1
|
Oršolić M, Sarač N, Balen Topić M. Vector-Borne Zoonotic Lymphadenitis-The Causative Agents, Epidemiology, Diagnostic Approach, and Therapeutic Possibilities-An Overview. Life (Basel) 2024; 14:1183. [PMID: 39337966 PMCID: PMC11433605 DOI: 10.3390/life14091183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
In addition to common skin pathogens, acute focal lymphadenitis in humans can, in rare cases, be caused by a zoonotic pathogen. Furthermore, it can develop in the absence of any direct or indirect contact with infected animals, in cases when the microorganism is transmitted by a vector. These clinical entities are rare, and therefore often not easily recognized, yet many zoonotic illnesses are currently considered emerging or re-emerging in many regions. Focal zoonotic vector-borne lymphadenitis and its numerous causative agents, with their variegated clinical manifestations, have been described in some case reports and small case series. Therefore, we summarized those data in this narrative overview, with the aim of raising clinical awareness, which could improve clinical outcomes. This overview briefly covers reported pathogens, their vectors and geographic distribution, and their main clinical manifestations, diagnostic possibilities, and recommended therapy. Vector-borne tularemia, plague, bartonellosis, rickettsioses, borreliosis, and Malayan filariasis are mentioned. According to the existing data, when acute focal bacterial vector-borne zoonotic lymphadenitis is suspected, in severe or complicated cases it seems prudent to apply combined aminoglycoside (or quinolone) plus doxycycline as an empirical therapy, pending definite diagnostic results. In this field, the "one health approach" and further epidemiological and clinical studies are needed.
Collapse
Affiliation(s)
- Martina Oršolić
- University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Mirogojska 8, 10 000 Zagreb, Croatia
| | - Nikolina Sarač
- University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Mirogojska 8, 10 000 Zagreb, Croatia
| | - Mirjana Balen Topić
- University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Mirogojska 8, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
2
|
Hiller E, Hörz V, Sting R. Corynebacterium pseudotuberculosis: Whole genome sequencing reveals unforeseen and relevant genetic diversity in this pathogen. PLoS One 2024; 19:e0309282. [PMID: 39186721 PMCID: PMC11346948 DOI: 10.1371/journal.pone.0309282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024] Open
Abstract
Corynebacterium pseudotuberculosis (CPS) is an important bacterial animal pathogen. CPS causes chronic, debilitating and currently incurable infectious diseases affecting a wide range of livestock and wild herbivores including camelids worldwide. Belonging to the Corynebacterium diphtheriae complex, this pathogen can also infect humans. The classical characterization of CPS is typically based on the testing of nitrate reductase activity, separating the two biovars Equi and Ovis. However, more refined resolutions are required to unravel routes of infection. This was realized in our study by generating and analyzing whole genome sequencing (WGS) data. Using newly created core genome multilocus sequence typing (cgMLST) profiles we were the first to discover isolates grouping in a cluster adjacent to clusters formed by CPS biovar Equi isolates. This novel cluster includes CPS isolates from alpacas, llamas, camels and dromedaries, which are characterized by a lack of nitrate reductase activity as encountered in biovar Ovis. This is of special interest for molecular epidemiology. Nevertheless, these isolates bear the genes of the nitrate locus, which are characteristic of biovar Equi isolates. However, sequence analysis of the genes narG and narH of the nitrate locus revealed indels leading to frameshifts and inactivity of the enzymes involved in nitrate reduction. Interestingly, one CPS isolate originating from another lama with an insertion in the MFS transporter (narT) is adjacent to a cluster formed by ovine CPS isolates biovar Equi. Based on this knowledge, the combination of biochemical and PCR based molecular biological nitrate reductase detection can be used for a fast and uncomplicated classification of isolates in routine diagnostics in order to check the origin of camelid CPS isolates. Further analysis revealed that partial sequencing of the ABC transporter substrate binding protein (CP258_RS07935) is a powerful tool to assign the biovars and the novel genomovar.
Collapse
Affiliation(s)
- Ekkehard Hiller
- Chemical and Veterinary Analysis Agency Stuttgart, Fellbach, Germany
| | - Verena Hörz
- Chemical and Veterinary Analysis Agency Stuttgart, Fellbach, Germany
| | - Reinhard Sting
- Chemical and Veterinary Analysis Agency Stuttgart, Fellbach, Germany
- Consiliary Laboratory for Corynebacterium Pseudotuberculosis, Fellbach, Germany
| |
Collapse
|
3
|
Parise D, Teixeira Dornelles Parise M, Pinto Gomide AC, Figueira Aburjaile F, Bentes Kato R, Salgado-Albarrán M, Tauch A, Ariston de Carvalho Azevedo V, Baumbach J. The Transcriptional Regulatory Network of Corynebacterium pseudotuberculosis. Microorganisms 2021; 9:microorganisms9020415. [PMID: 33671149 PMCID: PMC7923171 DOI: 10.3390/microorganisms9020415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/26/2022] Open
Abstract
Corynebacterium pseudotuberculosis is a Gram-positive, facultative intracellular, pathogenic bacterium that infects several different hosts, yielding serious economic losses in livestock farming. It causes several diseases including oedematous skin disease (OSD) in buffaloes, ulcerative lymphangitis (UL) in horses, and caseous lymphadenitis (CLA) in sheep, goats and humans. Despite its economic and medical-veterinary importance, our understanding concerning this organism’s transcriptional regulatory mechanisms is still limited. Here, we review the state of the art knowledge on transcriptional regulatory mechanisms of this pathogenic species, covering regulatory interactions mediated by two-component systems, transcription factors and sigma factors. Key transcriptional regulatory players involved in virulence and pathogenicity of C. pseudotuberculosis, such as the PhoPR system and DtxR, are in the focus of this review, as these regulators are promising targets for future vaccine design and drug development. We conclude that more experimental studies are needed to further understand the regulatory repertoire of this important zoonotic pathogen, and that regulators are promising targets for future vaccine design and drug development.
