1
|
Moreno E, Cervantes I, Gutiérrez JP, Fernández I, Goyache F. Analysing the pedigree to identify undesirable losses of genetic diversity and to prioritize management decisions in captive breeding: a case study. Heredity (Edinb) 2024:10.1038/s41437-024-00723-z. [PMID: 39289561 DOI: 10.1038/s41437-024-00723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
When prevention of species extinction is the priority, captive breeding is a key component in conservation programmes, allowing the recording of pedigree information in studbooks. The genealogical information registered in Cuvier's gazelle studbook between 1975 and 2023 was analysed to (a) assess if the implemented mating policy was successful in preserving the genetic background of the founders (1 male:3 females) in the present population, and b) improve future management and breeding decisions. Although the maternal contribution of one founder female was lost and the mean inbreeding of the total live population was high (0.305 ± 0.095), the breeding policy applied produced better results than expected from a population starting from four founders. It was successful in keeping the individual increase in inbreeding low (0.047 ± 0.021), and, notably, the inbreeding tended to decrease during the last three decades of the breeding programme, ensuring the viability of this highly inbred population. Historical dissemination of individuals among the zoos of Europe and North America caused population structuring and genetic differentiation of the live North American population. However, it did not risk the viability of the captive population. The average relatedness coefficients allowed the identification of individuals with underrepresented genotypes, which is relevant to plan future mating guidelines to keep the founders' representation balanced in the next generations. This study highlights the importance of keeping long-term pedigree information to monitor changes in the genetic diversity of captive populations, which is crucial to implement optimal mating decisions and assuring their long-term viability within an ex situ conservation programme.
Collapse
Affiliation(s)
- Eulalia Moreno
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (Consejo Superior de Investigaciones Científicas), Carretera de Sacramento s/n, La Cañada de San Urbano, Almería, E- 04120, Spain.
| | - Isabel Cervantes
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, Madrid, E-28040, Spain
| | - Juan Pablo Gutiérrez
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, Madrid, E-28040, Spain
| | - Iván Fernández
- SERIDA-Deva, Camino de Rioseco 1225, E-33394, Gijón (Asturias), Spain
| | - Félix Goyache
- SERIDA-Deva, Camino de Rioseco 1225, E-33394, Gijón (Asturias), Spain
| |
Collapse
|
2
|
Atağ G, Kaptan D, Yüncü E, Başak Vural K, Mereu P, Pirastru M, Barbato M, Leoni GG, Güler MN, Er T, Eker E, Yazıcı TD, Kılıç MS, Altınışık NE, Çelik EA, Morell Miranda P, Dehasque M, Floridia V, Götherström A, Bilgin CC, Togan İ, Günther T, Özer F, Hadjisterkotis E, Somel M. Population Genomic History of the Endangered Anatolian and Cyprian Mouflons in Relation to Worldwide Wild, Feral, and Domestic Sheep Lineages. Genome Biol Evol 2024; 16:evae090. [PMID: 38670119 PMCID: PMC11109821 DOI: 10.1093/gbe/evae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
Once widespread in their homelands, the Anatolian mouflon (Ovis gmelini anatolica) and the Cyprian mouflon (Ovis gmelini ophion) were driven to near extinction during the 20th century and are currently listed as endangered populations by the International Union for Conservation of Nature. While the exact origins of these lineages remain unclear, they have been suggested to be close relatives of domestic sheep or remnants of proto-domestic sheep. Here, we study whole genome sequences of n = 5 Anatolian mouflons and n = 10 Cyprian mouflons in terms of population history and diversity, comparing them with eight other extant sheep lineages. We find reciprocal genetic affinity between Anatolian and Cyprian mouflons and domestic sheep, higher than all other studied wild sheep genomes, including the Iranian mouflon (O. gmelini). Studying diversity indices, we detect a considerable load of short runs of homozygosity blocks (<2 Mb) in both Anatolian and Cyprian mouflons, reflecting small effective population size (Ne). Meanwhile, Ne and mutation load estimates are lower in Cyprian compared with Anatolian mouflons, suggesting the purging of recessive deleterious variants in Cyprian sheep under a small long-term Ne, possibly attributable to founder effects, island isolation, introgression from domestic lineages, or differences in their bottleneck dynamics. Expanding our analyses to worldwide wild and feral Ovis genomes, we observe varying viability metrics among different lineages and a limited consistency between viability metrics and International Union for Conservation of Nature conservation status. Factors such as recent inbreeding, introgression, and unique population dynamics may have contributed to the observed disparities.
