1
|
Colombi D, Perini F, Bettini S, Mastrangelo S, Abeni F, Conte G, Marletta D, Cassandro M, Bernabucci U, Ciampolini R, Lasagna E. Genomic responses to climatic challenges in beef cattle: A review. Anim Genet 2024; 55:854-870. [PMID: 39219301 DOI: 10.1111/age.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Climate change is a major concern for the near future and for livestock breeding. Cattle breeding, due to its greenhouse gas emissions, is one of the most implicated industries. Consequently, the main future goals are to breed animals resilient to climate change, with the aim of lowering the livestock impact on the environment and selecting animals that will be able to resist different, unsuitable, and changing climates. The aim of this literature review is to compare the most recent studies on the response and adaptation of beef cattle breeds to extreme environments, in terms of genes and pathways involved. Beef breeding is just starting to implement genomics in its selection plans, and shedding light on the genomic responses to extreme climates could speed up and simplify the adaptation of these breeds to climate change. This review discusses the genes involved in climatic stress responses, including those related to extremely cold climates, in beef and dual-purpose cattle breeds. Genes were associated with productive traits, coat and skin structure and development, thermotolerance, cellular physiology and DNA repair mechanisms, immune system, and fertility traits. The knowledge of genes and pathways involved in climate resilience should be taken into consideration for further selection in beef cattle breeding and could promote the valorization of local breeds adapted to extreme environmental conditions. The use of local or resilient breeds could enhance the environmental and social sustainability, animal welfare, and production, compared with the introduction of cosmopolitan breeds with uncertain adaptation in uncontrolled environmental areas.
Collapse
Affiliation(s)
- Daniele Colombi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Francesco Perini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Stefano Bettini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Salvatore Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Fabio Abeni
- Centro di Ricerca Zootecnia e Acquacoltura, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Lodi, Italy
| | - Giuseppe Conte
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Interuniversity Center for Adaptability of Livestock Systems to Climate Change (ASIZOCACLI), Catania, Italy
| | - Donata Marletta
- Interuniversity Center for Adaptability of Livestock Systems to Climate Change (ASIZOCACLI), Catania, Italy
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
- Interuniversity Center for Adaptability of Livestock Systems to Climate Change (ASIZOCACLI), Catania, Italy
| | - Umberto Bernabucci
- Interuniversity Center for Adaptability of Livestock Systems to Climate Change (ASIZOCACLI), Catania, Italy
- Department of Agriculture and Forest Sciences, Università Della Tuscia, Viterbo, Italy
| | - Roberta Ciampolini
- Interuniversity Center for Adaptability of Livestock Systems to Climate Change (ASIZOCACLI), Catania, Italy
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
- Interuniversity Center for Adaptability of Livestock Systems to Climate Change (ASIZOCACLI), Catania, Italy
| |
Collapse
|
2
|
Bo D, Feng Y, Bai Y, Li J, Wang Y, You Z, Shen J, Bai Y. Whole-Genome Resequencing Reveals Genetic Diversity and Growth Trait-Related Genes in Pinan Cattle. Animals (Basel) 2024; 14:2163. [PMID: 39123689 PMCID: PMC11310955 DOI: 10.3390/ani14152163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The breeding of high-quality beef cattle breeds is crucial for the development of animal husbandry, and whole-genome resequencing is widely applicated in the field of molecular breeding. Advantages in growth and reproductive traits exist in Pinan cattle compared with other cattle breeds, but there is limited research on its genomic mechanism. Using whole-genome resequencing, the genetic structure and genomic selection signatures in Pinan cattle were investigated in this study. Phylogenetic, cluster, and admixture analysis results indicated that Pinan cattle have a closer genetic relationship with Kholmogory cattle and China north cattle breeds. Through a selective sweep strategy, 207 and 54 candidate genes related to growth and reproduction and immunity, respectively, were identified in the Pinan cattle population. Given the crucial role of the glutamate-cysteine ligase catalytic (GCLC) gene in muscle antioxidative defense, the high frequency of allele T of the GCLC c.429 C>T locus in the Pinan cattle population might partially contribute to the advantages of Pinan cattle in growth performance. This study laid the foundation for the genetic improvement in Chinese local beef cattle and provide background for the studies on the growth and development of Pinan cattle.
Collapse
Affiliation(s)
- Dongdong Bo
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Yuqing Feng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Yilin Bai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Jing Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Yuanyuan Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Zerui You
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Jiameng Shen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
| | - Yueyu Bai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (D.B.); (Y.F.); (Y.B.); (J.L.); (Y.W.); (Z.Y.); (J.S.)
