1
|
Laplane L, Maley CC. The evolutionary theory of cancer: challenges and potential solutions. Nat Rev Cancer 2024; 24:718-733. [PMID: 39256635 DOI: 10.1038/s41568-024-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/12/2024]
Abstract
The clonal evolution model of cancer was developed in the 1950s-1970s and became central to cancer biology in the twenty-first century, largely through studies of cancer genetics. Although it has proven its worth, its structure has been challenged by observations of phenotypic plasticity, non-genetic forms of inheritance, non-genetic determinants of clone fitness and non-tree-like transmission of genes. There is even confusion about the definition of a clone, which we aim to resolve. The performance and value of the clonal evolution model depends on the empirical extent to which evolutionary processes are involved in cancer, and on its theoretical ability to account for those evolutionary processes. Here, we identify limits in the theoretical performance of the clonal evolution model and provide solutions to overcome those limits. Although we do not claim that clonal evolution can explain everything about cancer, we show how many of the complexities that have been identified in the dynamics of cancer can be integrated into the model to improve our current understanding of cancer.
Collapse
Affiliation(s)
- Lucie Laplane
- UMR 8590 Institut d'Histoire et Philosophie des Sciences et des Techniques, CNRS, University Paris I Pantheon-Sorbonne, Paris, France
- UMR 1287 Hematopoietic Tissue Aging, Gustave Roussy Cancer Campus, Villejuif, France
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Nasreddin N, Sansom OJ. Host physiology shapes the mutational landscape of normal and carcinogenic tissue. Nat Genet 2024:10.1038/s41588-024-01922-4. [PMID: 39327487 DOI: 10.1038/s41588-024-01922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Affiliation(s)
| | - Owen J Sansom
- Cancer Research UK Scotland Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
3
|
Chaurasia RK, Sapra BK, Aswal DK. Interplay of immune modulation, adaptive response and hormesis: Suggestive of threshold for clinical manifestation of effects of ionizing radiation at low doses? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170178. [PMID: 38280586 DOI: 10.1016/j.scitotenv.2024.170178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/26/2023] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
The health impacts of low-dose ionizing radiation exposures have been a subject of debate over the last three to four decades. While there has been enough evidence of "no adverse observable" health effects at low doses and low dose rates, the hypothesis of "Linear No Threshold" continues to rule and govern the principles of radiation protection and the formulation of regulations and public policies. In adopting this conservative approach, the role of the biological processes underway in the human body is kept at abeyance. This review consolidates the available studies that discuss all related biological pathways and repair mechanisms that inhibit the progression of deleterious effects at low doses and low dose rates of ionizing radiation. It is pertinent that, taking cognizance of these processes, there is a need to have a relook at policies of radiation protection, which as of now are too stringent, leading to undue economic losses and negative public perception about radiation.
Collapse
Affiliation(s)
- R K Chaurasia
- Radiological Physics and Advisory Division, India; Health, Safety and Environment Group,Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - B K Sapra
- Radiological Physics and Advisory Division, India; Health, Safety and Environment Group,Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - D K Aswal
- Health, Safety and Environment Group,Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
4
|
Swiatczak B. Evolution within the body: the rise and fall of somatic Darwinism in the late nineteenth century. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2023; 45:8. [PMID: 36862350 DOI: 10.1007/s40656-023-00566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Originating in the work of Ernst Haeckel and Wilhelm Preyer, and advanced by a Prussian embryologist, Wilhelm Roux, the idea of struggle for existence between body parts helped to establish a framework, in which population cell dynamics rather than a predefined harmony guides adaptive changes in an organism. Intended to provide a causal-mechanical view of functional adjustments in body parts, this framework was also embraced later by early pioneers of immunology to address the question of vaccine effectiveness and pathogen resistance. As an extension of these early efforts, Elie Metchnikoff established an evolutionary vision of immunity, development, pathology, and senescence, in which phagocyte-driven selection and struggle promote adaptive changes in an organism. Despite its promising start, the idea of somatic evolution lost its appeal at the turn of the twentieth century giving way to a vision, in which an organism operates as a genetically uniform, harmonious entity.
