1
|
Thapa PC, Do DN, Manafiazar G, Miar Y. Coat color inheritance in American mink. BMC Genomics 2023; 24:234. [PMID: 37138242 PMCID: PMC10158361 DOI: 10.1186/s12864-023-09348-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/28/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Understanding the genetic mechanisms underlying coat color inheritance has always been intriguing irrespective of the animal species including American mink (Neogale vison). The study of color inheritance in American mink is imperative since fur color is a deterministic factor for the success of mink industry. However, there have been no studies during the past few decades using in-depth pedigree for analyzing the inheritance pattern of colors in American mink. METHODS In this study, we analyzed the pedigree of 23,282 mink extending up to 16 generations. All animals that were raised at the Canadian Center for Fur Animal Research (CCFAR) from 2003 to 2021 were used in this study. We utilized the Mendelian ratio and Chi-square test to investigate the inheritance of Dark (9,100), Pastel (5,161), Demi (4,312), and Mahogany (3,358) colors in American mink. RESULTS The Mendelian inheritance ratios of 1:1 and 3:1 indicated heterozygous allelic pairs responsible for all studied colors. Mating sire and dam of the same color resulted in the production of offspring with the same color most of the time. CONCLUSION Overall, the results suggested that color inheritance was complex and subjected to a high degree of diversity in American mink as the genes responsible for all four colors were found to be heterozygous.
Collapse
Affiliation(s)
- Persia Carol Thapa
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Ghader Manafiazar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
2
|
Zhang T, Li H, Larsen PF, Ba H, Shi H, Zhang H, Liu Z. The Genetic Diversity of Mink ( Neovison vison) Populations in China. Animals (Basel) 2023; 13:ani13091497. [PMID: 37174534 PMCID: PMC10177056 DOI: 10.3390/ani13091497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The American mink (Neovison vison) is a semiaquatic species of Mustelid native to North America that is now widespread in China. However, the knowledge of genetic diversity of mink in China is still limited. In this study, we investigated the genetic diversity and identified significant single nucleotide polymorphisms (SNPs) in mink populations of five different color types in three different mink farms in China. Using double-digest restriction site-associated DNA sequencing, we identified a total of 1.3 million SNPs. After filtering the SNPs, phylogenetic tree, Fst, principal component, and population structure analyses were performed. The results demonstrated that red mink and black mink grouped, with separate clustering of all other color types. The population divergence index (Fst) study confirmed that different mink populations were distinct (K = 4). Two populations with different coat colors were subjected to the selection signature analysis, and 2300 genes were found to have a clear selection signature. The genes with a selection signature were subjected to Gene Ontology (GO) categorization and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, the results revealed that the genes with a selection signature were enriched in the melanogenesis pathway. These study's findings have set the stage for improved breeding and conservation of genetic resources in real-world practical mink farming.
Collapse
Affiliation(s)
- Tietao Zhang
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Hu Li
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China
- Colleges of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Peter Foged Larsen
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Hengxing Ba
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130112, China
| | - Hongyu Shi
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China
- Colleges of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Haihua Zhang
- Colleges of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Zongyue Liu
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China
| |
Collapse
|
3
|
A microbial tale of farming, invasion and conservation: on the gut bacteria of European and American mink in Western Europe. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Valipour S, Karimi K, Do DN, Barrett D, Sargolzaei M, Plastow G, Wang Z, Miar Y. Genome-Wide Detection of Selection Signatures for Pelt Quality Traits and Coat Color Using Whole-Genome Sequencing Data in American Mink. Genes (Basel) 2022; 13:1939. [PMID: 36360176 PMCID: PMC9690368 DOI: 10.3390/genes13111939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Domestication and selection are the major driving forces responsible for creating genetic variability in farmed species. American mink has been under selection for more than 100 years for improved body size and pelt quality. This study aimed to identify the genomic regions subjected to selection for pelt quality traits, and coat color using the whole genome sequences of 100 mink raised in the Canadian Centre for Fur Animal Research (CCFAR) at Dalhousie Agriculture Campus (Truro, NS, Canada), and Millbank fur farm (Rockwood, ON, Canada). Measurements of three dried pelt characteristics (including pelt size (n = 35), overall quality of fur (n = 27), and nap size (n = 29)), and three coat color of Black, Stardust, and Pastel (Stardust_ Black (n = 38), and Pastel_Black (n = 41)) were used to assign animals to pairwise groups. Signatures of selection were detected using integrated measurement of fixation index (Fst), extended haplotype homozygosity (XP-EHH), and nucleotide diversity (θπ) tests. In total, overlapping top 1% of Fst and XP-EHH harbored 376 genes for pelt quality traits (110 for nap size, 163 for overall quality of fur, and 98 pelt size), and 194 genes for coat color (123 for Pastel_Black and 71 for Stardust_Black) were detected in different groups. Integrating results of Fst, and XP-EHH with the θπ test supported 19 strongly selected regions on chromosomes 3, 4, 5, 6, 7, 8, 9, and 10 that contained 33 candidate genes related to fur quality, hair follicle function, and pelt size traits. Gene ontology revealed numerous genes related to the hair cycle process and molting cycle process, epidermis development, Wnt signaling pathway and muscle development. This study provided the first map of putative selection signals related to pelt quality and coat color in American mink, which could be used as a reference for future studies attempting to identify genes associated with economically important traits in mink.