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhengzhou 450001, China
- Henan Animal Health Supervision, Zhengzhou 450046, China
| |
Collapse
|
3
|
Mochales-Riaño G, Burriel-Carranza B, Barros MI, Velo-Antón G, Talavera A, Spilani L, Tejero-Cicuéndez H, Crochet PA, Piris A, García-Cardenete L, Busais S, Els J, Shobrak M, Brito JC, Šmíd J, Carranza S, Martínez-Freiría F. Hidden in the sand: Phylogenomics unravel an unexpected evolutionary history for the desert-adapted vipers of the genus Cerastes. Mol Phylogenet Evol 2024; 191:107979. [PMID: 38040070 DOI: 10.1016/j.ympev.2023.107979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
The desert vipers of the genus Cerastes are a small clade of medically important venomous snakes within the family Viperidae. According to published morphological and molecular studies, the group is comprised by four species: two morphologically similar and phylogenetically sister taxa, the African horned viper (Cerastes cerastes) and the Arabian horned viper (Cerastes gasperettii); a more distantly related species, the Saharan sand viper (Cerastes vipera), and the enigmatic Böhme's sand viper (Cerastes boehmei), only known from a single specimen in captivity allegedly captured in Central Tunisia. In this study, we sequenced one mitochondrial marker (COI) as well as genome-wide data (ddRAD sequencing) from 28 and 41 samples, respectively, covering the entire distribution range of the genus to explore the population genomics, phylogenomic relationships and introgression patterns within the genus Cerastes. Additionally, and to provide insights into the mode of diversification of the group, we carried out niche overlap analyses considering climatic and habitat variables. Both nuclear phylogenomic reconstructions and population structure analyses have unveiled an unexpected evolutionary history for the genus Cerastes, which sharply contradicts the morphological similarities and previously published mitochondrial approaches. Cerastes cerastes and C. vipera are recovered as sister taxa whilst C. gasperettii is a sister taxon to the clade formed by these two species. We found a relatively high niche overlap (OI > 0.7) in both climatic and habitat variables between C. cerastes and C. vipera, contradicting a potential scenario of sympatric speciation. These results are in line with the introgression found between the northwestern African populations of C. cerastes and C. vipera. Finally, our genomic data confirms the existence of a lineage of C. cerastes in Arabia. All these results highlight the importance of genome-wide data over few genetic markers to study the evolutionary history of species.
Collapse
Affiliation(s)
| | - Bernat Burriel-Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain; Museu de Ciències Naturals de Barcelona, P° Picasso s/n, Parc Ciutadella, 08003 Barcelona, Spain
| | - Margarida Isabel Barros
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Guillermo Velo-Antón
- Universidad de Vigo, Facultad de Biología, Edificio de Ciencias Experimentales, Bloque B, Planta 2, Laboratorio 39 (Grupo GEA), E-36310 Vigo, Spain
| | - Adrián Talavera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Loukia Spilani
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Héctor Tejero-Cicuéndez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain; Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Alberto Piris
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Luis García-Cardenete
- Agencia de Medio Ambiente y Agua de Andalucía, C/Johan G. Gutenberg, 1, 41092 Seville, Spain
| | - Salem Busais
- Department of Biology, Faculty of Education, Aden University, Yemen
| | - Johannes Els
- Breeding Centre for Endangered Arabian Wildlife, Environment and Protected Areas Authority, Sharjah, United Arab Emirates
| | - Mohammed Shobrak
- National Center for Wildlife, Prince Saud Al Faisal Wildlife Research Centre, Taif, Saudi Arabia
| | - José Carlos Brito
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Jiří Šmíd
- Department of Zoology, Faculty of Science, Charles University, Vinicná 7, Prague, Czech Republic
| | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| |
Collapse
|
4
|
Zago FC, Schütz LF, Gerger RPDC, de Aguiar LH, Pinzón-Osorio CA, Mezzallira A, Rodrigues JL, Forell F, Bertolini M. In vitro and in vivo embryo production efficiency in Flemish and Holstein donor females. Anim Reprod 2023; 20:e20230080. [PMID: 38025999 PMCID: PMC10681134 DOI: 10.1590/1984-3143-ar2023-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/10/2023] [Indexed: 12/01/2023] Open
Abstract
The aim of this study was to compare embryo production efficiency in Flemish and Holstein donor females using ovum pick-up and in vitro fertilization (OPU-IVF) or in vivo production (superovulation; SOV) procedures. The study was conducted using a split-plot design, with eight Flemish and eight Holstein non-lactating cycling females. Females were subjected to ten weekly OPU/IVF sessions and/or two SOV/embryo collections sessions at a 63-day interval, for a total of 160 OPU-IVF and 32 SOV sessions. Mean numbers of follicles and corpora lutea, and cumulus-oocyte complex (COC) recovery rates were similar between breeds after the OPU and SOV sessions. However, Flemish donors yielded better quality grade II COCs (301, 41.9%) than Holstein females (609, and 202, 33.1%). Also, cleavage and blastocyst rates, and the total number and the mean number of viable embryos obtained after OPU-IVF were higher in Flemish (49.6% and 11.8%, and 63 and 11.8 per donor, respectively) than in Holstein (32.8% and 7.2%, and 34 and 7.2 per donor, respectively) females. Flemish females were also more efficient in yielding viable embryos after SOV (111, 7.3 per donor) than Holstein (48, 3.3 per donor) females. Overall, Flemish donor females had better responses to OPU-IVF or SOV procedures than Holstein counterparts. Irrespective of the breeds, SOV procedures were more efficient than OPU-IVF in yielding more viable embryos, under the conditions of this study. Both reproductive procedures were useful tools for the genetic conservation of the Flemish cattle breed in Southern Brazil.
