulate the growth dynamics of invasive pathogens and the eventual outcome of such infections are still unclear. Here, we utilized birds as a model animal and observed a resident bacterium exacerbating the invasion of Avibacterium paragallinarum (previously Haemophilus paragallinarum) in the respiratory tract. We first found that negligibly abundant Staphylococcus chromogenes, rather than Staphylococcus aureus, played a dominant role in Av. paragallinarum-associated infectious coryza in poultry based on epidemic investigations and in vitro analyses. Furthermore, we determined that S. chromogenes not only directly provides the necessary nutrition factor nicotinamide adenine dinucleotide (NAD+) but also accelerates its biosynthesis and release from host cells to promote the survival and growth of Av. paragallinarum. Last, we successfully intervened in Av. paragallinarum-associated infections in animal models using antibiotics that specifically target S. chromogenes. Our findings show that opportunistic pathogens can hijack commensal bacteria to initiate infection and expansion and suggest a new paradigm to ameliorate opportunistic infections by modulating the dynamics of resident bacteria. There is an urgent need for novel intervention strategies and techniques to address the increasing dissemination of multidrug-resistant Gram-negative bacterial pathogens. More importantly, secondary bacterial infections are common in clinical practice, whereas the growth dynamics of each individual in such coinfections are still complicated and elusive. In the current study, we first identified Staphylococcus spp., especially negligibly abundant S. chromogenes, facilitating the pathogenesis of Av. paragallinarum, a Gram-negative bacterium responsible for severe and acute avian respiratory disease worldwide. Furthermore, we developed therapeutic strategies using specific antibiotics against Staphylococcus spp. to relieve clinical symptoms and reduce Av. paragallinarum-associated infections in chickens. These results show that implementation of a proper intervention strategy can prevent opportunistic infections by regulating the microbiota and elucidate the development of alternative approaches for treating Gram-negative pathogenic bacterial infections.
Collapse
Affiliation(s)
- Yifan Wu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huiming Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qian Li
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoxia Gong
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail: (GZ); (KZ)
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, China
- * E-mail: (GZ); (KZ)
| |
Collapse
|
8
|
Moghadam NN, Sidhu K, Summanen PAM, Ketola T, Kronholm I. Quantitative genetics of temperature performance curves of Neurospora crassa. Evolution 2020; 74:1772-1787. [PMID: 32432345 DOI: 10.1111/evo.14016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/06/2020] [Indexed: 01/17/2023]
Abstract
Earth's temperature is increasing due to anthropogenic CO 2 emissions; and organisms need either to adapt to higher temperatures, migrate into colder areas, or face extinction. Temperature affects nearly all aspects of an organism's physiology via its influence on metabolic rate and protein structure, therefore genetic adaptation to increased temperature may be much harder to achieve compared to other abiotic stresses. There is still much to be learned about the evolutionary potential for adaptation to higher temperatures, therefore we studied the quantitative genetics of growth rates in different temperatures that make up the thermal performance curve of the fungal model system Neurospora crassa. We studied the amount of genetic variation for thermal performance curves and examined possible genetic constraints by estimating the G-matrix. We observed a substantial amount of genetic variation for growth in different temperatures, and most genetic variation was for performance curve elevation. Contrary to common theoretical assumptions, we did not find strong evidence for genetic trade-offs for growth between hotter and colder temperatures. We also simulated short-term evolution of thermal performance curves of N. crassa, and suggest that they can have versatile responses to selection.
Collapse
Affiliation(s)
- Neda N Moghadam
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Karendeep Sidhu
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Pauliina A M Summanen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Tarmo Ketola
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Ilkka Kronholm
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| |
Collapse
|
9
|
Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat Commun 2020; 11:1870. [PMID: 32312964 PMCID: PMC7170852 DOI: 10.1038/s41467-020-15735-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 03/19/2020] [Indexed: 01/26/2023] Open
Abstract
In many developing countries, aquaculture is key to ensuring food security for millions of people. It is thus important to measure the full implications of environmental changes on the sustainability of aquaculture. We conduct a double meta-analysis (460 articles) to explore how global warming and antimicrobial resistance (AMR) impact aquaculture. We calculate a Multi-Antibiotic Resistance index (MAR) of aquaculture-related bacteria (11,274 isolates) for 40 countries, of which mostly low- and middle-income countries present high AMR levels. Here we show that aquaculture MAR indices correlate with MAR indices from human clinical bacteria, temperature and countries’ climate vulnerability. We also find that infected aquatic animals present higher mortalities at warmer temperatures. Countries most vulnerable to climate change will probably face the highest AMR risks, impacting human health beyond the aquaculture sector, highlighting the need for urgent action. Sustainable solutions to minimise antibiotic use and increase system resilience are therefore needed. Global environmental changes threaten many food-producing sectors, including aquaculture. Here the authors show that countries most vulnerable to climate change will probably face the highest antimicrobial resistance in aquaculture-related bacteria, and that infected aquatic animals have higher mortality at warmer temperatures.
Collapse
|
10
|
Lavrinenko IV, Shulga LV, Peredera OO, Zhernosik IA. Analysis of the treatment regimen efficacy for columnaris disease in Pterophyllum scalare. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The article presents the results of studies on the treatment scheme efficacy for columnaris in Pterophyllum scalare, common under private aquarium husbandry conditions. To establish the diagnosis, the clinical features of the diseased fish, pathological and anatomical changes and the results of microscopic and microbiological studies were taken into account. Separate chemical and microbiological parameters of aquarium water were also studied. It was established that fish disease developed against the background of adverse changes in the chemical composition and microbiocenosis of aquarium water. High alkalinity and excess of phosphates compared to the norm provoked accumulation of opportunistic microbiota, resulting in a balance disorder in the parasite-host system and development of clinical manifestation of the fish disease. During the disease outbreak, bacteriological indices of water indicated a high level of organic contamination and a low intensity of water self-purification processes. Clinically, the disease was manifested in P. scalare by decrease in appetite and motor activity, onset of ulcerative lesions of various shapes and sizes on the surface of the body and on the gill covers. Selected pure cultures of Flavobacterium columnare showed sensitivity to enrofloxacin (growth retardation zone 31.3 ± 1.0 mm); moderate resistance was found to tylosin. The microorganisms were resistant to amoxicillin, doxycycline, benzylpenicillin and tetracycline. Microscopic studies of intestinal specimens of dead P. scalare revealed numerous motile flagellates. It has been shown that an effective treatment regimen that provides recovery for 70% of diseased P. scalare is the use of enroxil 10% solution for five days, metronidazole three times a day, and “API MelaFix” for seven days. It is proved that the following measures are effective to restore the disrupted hydro-balance: periodic water replacement in the amount of 20% of the total volume, providing the aquarium with active aeration systems, planting slow-growing plants and reducing the amount of fish food provided. The measures developed were efficient, they led to elimination of the outbreak of columnaris in the P. scalare and to restoration of biological equilibrium in a closed aquatic ecosystem.
Collapse
|