1
|
Konaka S, Hirota SK, Sato Y, Matsumoto N, Suyama Y, Tsumura Y. Secondary contact zone and genetic introgression in closely related haplodiploid social spider mites. Heredity (Edinb) 2024; 133:227-237. [PMID: 39090316 PMCID: PMC11437192 DOI: 10.1038/s41437-024-00708-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
How frequently hybridisation and gene flow occur in the contact zones of diverging taxa is important for understanding the speciation process. Stigmaeopsis sabelisi and Stigmaeopsis miscanthi high-aggression form (hereafter, S. miscanthi HG) are haplodiploid, social spider mites that infest the Chinese silver grass, Miscanthus sinensis. These two species are closely related and parapatrically distributed in Japan. In mountainous areas, S. sabelisi and S. miscanthi HG are often found in the highlands and lowlands, respectively, suggesting that they are in contact at intermediate altitudes. It is estimated that they diverged from their common ancestors distributed in subtropical regions (south of Japan) during the last glacial period, expanded their distribution into the Japanese Archipelago, and came to have such a parapatric distribution (secondary contact). As their reproductive isolation is strong but incomplete, hybridisation and genetic introgression are expected at their distributional boundaries. In this study, we investigated their spatial distribution patterns along the elevation on Mt. Amagi using male morphological differences, and investigated their hybridisation status using single-nucleotide polymorphisms by MIG-seq. We found their contact zone at altitudes of 150-430 m, suggesting that their contact zone is prevalent in the parapatric area, which is in line with a previous study. Interspecific mating was predicted based on the sex ratio in the contact zone. No obvious hybrids were found, but genetic introgression was detected although it was extremely low.
Collapse
Affiliation(s)
- Shota Konaka
- Master Program in Biology, Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Shun K Hirota
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
- Botanical Gardens, Osaka Metropolitan University 2000 Kisaichi, Katano City, Osaka, 576-0004, Japan
| | - Yukie Sato
- Faculty of Life and Environmental Sciences / Mountain Science Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Naoki Matsumoto
- Master Program in Biology, Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
| | - Yoshihiko Tsumura
- Faculty of Life and Environmental Sciences / Mountain Science Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
2
|
Sedlić F, Sertić J, Markotić A, Primorac D, Slavica A, Zibar L, Vlahoviček K, Kušec V, Barić I, Paar V, Borovečki F, Žmak L, Kurolt IC, Canki-Klain N, Roksandić S, Rinčić I, Jurić H, Škaro V, Marjanović D, Projić P, Primorac D, Starčević A, Vujaklija D, Šikić M, Križanović K, Gamulin S. The Applied Genomics Development Strategy by the Croatian Academy of Sciences and Arts paves the way for the future development of applied genomics in Croatia. Croat Med J 2024; 65:297-302. [PMID: 38868976 PMCID: PMC11157260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Affiliation(s)
| | | | | | - Dragan Primorac
- Dragan Primorac, St. Catherine Specialty Hospital, Zagreb, Croatia,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Yildirim Y, Kristensson D, Outomuro D, Mikolajewski D, Rödin Mörch P, Sniegula S, Johansson F. Phylogeography and phenotypic wing shape variation in a damselfly across populations in Europe. BMC Ecol Evol 2024; 24:19. [PMID: 38308224 PMCID: PMC10838002 DOI: 10.1186/s12862-024-02207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Describing geographical variation in morphology of organisms in combination with data on genetic differentiation and biogeography can provide important information on how natural selection shapes such variation. Here we study genetic structure using ddRAD seq and wing shape variation using geometric morphometrics in 14 populations of the damselfly Lestes sponsa along its latitudinal range in Europe. RESULTS The genetic analysis showed a significant, yet relatively weak population structure with high genetic heterozygosity and low inbreeding coefficients, indicating that neutral processes contributed very little to the observed wing shape differences. The genetic analysis also showed that some regions of the genome (about 10%) are putatively shaped by selection. The phylogenetic analysis showed that the Spanish and French populations were the ancestral ones with northern Swedish and Finnish populations being the most derived ones. We found that wing shape differed significantly among populations and showed a significant quadratic (but weak) relationship with latitude. This latitudinal relationship was largely attributed to allometric effects of wing size, but non-allometric variation also explained a portion of this relationship. However, wing shape showed no phylogenetic signal suggesting that lineage-specific variation did not contribute to the variation along the latitudinal gradient. In contrast, wing size, which is correlated with body size in L. sponsa, had a strong negative correlation with latitude. CONCLUSION Our results suggest a relatively weak population structure among the sampled populations across Europe, but a clear differentiation between south and north populations. The observed geographic phenotypic variation in wing shape may have been affected by different local selection pressures or environmental effects.
Collapse
Affiliation(s)
- Y Yildirim
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - D Kristensson
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - D Outomuro
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Mikolajewski
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - P Rödin Mörch
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - S Sniegula
- Department of Ecosystem Conservation, Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - F Johansson
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Medina I, Dong C, Marquez R, Perez DM, Wang IJ, Stuart-Fox D. Anti-predator defences are linked with high levels of genetic differentiation in frogs. Proc Biol Sci 2024; 291:20232292. [PMID: 38264783 PMCID: PMC10806439 DOI: 10.1098/rspb.2023.2292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Predator-prey interactions have been suggested as drivers of diversity in different lineages, and the presence of anti-predator defences in some clades is linked to higher rates of diversification. Warning signals are some of the most widespread defences in the animal world, and there is evidence of higher diversification rates in aposematic lineages. The mechanisms behind such species richness, however, are still unclear. Here, we test whether lineages that use aposematism as anti-predator defence exhibit higher levels of genetic differentiation between populations, leading to increased opportunities for divergence. We collated from the literature more than 3000 pairwise genetic differentiation values across more than 700 populations from over 60 amphibian species. We find evidence that over short geographical distances, populations of species of aposematic lineages exhibit greater genetic divergence relative to species that are not aposematic. Our results support a scenario where the use of warning signals could restrict gene flow, and suggest that anti-predator defences could impact divergence between populations and potentially have effects at a macro-evolutionary scale.
Collapse
Affiliation(s)
- Iliana Medina
- School of BioSciences, University of Melbourne, Melbourne 3010, Australia
| | - Caroline Dong
- School of BioSciences, University of Melbourne, Melbourne 3010, Australia
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70115, USA
| | - Roberto Marquez
- Department of Ecology and Evolutionary Biology and Michigan Society of Fellows, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniela M. Perez
- Max Plank Institute of Animal Behaviour, 78464 Konstanz, Germany
| | - Ian J. Wang
- Department of Environmental Science, Policy, and Management, Rausser College of Natural Resources, University of California, Berkeley, CA 94720, USA
| | - Devi Stuart-Fox
- School of BioSciences, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|