Collapse
Affiliation(s)
- Fabiano Carminatti Zago
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Lages, SC, Brasil
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brasil
| | - Luís Fernando Schütz
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brasil
| | | | - Luís Henrique de Aguiar
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brasil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | - Alceu Mezzallira
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brasil
| | - José Luiz Rodrigues
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Fabiana Forell
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brasil
| | - Marcelo Bertolini
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
5
|
Liu X, Liu W, Lenstra JA, Zheng Z, Wu X, Yang J, Li B, Yang Y, Qiu Q, Liu H, Li K, Liang C, Guo X, Ma X, Abbott RJ, Kang M, Yan P, Liu J. Evolutionary origin of genomic structural variations in domestic yaks. Nat Commun 2023; 14:5617. [PMID: 37726270 PMCID: PMC10509194 DOI: 10.1038/s41467-023-41220-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Yak has been subject to natural selection, human domestication and interspecific introgression during its evolution. However, genetic variants favored by each of these processes have not been distinguished previously. We constructed a graph-genome for 47 genomes of 7 cross-fertile bovine species. This allowed detection of 57,432 high-resolution structural variants (SVs) within and across the species, which were genotyped in 386 individuals. We distinguished the evolutionary origins of diverse SVs in domestic yaks by phylogenetic analyses. We further identified 334 genes overlapping with SVs in domestic yaks that bore potential signals of selection from wild yaks, plus an additional 686 genes introgressed from cattle. Nearly 90% of the domestic yaks were introgressed by cattle. Introgression of an SV spanning the KIT gene triggered the breeding of white domestic yaks. We validated a significant association of the selected stratified SVs with gene expression, which contributes to phenotypic variations. Our results highlight that SVs of different origins contribute to the phenotypic diversity of domestic yaks.
Collapse
Affiliation(s)
- Xinfeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China
| | - Wenyu Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3508 TD, The Netherlands
| | - Zeyu Zheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jiao Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Bowen Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yongzhi Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Qiang Qiu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hongyu Liu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Kexin Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews, KY16 9AJ, UK
| | - Minghui Kang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China.
| |
Collapse
|
6
|
Liu TS, Zhu XY, He D, You MS, You SJ. Oxygen stress on age-stage, two-sex life tables and transcriptomic response of diamondback moth (Plutella xylostella). ENVIRONMENTAL ENTOMOLOGY 2023; 52:527-537. [PMID: 36928981 DOI: 10.1093/ee/nvad010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/14/2023] [Accepted: 01/27/2023] [Indexed: 06/17/2023]
Abstract
Elucidating the genetic basis of local adaption is one of the important tasks in evolutionary biology. The Qinghai-Tibet Plateau has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. The diamondback moth (DBM), Plutella xylostella, is one of the most devastating pests of the global Brassica industry. A highly heterozygous genome of this pest has facilitated its adaptation to a variety of complex environments, and so provides an ideal model to study fast adaptation. We conducted a pilot study combining RNA-seq with an age-stage, two-sex life table to study the effects of oxygen deprivation on DBM. The developmental periods of all instars were significantly shorter in the hypoxic environment. We compared the transcriptomes of DBM from Fuzhou, Fujian (low-altitude) and Lhasa, Tibet (high-altitude) under hypoxia treatment in a hypoxic chamber. Some DEGs are enriched in pathways associated with DNA replication, such as DNA repair, nucleotide excision repair, base excision repair, mismatch repair and homologous recombination. The pathways with significant changes were associated with metabolism process and cell development. Thus, we assumed that insects could adapt to different environments by regulating their metabolism. Our findings indicated that although adaptive mechanisms to hypoxia in different DBM strains could be similar, DBM individuals from Tibet had superior tolerance to hypoxia compared with those of Fuzhou. Local adaptation of the Tibetan colony was assumed to be responsible for this difference. Our research suggests novel mechanisms of insect responses to hypoxia stress.