Collapse
Affiliation(s)
- Gözde Atağ
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Damla Kaptan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Eren Yüncü
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Paolo Mereu
- Department of Biochemical Sciences, University of Sassari, Sassari, Italy
| | - Monica Pirastru
- Department of Biochemical Sciences, University of Sassari, Sassari, Italy
| | - Mario Barbato
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | | | - Merve Nur Güler
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Tuğçe Er
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Elifnaz Eker
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Tunca Deniz Yazıcı
- Graduate School for Evolution, Ecology and Systematics, Ludwig Maximillian University of Munich, Munich, Germany
| | - Muhammed Sıddık Kılıç
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | | | - Ecem Ayşe Çelik
- Department of Settlement Archeology, Middle East Technical University, Ankara, Turkey
| | - Pedro Morell Miranda
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Marianne Dehasque
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Viviana Floridia
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Anders Götherström
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm University, Stockholm, Sweden
| | - Cemal Can Bilgin
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - İnci Togan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Füsun Özer
- Department of Anthropology, Hacettepe University, Ankara, Turkey
| | - Eleftherios Hadjisterkotis
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
3
|
Cetkovská E, Brandlová K, Ogden R, Černá Bolfíková B. Evaluation of the Impact of Population Management on the Genetic Parameters of Selected Spiral-Horned Antelopes. BIOLOGY 2024; 13:104. [PMID: 38392322 PMCID: PMC10886411 DOI: 10.3390/biology13020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
The rapid loss of biodiversity and the associated reduction and fragmentation of habitats means that ex situ populations have become an important part of species conservation. These populations, which are often established from a small number of founders, require careful management to avoid the negative effects of genetic drift and inbreeding. Although the inclusion of molecular data is recommended, their availability for captive breeding management remains limited. The aim of this study was to evaluate the relationship between the levels of genetic diversity in six spiral-horned antelope taxa bred under human care and their respective management strategies, conservation status, demography, and geographic origin, using 10 nuclear DNA microsatellite loci and mitochondrial control region DNA sequences. Our findings include associations between genetic diversity and management intensity but also with the diversity and contribution of wild populations to captive founders, with some populations apparently composed of animals from divergent wild lineages elevating captive genetic diversity. When population sizes are large, the potential advantages of maximizing genetic diversity in widely outcrossed populations may need careful consideration with respect to the potential disruption of adaptive diversity. Genetic data serve as a robust tool for managing captive populations, yet their interpretation necessitates a comprehensive understanding of species biology and history.
Collapse
Affiliation(s)
- Ema Cetkovská
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic
| | - Karolína Brandlová
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic
| | - Rob Ogden
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Barbora Černá Bolfíková
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic
| |
Collapse
|
4
|
Theissinger K, Fernandes C, Formenti G, Bista I, Berg PR, Bleidorn C, Bombarely A, Crottini A, Gallo GR, Godoy JA, Jentoft S, Malukiewicz J, Mouton A, Oomen RA, Paez S, Palsbøll PJ, Pampoulie C, Ruiz-López MJ, Secomandi S, Svardal H, Theofanopoulou C, de Vries J, Waldvogel AM, Zhang G, Jarvis ED, Bálint M, Ciofi C, Waterhouse RM, Mazzoni CJ, Höglund J. How genomics can help biodiversity conservation. Trends Genet 2023:S0168-9525(23)00020-3. [PMID: 36801111 DOI: 10.1016/j.tig.2023.01.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.
Collapse
Affiliation(s)
- Kathrin Theissinger
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt/Main, Germany
| | - Carlos Fernandes
- CE3C - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, 1649-013 Lisboa, Portugal
| | - Giulio Formenti
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Iliana Bista
- Naturalis Biodiversity Center, Darwinweg 2, 2333, CR, Leiden, The Netherlands; Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Paul R Berg
- NIVA - Norwegian Institute for Water Research, Økernveien, 94, 0579 Oslo, Norway; Centre for Coastal Research, University of Agder, Gimlemoen 25j, 4630 Kristiansand, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Christoph Bleidorn
- University of Göttingen, Department of Animal Evolution and Biodiversity, Untere Karspüle, 2, 37073, Göttingen, Germany
| | | | - Angelica Crottini
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Rua Padre Armando Quintas, 7, 4485-661, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Guido R Gallo
- Department of Biosciences, University of Milan, Milan, Italy
| | - José A Godoy
- Estación Biológica de Doñana, CSIC, Calle Americo Vespucio 26, 41092, Sevillle, Spain
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Joanna Malukiewicz
- Primate Genetics Laborator, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Alice Mouton
- InBios - Conservation Genetics Lab, University of Liege, Chemin de la Vallée 4, 4000, Liege, Belgium
| | - Rebekah A Oomen
- Centre for Coastal Research, University of Agder, Gimlemoen 25j, 4630 Kristiansand, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Sadye Paez
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Per J Palsbøll
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh, 9747, AG, Groningen, The Netherlands; Center for Coastal Studies, 5 Holway Avenue, Provincetown, MA 02657, USA
| | - Christophe Pampoulie
- Marine and Freshwater Research Institute, Fornubúðir, 5,220, Hanafjörður, Iceland
| | - María J Ruiz-López
- Estación Biológica de Doñana, CSIC, Calle Americo Vespucio 26, 41092, Sevillle, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Hannes Svardal
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Constantina Theofanopoulou
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA; Hunter College, City University of New York, NY, USA
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Ann-Marie Waldvogel
- Institute of Zoology, University of Cologne, Zülpicherstrasse 47b, D-50674, Cologne, Germany
| | - Guojie Zhang
- Evolutionary & Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, 310058, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Erich D Jarvis
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Miklós Bálint
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt/Main, Germany
| | - Claudio Ciofi
- University of Florence, Department of Biology, Via Madonna del Piano 6, Sesto Fiorentino, (FI) 50019, Italy
| | - Robert M Waterhouse
- University of Lausanne, Department of Ecology and Evolution, Le Biophore, UNIL-Sorge, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Camila J Mazzoni
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str 17, 10315 Berlin, Germany; Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Koenigin-Luise-Str 6-8, 14195 Berlin, Germany
| | - Jacob Höglund
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75246, Uppsala, Sweden.
| | | |
Collapse
|