1
|
Wang W, Huang J, Hu Y, Feng J, Gao D, Fang W, Xu M, Ma C, Fu Z, Chen Q, Liang X, Lu J. Seascapes Shaped the Local Adaptation and Population Structure of South China Coast Yellowfin Seabream (Acanthopagrus latus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:60-73. [PMID: 38147145 DOI: 10.1007/s10126-023-10277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Understanding the genetic composition and regional adaptation of marine species under environmental heterogeneity and fishing pressure is crucial for responsible management. In order to understand the genetic diversity and adaptability of yellowfin seabream (Acanthopagrus latus) along southern China coast, this study was conducted a seascape genome analysis on yellowfin seabream from the ecologically diverse coast, spanning over 1600 km. A total of 92 yellowfin seabream individuals from 15 sites were performed whole-genome resequencing, and 4,383,564 high-quality single nucleotide polymorphisms (SNPs) were called. By conducting a genotype-environment association analysis, 29,951 adaptive and 4,328,299 neutral SNPs were identified. The yellowfin seabream exhibited two distinct population structures, despite high gene flow between sites. The seascape genome analysis revealed that genetic structure was influenced by a variety of factors including salinity gradients, habitat distance, and ocean currents. The frequency of allelic variation at the candidate loci changed with the salinity gradient. Annotation of these loci revealed that most of the genes are associated with osmoregulation, such as kcnab2a, kcnk5a, and slc47a1. These genes are significantly enriched in pathways associated with ion transport including G protein-coupled receptor activity, transmembrane signaling receptor activity, and transporter activity. Overall, our findings provide insights into how seascape heterogeneity affects adaptive evolution, while providing important information for regional management in yellowfin seabream populations.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Yan Hu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jianxiang Feng
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Meng Xu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Chunlei Ma
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Zhenqiang Fu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Qinglong Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Xuanguang Liang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China.
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, China.
| |
Collapse
|
2
|
De Wit P, Faust E, Green L, Jahnke M, Pereyra RT, Rafajlović M. A decade of progress in marine evolutionary biology. Evol Appl 2023; 16:193-201. [PMID: 36793695 PMCID: PMC9923465 DOI: 10.1111/eva.13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022] Open
Abstract
This article summarizes the Evolutionary Applications Special Issue, "A decade of progress in Marine Evolutionary Biology." The globally connected ocean, from its pelagic depths to its highly varied coastlines, inspired Charles Darwin to develop the theory of evolution during the voyage of the Beagle. As technology has developed, there has been a dramatic increase in our knowledge about life on our blue planet. This Special Issue, composed of 19 original papers and seven reviews, represents a small contribution to the larger picture of recent research in evolutionary biology, and how such advancements come about through the connection of researchers, their fields, and their knowledge. The first European network for marine evolutionary biology, the Linnaeus Centre for Marine Evolutionary Biology (CeMEB), was developed to study evolutionary processes in the marine environment under global change. Though hosted by the University of Gothenburg in Sweden, the network quickly grew to encompass researchers throughout Europe and beyond. Today, more than a decade after its foundation, CeMEB's focus on the evolutionary consequences of global change is more relevant than ever, and knowledge gained from marine evolution research is urgently needed in management and conservation. This Special Issue, organized and developed through the CeMEB network, contains contributions from all over the world and provides a snapshot of the current state of the field, thus forming an important basis for future research directions.
Collapse
Affiliation(s)
- Pierre De Wit
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
- Department of Marine Sciences, Tjärnö Marine LaboratoryUniversity of GothenburgStrömstadSweden
| | - Ellika Faust
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
- Department of Marine Sciences, Tjärnö Marine LaboratoryUniversity of GothenburgStrömstadSweden
| | - Leon Green
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Marlene Jahnke
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
- Department of Marine Sciences, Tjärnö Marine LaboratoryUniversity of GothenburgStrömstadSweden
| | - Ricardo T. Pereyra
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
- Department of Marine Sciences, Tjärnö Marine LaboratoryUniversity of GothenburgStrömstadSweden
| | - Marina Rafajlović
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| |
Collapse
|
3
|
Westram AM, Butlin R. Professor Kerstin Johannesson-winner of the 2022 Molecular Ecology Prize. Mol Ecol 2023; 32:26-29. [PMID: 36443277 DOI: 10.1111/mec.16779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Anja Marie Westram
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roger Butlin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK.,Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, Strömstad, Sweden
| |
Collapse
|