Collapse
Affiliation(s)
- Tian-Sheng Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P.R. China
| | - Xiang-Yu Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
| | - Di He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
| | - Shi-Jun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
- BGI-Sanya, Sanya 572025, P.R. China
| |
Collapse
|
7
|
Zhao X, Zhang J, Wang H, Li H, Qu C, Wen J, Zhang X, Zhu T, Nie C, Li X, Muhatai G, Wang L, Lv X, Yang W, Zhao C, Bao H, Li J, Zhu B, Cao G, Xiong W, Ning Z, Qu L. Genomic and transcriptomic analyses reveal genetic adaptation to cold conditions in the chickens. Genomics 2022; 114:110485. [PMID: 36126832 DOI: 10.1016/j.ygeno.2022.110485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/27/2022] [Accepted: 09/16/2022] [Indexed: 01/14/2023]
Abstract
Under the pressure of natural and artificial selection, domestic animals, including chickens, have evolved unique mechanisms of genetic adaptations such as high-altitude adaptation, hot and arid climate adaptation, and desert adaptation. Here, we investigated the genetic basis of cold tolerance in chicken by integrating whole-genome and transcriptome sequencing technologies. Genome-wide comparative analyses of 118 chickens living in different latitudes showed 46 genes and several pathways that may be involved in cold adaptation. The results of the functional enrichment analysis of differentially expressed genes proved the important role of metabolic pathways and immune-related pathways in cold tolerance in chickens. The subsequent integration of whole genome and transcriptome sequencing technology further identified six genes - dnah5 (dynein axonemal heavy chain 5), ptgs2 (prostaglandin-endoperoxide synthase 2), inhba (inhibin beta A subunit), irx2 (iroquois homeobox 2), ensgalg00000054917, and ensgalg00000046652 - requiring more detailed studies. In addition, we also discovered different allele frequency distributions of five SNPs (single nucleotide polymorphisms) within ptgs2 and nine SNPs within dnah5 in chickens in different latitudes, suggesting strong selective pressure of these two genes in chickens. We provide a novel insight into the genetic adaptation in chickens to cold environments, and provide a reference for evaluating and developing adaptive chicken breeds in cold environments.
Collapse
Affiliation(s)
- Xiurong Zhao
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jinxin Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Huie Wang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang 843300, China.
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China.
| | - Changqing Qu
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, China.
| | - Junhui Wen
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Xinye Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Tao Zhu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Changsheng Nie
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Xinghua Li
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Gemingguli Muhatai
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang 843300, China.
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing 100107, China.
| | - XueZe Lv
- Beijing Municipal General Station of Animal Science, Beijing 100107, China.
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing 100107, China.
| | - Chunjiang Zhao
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Haigang Bao
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Junying Li
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Bo Zhu
- Animal Health Supervision Institute of Zhuozhou, Hebei Province 072750, China.
| | - Guomin Cao
- Animal husbandry station of Fangchenggang, Guangxi Province 538001, China.
| | - Wenjie Xiong
- Animal Disease Prevention and Control Center of Fangchenggang, Guangxi Province 538001, China.