Collapse
Affiliation(s)
- Doglas Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
- Correspondence: or
| | - Mariana Teixeira Dornelles Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Anne Cybelle Pinto Gomide
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | | | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Marisol Salgado-Albarrán
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa, Mexico City 05348, Mexico
| | - Andreas Tauch
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Computational BioMedicine lab, Institute of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
- Chair of Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany
| |
Collapse
|
4
|
Bernardes JS, Eberle RJ, Vieira FRJ, Coronado MA. A comparative pan-genomic analysis of 53 C. pseudotuberculosis strains based on functional domains. J Biomol Struct Dyn 2020; 39:6974-6986. [PMID: 32779519 DOI: 10.1080/07391102.2020.1805017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Corynebacterium pseudotuberculosis is a pathogenic bacterium with great veterinary and economic importance. It is classified into two biovars: ovis, nitrate-negative, that causes lymphadenitis in small ruminants and equi, nitrate-positive, causing ulcerative lymphangitis in equines. With the explosive growth of available genomes of several strains, pan-genome analysis has opened new opportunities for understanding the dynamics and evolution of C. pseudotuberculosis. However, few pan-genomic studies have compared biovars equi and ovis. Such studies have considered a reduced number of strains and compared entire genomes. Here we conducted an original pan-genome analysis based on protein sequences and their functional domains. We considered 53 C. pseudotuberculosis strains from both biovars isolated from different hosts and countries. We have analysed conserved domains, common domains more frequently found in each biovar and biovar-specific (unique) domains. Our results demonstrated that biovar equi is more variable; there is a significant difference in the number of proteins per strains, probably indicating the occurrence of more gene loss/gain events. Moreover, strains of biovar equi presented a higher number of biovar-specific domains, 77 against only eight in biovar ovis, most of them are associated with virulence mechanisms. With this domain analysis, we have identified functional differences among strains of biovars ovis and equi that could be related to niche-adaptation and probably help to better understanding mechanisms of virulence and pathogenesis. The distribution patterns of functional domains identified in this work might have impacts on bacterial physiology and lifestyle, encouraging the development of new diagnoses, vaccines, and treatments for C. pseudotuberculosis diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Juliana S Bernardes
- Laboratoire de Biologie Computationelle et Quantitative, UMR 7238, CNRS, Sorbonne Université, Paris, France
| | - Raphael J Eberle
- Multiuser Center for Biomolecular Innovation, Department of Physics, Instituto de Biociências, Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, Brazil
| | - Fabio R J Vieira
- Institut de Biologie de l'École Normale Supérieure (IBENS), Paris, France
| | - Mônika A Coronado
- Multiuser Center for Biomolecular Innovation, Department of Physics, Instituto de Biociências, Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, Brazil.,Institute of Biological Information Processing (IBI-7: Strucutral Biochemistry), Forschungszentrum Juelich, Juelich, Germany
| |
Collapse
|
5
|
Costa L, Huerta B, Galán-Relaño Á, Gómez-Gascón L, Almeida A, Viegas I, Maldonado A. Utility assessment of an Enzyme-linked immunosorbent assay for detection of subclinical cases of caseous lymphadenitis in small ruminant flocks. Vet Med Sci 2020; 6:796-803. [PMID: 32567811 PMCID: PMC7738729 DOI: 10.1002/vms3.297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
The actual prevalence of CLA (caseous lymphadenitis) in small ruminant flocks is underestimated in many countries, and because it is not a notifiable disease, it will continue to spread without data and information about its real economic impact. The difficulty in the accurate identification of the causative agent in internal subclinical cases allows the disease to spread within and between flocks. This research intends to assess the utility of an ELISA (enzyme‐linked immunosorbent assay) test in the detection of internal subclinical cases of CLA in farms and to simultaneously add data on the seroprevalence of the disease in Portugal. Sera from 756 small ruminants, 70% sheep (528/756) and 30% goats (228/756) were screened for antibodies against Corynebacterium pseudotuberculosis using the ELISA technique based on a recombinant phospholipase D (ELITEST CLA # CK105A®). The animals showing internal lesions (n ꞊ 58) were sampled for the identification of the aetiological agent. In this investigation, the prevalence of CLA was 34% (258/756), with the ELISA test showing a low specificity (78%) and high sensitivity (100%). The proof was able to detect 57% (13/23) of subclinical cases of CLA confirmed by postmortem examination and conventional PCR (polymerase chain reaction). The results also reveal that goats have a higher propensity for the disease, and dairy farms and non‐extensive production units appear to be more susceptible to CLA. This research clarifies an actual problem and pointed out the importance of CLA in small ruminant herds in Portugal. Finally seems to demonstrate that the ELISA test is a good diagnostic tool for use in CLA eradication programmes.