Collapse
Affiliation(s)
- Bartlomiej Swiatczak
- Department of History of Science and Scientific Archaeology, University of Science and Technology of China, 96 Jinzhai Rd. 230026, Hefei, P. R. China.
| |
Collapse
|
5
|
Capp JP, Thomas F. From developmental to atavistic bet-hedging: How cancer cells pervert the exploitation of random single-cell phenotypic fluctuations. Bioessays 2022; 44:e2200048. [PMID: 35839471 DOI: 10.1002/bies.202200048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Stochastic gene expression plays a leading developmental role through its contribution to cell differentiation. It is also proposed to promote phenotypic diversification in malignant cells. However, it remains unclear if these two forms of cellular bet-hedging are identical or rather display distinct features. Here we argue that bet-hedging phenomena in cancer cells are more similar to those occurring in unicellular organisms than to those of normal metazoan cells. We further propose that the atavistic bet-hedging strategies in cancer originate from a hijacking of the normal developmental bet-hedging of metazoans. Finally, we discuss the constraints that may shape the atavistic bet-hedging strategies of cancer cells.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- Toulouse Biotechnology Institute, INSA / University of Toulouse, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290-University of Montpellier, Montpellier, France
| |
Collapse
|
6
|
Feunteun J, Ostyn P, Delaloge S. TUMOR CELL MALIGNANCY: A COMPLEX TRAIT BUILT THROUGH RECIPROCAL INTERACTIONS BETWEEN TUMORS AND TISSUE-BODY SYSTEM. iScience 2022; 25:104217. [PMID: 35494254 PMCID: PMC9044163 DOI: 10.1016/j.isci.2022.104217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of oncogenes and tumor suppressor genes in the late past century, cancer research has been overwhelmingly focused on the genetics and biology of tumor cells and hence has addressed mostly cell-autonomous processes with emphasis on traditional driver/passenger genetic models. Nevertheless, over that same period, multiple seminal observations have accumulated highlighting the role of non-cell autonomous effectors in tumor growth and metastasis. However, given that cell autonomous and non-autonomous events are observed together at the time of diagnosis, it is in fact impossible to know whether the malignant transformation is initiated by cell autonomous oncogenic events or by non-cell autonomous conditions generated by alterations of the tissue-body ecosystem. This review aims at addressing this issue by taking the option of defining malignancy as a complex genetic trait incorporating genetically determined reciprocal interactions between tumor cells and tissue-body ecosystem.
Collapse
Affiliation(s)
- Jean Feunteun
- INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- UMR 9019, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Corresponding author
| | - Pauline Ostyn
- UMR 9019, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Suzette Delaloge
- Breast Cancer Group, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
7
|
Capp JP, Bataille R. A bone paradigm challenging the standard model of myeloma oncogenesis. Crit Rev Oncol Hematol 2022; 172:103640. [PMID: 35183697 DOI: 10.1016/j.critrevonc.2022.103640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
Abstract
The standard model of multiple myeloma (MM) oncogenesis from monoclonal gammopathy of undetermined significance (MGUS) relies on genetic instability in the normal counterparts of MM cells. However, the importance of both MGUS-associated and MM-induced bone changes has been recently re-appraised, emphasizing the bone microenvironment (BME) as a tissue of significance. In this review, we propose that early BME alterations (bone senescence and inflammation, i.e. bone inflamm'aging) at the pre-MGUS stage could be causal, and not simply permissive, and creative of phenotypic instability and genetic alterations thanks to the concept of tissue disruption-induced cell stochasticity (TiDiS). This article offers a bone scenario challenging the chromosome-and-gene-centric standard model of MM oncogenesis. The high incidence of both MGUS and MM in Gaucher disease supports such a scenario.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- Toulouse Biotechnology Institute, INSA/University of Toulouse, CNRS, INRAE, 135, avenue de Rangueil, 31077 Toulouse, cedex 04, France.
| | - Régis Bataille
- University of Angers, School of Medecine, rue Haute de Reculée, 49045 Angers, cedex 01, France
| |
Collapse
|
8
|
Sholl J, Sepich-Poore GD, Knight R, Pradeu T. Redrawing therapeutic boundaries: microbiota and cancer. Trends Cancer 2022; 8:87-97. [PMID: 34844910 PMCID: PMC8770609 DOI: 10.1016/j.trecan.2021.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
The unexpected roles of the microbiota in cancer challenge explanations of carcinogenesis that focus on tumor-intrinsic properties. Most tumors contain bacteria and viruses, and the host's proximal and distal microbiota influence both cancer incidence and therapeutic responsiveness. Continuing the history of cancer-microbe research, these findings raise a key question: to what extent is the microbiota relevant for clinical oncology? We approach this by critically evaluating three issues: how the microbiota provides a predictive biomarker of cancer growth and therapeutic responsiveness, the microbiota's causal role(s) in cancer development, and how therapeutic manipulations of the microbiota improve patient outcomes in cancer. Clarifying the conceptual and empirical aspects of the cancer-associated microbiota can orient future research and guide its implementation in clinical oncology.
