1
|
Population structure of the invasive ambrosia beetle, Euwallacea fornicatus, indicates multiple introductions into South Africa. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
2
|
van Rooyen E, Paap T, de Beer W, Townsend G, Fell S, Nel WJ, Morgan S, Hill M, Roets F. The polyphagous shot hole borer beetle: Current status of a perfect invader in South Africa. S AFR J SCI 2021. [DOI: 10.17159/sajs.2021/9736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The polyphagous shot hole borer (PSHB) beetle is a recent invader in South Africa. Together with its fungal symbiont, Fusarium euwallaceae, it can rapidly kill highly susceptible host plants. Its impact is most profound in urban areas, but it has also been found infesting important forestry, agricultural crop and native species. Since its first detection in 2012, PSHB has spread to all but one province in the country. The beetle–fungus complex has several biological traits that enhance its anthropogenically mediated dispersal, establishment and survival in novel environments – factors that have likely facilitated its rapid spread across the country. We review the history of the PSHB invasion in South Africa, its taxonomic status and the reasons for its rapid spread. We highlight its potential impact and challenges for its management. Finally, we provide an updated distribution map and list of confirmed host plants in South Africa. Of the 130 plant species identified as hosts, 48 of these (19 indigenous and 29 introduced) are reproductive hosts able to maintain breeding PSHB populations. These reproductive hosts may succumb to beetle infestations and act as ‘pest-amplifiers’. The economic impact on urban forests, plantation forestry and agricultural crops may be severe, but the ecological impact of PSHB invasion in native ecosystems should not be underestimated.
Collapse
Affiliation(s)
- Elmar van Rooyen
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Trudy Paap
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Garyn Townsend
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa
| | - Shawn Fell
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wilma J. Nel
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Seamus Morgan
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Martin Hill
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa
| | - Francois Roets
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Gougherty AV, Davies TJ. Towards a phylogenetic ecology of plant pests and pathogens. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200359. [PMID: 34538142 PMCID: PMC8450633 DOI: 10.1098/rstb.2020.0359] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2021] [Indexed: 01/17/2023] Open
Abstract
Plant-pathogens and insect pests, hereafter pests, play an important role in structuring ecological communities, yet both native and introduced pests impose significant pressure on wild and managed systems, and pose a threat to food security. Global changes in climate and land use, and transportation of plants and pests around the globe are likely to further increase the range, frequency and severity of pest outbreaks in the future. Thus, there is a critical need to expand on current ecological theory to address these challenges. Here, we outline a phylogenetic framework for the study of plant and pest interactions. In plants, a growing body of work has suggested that evolutionary relatedness, phylogeny, strongly structures plant-pest associations-from pest host breadths and impacts, to their establishment and spread in new regions. Understanding the phylogenetic dimensions of plant-pest associations will help to inform models of invasive species spread, disease and pest risk in crops, and emerging pest outbreaks in native plant communities-which will have important implications for protecting food security and biodiversity into the future. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Collapse
Affiliation(s)
- Andrew V. Gougherty
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - T. Jonathan Davies
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- African Centre for DNA Barcoding, University of Johannesburg, Johannesburg 2092, South Africa
| |
Collapse
|