| | - Zhonghua Ning
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lujiang Qu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Genetic Architecture and Signatures of Selection in the Caqueteño Creole (Colombian Native Cattle). DIVERSITY 2022. [DOI: 10.3390/d14100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Evolutionary mechanisms have shaped the genomic architecture of Colombian Creole cattle breeds. The mating and selection processes have impacted several traits, promoting differences within and between populations. Studies of population structure and selection signatures in Colombian Creole breeds are scarce, and need more attention to better understand genetic differentiation, gene flow, and genetic distance. This study aimed to analyze the population structure and identify selection imprints in the Criollo Caqueteño (CAQ) population. It used 127 CAQ animals genotyped with Chip HD 777,000 SNPs. The population structure analyses used discriminant principal component analysis (DAPC), integrated haplotype scoring (iHS), and index-fixing (Fst) methodologies to detect selection signals. We can highlight SNP regions on the genes TMPRSS15, PGAM2, and EGFR, identified by the Fst method. Additionally, the iHS regions for cluster 1 identified candidate genes on BTA 3 (CMPK1 and FOXD2), BTA 11 (RCAN1), and BTA 22 (ARPP21). In group 2, we can highlight the genes on BTA 4 (SLC13A4, BRAF), BTA 9 (ULBP), BTA 14 (CSMD3) and BTA 19 (KRTAP9-2). These candidate genes have been associated with fertility traits, precocity, growth, and environmental and disease resistance, indicating a genetic potential in CAQ animals. All this promotes a better understanding of the diversity and genetic structure in the CAQ population. Based on that, our study can significantly assist the sustainable development and conservation of the breed in the Colombian Amazon.
Collapse
|
9
|
Bradbury IR, Lehnert SJ, Kess T, Van Wyngaarden M, Duffy S, Messmer AM, Wringe B, Karoliussen S, Dempson JB, Fleming IA, Solberg MF, Glover KA, Bentzen P. Genomic evidence of recent European introgression into North American farmed and wild Atlantic salmon. Evol Appl 2022; 15:1436-1448. [PMID: 36187183 PMCID: PMC9488674 DOI: 10.1111/eva.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/10/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
Gene flow between wild and domestic populations has been repeatedly demonstrated across a diverse range of taxa. Ultimately, the genetic impacts of gene flow from domestic into wild populations depend both on the degree of domestication and the original source of the domesticated population. Atlantic salmon, Salmo salar, used in North American aquaculture are ostensibly of North American origin. However, evidence of European introgression into North American aquaculture salmon has accumulated in recent decades, even though the use of diploid European salmon has never been approved in Canada. The full extent of such introgression as well as the potential impacts on wild salmon in the Northwest Atlantic remains uncertain. Here, we extend previous work comparing North American and European wild salmon (n = 5799) using a 220 K SNP array to quantify levels of recent European introgression into samples of domestic salmon, aquaculture escapees, and wild salmon collected throughout Atlantic Canada. Analysis of North American farmed salmon (n = 403) and escapees (n = 289) displayed significantly elevated levels of European ancestry by comparison with wild individuals (p < 0.001). Of North American farmed salmon sampled between 2011 and 2018, ~17% had more than 10% European ancestry and several individuals exceeded 40% European ancestry. Samples of escaped farmed salmon similarly displayed elevated levels of European ancestry, with two individuals classified as 100% European. Analysis of juvenile salmon collected in rivers proximate to aquaculture locations also revealed evidence of elevated European ancestry and larger admixture tract in comparison to individuals collected at distance from aquaculture. Overall, our results demonstrate that even though diploid European salmon have never been approved for use in Canada, individuals of full and partial European ancestry have been in use over the last decade, and that some of these individuals have escaped and hybridized in the wild.
Collapse
Affiliation(s)
- Ian R. Bradbury
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | - Sarah Jean Lehnert
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | - Tony Kess
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | | | - Steven Duffy
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | - Amber M. Messmer
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | - Brendan Wringe
- Fisheries and Oceans CanadaBedford Institute of OceanographyDartmouthNSCanada
| | - Silje Karoliussen
- Centre for Integrative GeneticsNorwegian University of Life SciencesÅsNorway
| | - J. Brian Dempson
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreSt. John'sNLCanada
| | - Ian A. Fleming
- Department of Ocean Sciences, Ocean Sciences CentreMemorial University of NewfoundlandSt John'sNLCanada
| | | | - Kevin A. Glover
- Population Genetics Research GroupInstitute of Marine ResearchBergenNorway
- Department of Biological SciencesUniversity of BergenBergenNorway
| | - Paul Bentzen
- Biology DepartmentDalhousie UniversityHalifaxNSCanada
| |
Collapse
|
10
|
Duarte INH, Bessa AFDO, Rola LD, Genuíno MVH, Rocha IM, Marcondes CR, Regitano LCDA, Munari DP, Berry DP, Buzanskas ME. Cross-population selection signatures in Canchim composite beef cattle. PLoS One 2022; 17:e0264279. [PMID: 35363779 PMCID: PMC8975110 DOI: 10.1371/journal.pone.0264279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Analyses of livestock genomes have been used to detect selection signatures, which are genomic regions associated with traits under selection leading to a change in allele frequency. The objective of the present study was to characterize selection signatures in Canchim composite beef cattle using cross-population analyses with the founder Nelore and Charolais breeds. High-density single nucleotide polymorphism genotypes were available on 395 Canchim representing the target population, along with genotypes from 809 Nelore and 897 Charolais animals representing the reference populations. Most of the selection signatures were co-located with genes whose functions agree with the expectations of the breeding programs; these genes have previously been reported to associate with meat quality, as well as reproductive traits. Identified genes were related to immunity, adaptation, morphology, as well as behavior, could give new perspectives for understanding the genetic architecture of Canchim. Some selection signatures identified genes that were recently introduced in Canchim, such as the loci related to the polled trait.