Collapse
Affiliation(s)
- Jonathan Sholl
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France.
| | | | - Rob Knight
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Thomas Pradeu
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000 Bordeaux, France.
| |
Collapse
|
9
|
Abstract
Integration of ecological and evolutionary features has begun to understand the interplay of tumor heterogeneity, microenvironment, and metastatic potential. Developing a theoretical framework is intrinsic to deciphering tumors' tremendous spatial and longitudinal genetic variation patterns in patients. Here, we propose that tumors can be considered evolutionary island-like ecosystems, that is, isolated systems that undergo evolutionary and spatiotemporal dynamic processes that shape tumor microenvironments and drive the migration of cancer cells. We examine attributes of insular systems and causes of insularity, such as physical distance and connectivity. These properties modulate migration rates of cancer cells through processes causing spatial and temporal isolation of the organs and tissues functioning as a supply of cancer cells for new colonizations. We discuss hypotheses, predictions, and limitations of tumors as islands analogy. We present emerging evidence of tumor insularity in different cancer types and discuss their relevance to the islands model. We suggest that the engagement of tumor insularity into conceptual and mathematical models holds promise to illuminate cancer evolution, tumor heterogeneity, and metastatic potential of cells.
Collapse
Affiliation(s)
- Antonia Chroni
- Institute for Genomics and Evolutionary Medicine, Temple University, USA
- Department of Biology, Temple University, USA
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, USA
- Department of Biology, Temple University, USA
- Center for Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Boutry J, Tissot S, Ujvari B, Capp JP, Giraudeau M, Nedelcu AM, Thomas F. The evolution and ecology of benign tumors. Biochim Biophys Acta Rev Cancer 2021; 1877:188643. [PMID: 34715267 DOI: 10.1016/j.bbcan.2021.188643] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/12/2022]
Abstract
Tumors are usually classified into two main categories - benign or malignant, with much more attention being devoted to the second category given that they are usually associated with more severe health issues (i.e., metastatic cancers). Here, we argue that the mechanistic distinction between benign and malignant tumors has narrowed our understanding of neoplastic processes. This review provides the first comprehensive discussion of benign tumors in the context of their evolution and ecology as well as interactions with their hosts. We compare the genetic and epigenetic profiles, cellular activities, and the involvement of viruses in benign and malignant tumors. We also address the impact of intra-tumoral cell composition and its relationship with the tumoral microenvironment. Lastly, we explore the differences in the distribution of benign and malignant neoplasia across the tree of life and provide examples on how benign tumors can also affect individual fitness and consequently the evolutionary trajectories of populations and species. Overall, our goal is to bring attention to the non-cancerous manifestations of tumors, at different scales, and to stimulate research on the evolutionary ecology of host-tumor interactions on a broader scale. Ultimately, we suggest that a better appreciation of the differences and similarities between benign and malignant tumors is fundamental to our understanding of malignancy both at mechanistic and evolutionary levels.
Collapse
Affiliation(s)
- Justine Boutry
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Sophie Tissot
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin, University, Vic., Australia
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Mathieu Giraudeau
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France; LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France.
| |
Collapse
|
11
|
Belikov AV, Vyatkin A, Leonov SV. The Erlang distribution approximates the age distribution of incidence of childhood and young adulthood cancers. PeerJ 2021; 9:e11976. [PMID: 34434669 PMCID: PMC8351573 DOI: 10.7717/peerj.11976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/24/2021] [Indexed: 11/20/2022] Open
Abstract
Background It is widely believed that cancers develop upon acquiring a particular number of (epi) mutations in driver genes, but the law governing the kinetics of this process is not known. We have previously shown that the age distribution of incidence for the 20 most prevalent cancers of old age is best approximated by the Erlang probability distribution. The Erlang distribution describes the probability of several successive random events occurring by the given time according to the Poisson process, which allows an estimate for the number of critical driver events. Methods Here we employ a computational grid search method to find global parameter optima for five probability distributions on the CDC WONDER dataset of the age distribution of childhood and young adulthood cancer incidence. Results We show that the Erlang distribution is the only classical probability distribution we found that can adequately model the age distribution of incidence for all studied childhood and young adulthood cancers, in addition to cancers of old age. Conclusions This suggests that the Poisson process governs driver accumulation at any age and that the Erlang distribution can be used to determine the number of driver events for any cancer type. The Poisson process implies the fundamentally random timing of driver events and their constant average rate. As waiting times for the occurrence of the required number of driver events are counted in decades, and most cells do not live this long, it suggests that driver mutations accumulate silently in the longest-living dividing cells in the body—the stem cells.