Collapse
Affiliation(s)
- Shafagh Valipour
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - David Barrett
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Select Sires Inc., Plain City, OH 43064, USA
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
5
|
Yang X, Liu G, Wang Q, Gao X, Xia T, Zhao C, Dou H, Zhang H. Comparative transcriptome provides insights into the selection adaptation between wild and farmed foxes. Ecol Evol 2021; 11:13475-13486. [PMID: 34646484 PMCID: PMC8495804 DOI: 10.1002/ece3.8071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022] Open
Abstract
The silver fox and blue fox are economically important fur species and were domesticated by humans from their wild counterparts, the arctic fox and red fox, respectively. Farmed foxes show obvious differences from their wild counterparts, including differences in physiology, body size, energy metabolism, and immunity. However, the molecular mechanisms underlying these differences are presently unclear. In this study, we built transcriptome libraries from multiple pooled tissues for each species of farmed fox, used RNA-seq to obtain a comprehensive dataset, and performed selection analysis and sequence-level analyses of orthologous genes to identify the genes that may be influenced by human domestication. More than 153.3, 248.0, 81.6, and 65.8 million clean reads were obtained and assembled into a total of 118,577, 401,520, 79,900, and 186,988 unigenes with an average length range from 521 to 667 bp for AF, BF, RF, and SF, respectively. Selective pressure analysis showed that 11 and 14 positively selected genes were identified, respectively, in the two groups (AF vs. BF and RF vs. SF). Several of these genes were associated with natural immunity (CFI and LRRFIP1), protein synthesis (GOLGA4, CEP19 and SLC35A2), and DNA damage repair (MDC1). Further functional enrichment analyses demonstrated that two positively selected genes (ACO1 and ACAD10) were involved in metabolic process (GO:0008152, p-value = .032), representing a significant enrichment. Sequence analysis of 117 orthologous genes shared by the two groups showed that the LEMD2, RRBP1, and IGBP1 genes might be affected by artificial selection in farmed foxes, with mutation sites located within sequences that are otherwise highly conserved across most mammals. Our results provide a valuable transcriptomic resource for future genetic studies and improvement in the assisted breeding of foxes and other farmed animals.
Collapse
Affiliation(s)
- Xiufeng Yang
- College of Life ScienceQufu Normal UniversityQufuChina
| | | | - Qi Wang
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid AreasHulunbuirChina
| | - Xiaodong Gao
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Tian Xia
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Chao Zhao
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Huashan Dou
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid AreasHulunbuirChina
| | - Honghai Zhang
- College of Life ScienceQufu Normal UniversityQufuChina
| |
Collapse
|
6
|
Szatmári L, Cserkész T, Laczkó L, Lanszki J, Pertoldi C, Abramov AV, Elmeros M, Ottlecz B, Hegyeli Z, Sramkó G. A comparison of microsatellites and genome-wide SNPs for the detection of admixture brings the first molecular evidence for hybridization between Mustela eversmanii and M. putorius (Mustelidae, Carnivora). Evol Appl 2021; 14:2286-2304. [PMID: 34603499 PMCID: PMC8477604 DOI: 10.1111/eva.13291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022] Open
Abstract
Introgressive hybridization can pose a serious threat to endangered species which have an overlapping distribution such as in the case of two polecat species, Mustela eversmanii and M. putorius, in Europe. The population size of steppe polecat is known to continuously shrink, whereas its sister species, the European polecat, is still somehow widespread. In this study, we perform an analysis using microsatellite (SSR) and genomic (SNP) data sets to identify natural hybrids between polecats. Four populations were genotyped for eight polymorphic SSR loci, and thousands of unlinked SNPs were generated using a reduced-representation sequencing approach, RADseq, to characterize the genetic make-up of allopatric populations and to identify hybrids in the sympatric area. We applied standard population genetic analyses to characterize the populations based on their SSR allelic frequency. Only a single sample out of 48 sympatric samples showed exact intermediacy that we identified as an F1 hybrid. Additionally, one specimen was indicated in the genomic data sets as backcrossed. Other backcrosses, indicated by SSRs, were not validated by SNPs, which highlights the higher efficacy of the genomic method to identify backcrossed individuals. The low frequency of hybridization suggests that the difference in habitat preference of the two species may act as a barrier to admixture. Therefore, it is apparently unlikely that polecat populations are threatened by significant introgression. The two species showed a clear genetic differentiation using both techniques. We found higher genetic diversity values in the sympatric steppe polecat population than in the other studies on polecat populations. Although M. putorius is a hunted species in most countries, genetic diversity values indicate worse conditions in Europe than in the protected sibling species M. eversmanii. Suspending hunting and providing protected status of the former seems to be reasonable and timely.
Collapse
Affiliation(s)
- Lajos Szatmári
- MTA-DE "Lendület" Evolutionary Phylogenomics Research Group Debrecen Hungary
- Department of Botany University of Debrecen Debrecen Hungary
| | - Tamás Cserkész
- Department of Zoology Hungarian Natural History Museum Budapest Hungary
- Bükk Mammalogical Society Eger Hungary
| | - Levente Laczkó
- MTA-DE "Lendület" Evolutionary Phylogenomics Research Group Debrecen Hungary
- Department of Botany University of Debrecen Debrecen Hungary
| | - József Lanszki
- Carnivore Ecology Research Group Szent István University, Kaposvár Campus Kaposvár Hungary
| | - Cino Pertoldi
- Department of Chemistry and Bioscience Aalborg University Aalborg Øst Denmark
- Aalborg Zoo Aalborg Denmark
| | - Alexei V Abramov
- Zoological Institute Russian Academy of Sciences Saint Petersburg Russia
| | - Morten Elmeros
- Department of Bioscience - Wildlife Ecology Aarhus University Rønde Denmark
| | | | - Zsolt Hegyeli
- Milvus Group Bird and Nature Protection Association Tîrgu Mureș Romania
| | - Gábor Sramkó
- MTA-DE "Lendület" Evolutionary Phylogenomics Research Group Debrecen Hungary
- Department of Botany University of Debrecen Debrecen Hungary
| |
Collapse
|