Collapse
Affiliation(s)
| | | | - Luciana Diniz Rola
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | - Iasmin Marques Rocha
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | | | - Danísio Prado Munari
- Departamento de Engenharia e Ciências Exatas, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Donagh Pearse Berry
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy Co. Cork., Ireland
| | - Marcos Eli Buzanskas
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
- * E-mail:
| |
Collapse
|
11
|
Chebii VJ, Mpolya EA, Muchadeyi FC, Domelevo Entfellner JB. Genomics of Adaptations in Ungulates. Animals (Basel) 2021; 11:1617. [PMID: 34072591 PMCID: PMC8230064 DOI: 10.3390/ani11061617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
Ungulates are a group of hoofed animals that have long interacted with humans as essential sources of food, labor, clothing, and transportation. These consist of domesticated, feral, and wild species raised in a wide range of habitats and biomes. Given the diverse and extreme environments inhabited by ungulates, unique adaptive traits are fundamental for fitness. The documentation of genes that underlie their genomic signatures of selection is crucial in this regard. The increasing availability of advanced sequencing technologies has seen the rapid growth of ungulate genomic resources, which offers an exceptional opportunity to understand their adaptive evolution. Here, we summarize the current knowledge on evolutionary genetic signatures underlying the adaptations of ungulates to different habitats.
Collapse
Affiliation(s)
- Vivien J. Chebii
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania;
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya;
| | - Emmanuel A. Mpolya
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania;
| | - Farai C. Muchadeyi
- Agricultural Research Council Biotechnology Platform (ARC-BTP), Private Bag X5, Onderstepoort 0110, South Africa;
| | - Jean-Baka Domelevo Entfellner
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya;
| |
Collapse
|
12
|
Protein expression plasticity contributes to heat and drought tolerance of date palm. Oecologia 2021; 197:903-919. [PMID: 33880635 PMCID: PMC8591023 DOI: 10.1007/s00442-021-04907-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/23/2021] [Indexed: 11/04/2022]
Abstract
Climate change is increasing the frequency and intensity of warming and drought periods around the globe, currently representing a threat to many plant species. Understanding the resistance and resilience of plants to climate change is, therefore, urgently needed. As date palm (Phoenix dactylifera) evolved adaptation mechanisms to a xeric environment and can tolerate large diurnal and seasonal temperature fluctuations, we studied the protein expression changes in leaves, volatile organic compound emissions, and photosynthesis in response to variable growth temperatures and soil water deprivation. Plants were grown under controlled environmental conditions of simulated Saudi Arabian summer and winter climates challenged with drought stress. We show that date palm is able to counteract the harsh conditions of the Arabian Peninsula by adjusting the abundances of proteins related to the photosynthetic machinery, abiotic stress and secondary metabolism. Under summer climate and water deprivation, these adjustments included efficient protein expression response mediated by heat shock proteins and the antioxidant system to counteract reactive oxygen species formation. Proteins related to secondary metabolism were downregulated, except for the P. dactylifera isoprene synthase (PdIspS), which was strongly upregulated in response to summer climate and drought. This study reports, for the first time, the identification and functional characterization of the gene encoding for PdIspS, allowing future analysis of isoprene functions in date palm under extreme environments. Overall, the current study shows that reprogramming of the leaf protein profiles confers the date palm heat- and drought tolerance. We conclude that the protein plasticity of date palm is an important mechanism of molecular adaptation to environmental fluctuations.
Collapse
|