Collapse
Affiliation(s)
- Aleksey V Belikov
- Laboratory of Innovative Medicine, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Alexey Vyatkin
- Laboratory of Innovative Medicine, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Sergey V Leonov
- Laboratory of Innovative Medicine, School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| |
Collapse
|
12
|
Wu DJ. Oversupply of Limiting Cell Resources and the Evolution of Cancer Cells: A Review. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.653622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cancer prevention is superior to cancer treatment—indeed, understanding and controlling cancer risk is a key question in the fields of applied ecology and evolutionary oncology. Ecological cancer risk models offer the dual benefit of being generalizable across cancer types, and unveiling common mechanisms underlying cancer development and spread. Understanding the biological mechanisms of cancer risk may also guide the design of interventions to prevent cancer. Ecological considerations are central to many of these mechanisms; as one example, the ecologically-based hypothesis of metabolic cancer suppression posits that restricted vascular supply of limiting resources to somatic tissues normally suppresses the evolution of somatic cells toward cancer. Here we present a critical review of published evidence relevant to this hypothesis, and we conclude that there is substantial evidence that cancer risk does increase with an abnormal excess of limiting cell resources, including both dietary macronutrients as well as certain micronutrients.
Collapse
|
13
|
Corrigendum. Evol Appl 2020. [DOI: 10.1111/eva.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Capp JP, Thomas F. A Similar Speciation Process Relying on Cellular Stochasticity in Microbial and Cancer Cell Populations. iScience 2020; 23:101531. [PMID: 33083761 PMCID: PMC7502340 DOI: 10.1016/j.isci.2020.101531] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Similarities between microbial and cancer cells were noticed in recent years and serve as a basis for an atavism theory of cancer. Cancer cells would rely on the reactivation of an ancestral "genetic program" that would have been repressed in metazoan cells. Here we argue that cancer cells resemble unicellular organisms mainly in their similar way to exploit cellular stochasticity to produce cell specialization and maximize proliferation. Indeed, the relationship between low stochasticity, specialization, and quiescence found in normal differentiated metazoan cells is lost in cancer. On the contrary, low stochasticity and specialization are associated with high proliferation among cancer cells, as it is observed for the "specialist" cells in microbial populations that fully exploit nutritional resources to maximize proliferation. Thus, we propose a model where the appearance of cancer phenotypes can be solely due to an adaptation and a speciation process based on initial increase in cellular stochasticity.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, 31077 Toulouse, France
| | - Frédéric Thomas
- CREEC, UMR IRD 224, CNRS 5290, University of Montpellier, 34394 Montpellier, France
| |
Collapse
|
15
|
Multiple Myeloma as a Bone Disease? The Tissue Disruption-Induced Cell Stochasticity (TiDiS) Theory. Cancers (Basel) 2020; 12:cancers12082158. [PMID: 32759688 PMCID: PMC7463431 DOI: 10.3390/cancers12082158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022] Open
Abstract
The standard model of multiple myeloma (MM) relies on genetic instability in the normal counterparts of MM cells. MM-induced lytic bone lesions are considered as end organ damages. However, bone is a tissue of significance in MM and bone changes could be at the origin/facilitate the emergence of MM. We propose the tissue disruption-induced cell stochasticity (TiDiS) theory for MM oncogenesis that integrates disruption of the microenvironment, differentiation, and genetic alterations. It starts with the observation that the bone marrow endosteal niche controls differentiation. As decrease in cellular stochasticity occurs thanks to cellular interactions in differentiating cells, the initiating role of bone disruption would be in the increase of cellular stochasticity. Thus, in the context of polyclonal activation of B cells, memory B cells and plasmablasts would compete for localizing in endosteal niches with the risk that some cells cannot fully differentiate if they cannot reside in the niche because of a disrupted microenvironment. Therefore, they would remain in an unstable state with residual proliferation, with the risk that subclones may transform into malignant cells. Finally, diagnostic and therapeutic perspectives are provided.
Collapse
|
16
|
Thomas F, Roche B, Giraudeau M, Hamede R, Ujvari B. The interface between ecology, evolution, and cancer: More than ever a relevant research direction for both oncologists and ecologists. Evol Appl 2020. [DOI: 10.1111/eva.13031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Frédéric Thomas
- CREEC/CREESUMR IRD‐Université de Montpellier Montpellier France
| | - Benjamin Roche
- CREEC/CREESUMR IRD‐Université de Montpellier Montpellier France
- Unité Mixte Internationale de Modélisation Mathématique et Informatique des Systèmes Complexes UMI IRD/Sorbonne UniversitéUMMISCO Bondy Cedex France
- Departamento de Etología Fauna Silvestre y Animales de Laboratorio Facultad de Medicina Veterinaria y Zootecnia Universidad Nacional Autónoma de México (UNAM) Ciudad de México México
| | | | - Rodrigo Hamede
- School of Natural Sciences University of Tasmania Hobart TAS Australia
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Deakin VIC Australia
| | - Beata Ujvari
- School of Natural Sciences University of Tasmania Hobart TAS Australia
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Deakin VIC Australia
| |
Collapse
|