Collapse
Affiliation(s)
- Lina Costa
- Department of Agrarian and Veterinary Sciences, Agrarian School of Elvas, Polytechnic Institute of Portalegre, Portalegre, Portugal
| | - Belén Huerta
- Department of Animal Health, Faculty of Veterinary Medicine, University of Córdoba, Cordoba, Spain
| | - Ángela Galán-Relaño
- Department of Animal Health, Faculty of Veterinary Medicine, University of Córdoba, Cordoba, Spain
| | - Lídia Gómez-Gascón
- Department of Animal Health, Faculty of Veterinary Medicine, University of Córdoba, Cordoba, Spain
| | - Anabela Almeida
- Vetdiagnos, Veterinary Diagnostic Laboratory, Cantanhede, Portugal
| | - Inês Viegas
- ICAAM - Institute of Mediterranean Agricultural and Environmental Sciences, Institute of Advanced Research and Training, University of Évora, Évora, Portugal
| | - Alfonso Maldonado
- Department of Animal Health, Faculty of Veterinary Medicine, University of Córdoba, Cordoba, Spain
| |
Collapse
|
6
|
Parise D, Parise MTD, Viana MVC, Muñoz-Bucio AV, Cortés-Pérez YA, Arellano-Reynoso B, Díaz-Aparicio E, Dorella FA, Pereira FL, Carvalho AF, Figueiredo HCP, Ghosh P, Barh D, Gomide ACP, Azevedo VAC. First genome sequencing and comparative analyses of Corynebacterium pseudotuberculosis strains from Mexico. Stand Genomic Sci 2018; 13:21. [PMID: 30338024 PMCID: PMC6180578 DOI: 10.1186/s40793-018-0325-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Corynebacterium pseudotuberculosis is a pathogenic bacterium which has been rapidly spreading all over the world, causing economic losses in the agricultural sector and sporadically infecting humans. Six C. pseudotuberculosis strains were isolated from goats, sheep, and horses with distinct abscess locations. For the first time, Mexican genomes of this bacterium were sequenced and studied in silico. All strains were sequenced using Ion Personal Genome Machine sequencer, assembled using Newbler and SPAdes software. The automatic genome annotation was done using the software RAST and in-house scripts for transference, followed by manual curation using Artemis software and BLAST against NCBI and UniProt databases. The six genomes are publicly available in NCBI database. The analysis of nucleotide sequence similarity and the generated phylogenetic tree led to the observation that the Mexican strains are more similar between strains from the same host, but the genetic structure is probably more influenced by transportation of animals between farms than host preference. Also, a putative drug target was predicted and in silico analysis of 46 strains showed two gene clusters capable of differentiating the biovars equi and ovis: Restriction Modification system and CRISPR-Cas cluster.
Collapse
Affiliation(s)
- Doglas Parise
- Laboratory of Cellular and Molecular Genetics, Institute of Biologic Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Mariana T D Parise
- Laboratory of Cellular and Molecular Genetics, Institute of Biologic Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Marcus V C Viana
- Laboratory of Cellular and Molecular Genetics, Institute of Biologic Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Adrian V Muñoz-Bucio
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Mexico City, Mexico
| | - Yazmin A Cortés-Pérez
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Mexico City, Mexico
| | - Beatriz Arellano-Reynoso
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Mexico City, Mexico
| | - Efrén Díaz-Aparicio
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Mexico City, Mexico
| | - Fernanda A Dorella
- Aquacen - National Reference Laboratory for Aquatic Animal Diseases, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Felipe L Pereira
- Aquacen - National Reference Laboratory for Aquatic Animal Diseases, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Alex F Carvalho
- Aquacen - National Reference Laboratory for Aquatic Animal Diseases, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Henrique C P Figueiredo
- Aquacen - National Reference Laboratory for Aquatic Animal Diseases, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA-23284 USA
| | - Debmalya Barh
- Laboratory of Cellular and Molecular Genetics, Institute of Biologic Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal 721172 India
- Division of Bioinformatics and Computational Genomics, NITTE University Center for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakatte, Mangaluru, Karnataka India
| | - Anne C P Gomide
- Laboratory of Cellular and Molecular Genetics, Institute of Biologic Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Vasco A C Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biologic Sciences, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| |
Collapse
|