1
|
Reinert S. Quantitative genetics of pleiotropy and its potential for plant sciences. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153784. [PMID: 35944292 DOI: 10.1016/j.jplph.2022.153784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Stephan Reinert
- Friedrich-Alexander-University Erlangen-Nürnberg, Department of Biology, Division of Biochemistry, Biocomputing Lab, Staudtstraße 5, 91058, Erlangen, Germany.
| |
Collapse
|
2
|
Yamamichi M. How does genetic architecture affect eco-evolutionary dynamics? A theoretical perspective. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200504. [PMID: 35634922 PMCID: PMC9149794 DOI: 10.1098/rstb.2020.0504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies have revealed the importance of feedbacks between contemporary rapid evolution (i.e. evolution that occurs through changes in allele frequencies) and ecological dynamics. Despite its inherent interdisciplinary nature, however, studies on eco-evolutionary feedbacks have been mostly ecological and tended to focus on adaptation at the phenotypic level without considering the genetic architecture of evolutionary processes. In empirical studies, researchers have often compared ecological dynamics when the focal species under selection has a single genotype with dynamics when it has multiple genotypes. In theoretical studies, common approaches are models of quantitative traits where mean trait values change adaptively along the fitness gradient and Mendelian traits with two alleles at a single locus. On the other hand, it is well known that genetic architecture can affect short-term evolutionary dynamics in population genetics. Indeed, recent theoretical studies have demonstrated that genetic architecture (e.g. the number of loci, linkage disequilibrium and ploidy) matters in eco-evolutionary dynamics (e.g. evolutionary rescue where rapid evolution prevents extinction and population cycles driven by (co)evolution). I propose that theoretical approaches will promote the synthesis of functional genomics and eco-evolutionary dynamics through models that combine population genetics and ecology as well as nonlinear time-series analyses using emerging big data.
This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Masato Yamamichi
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
3
|
Jirapatrasilp P, Tongkerd P, Jeratthitikul E, Liew TS, Pholyotha A, Sutcharit C, Panha S. Molecular phylogeny of the limacoid snail family Dyakiidae in Southeast Asia, with the description of a new genus and species. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Members of the terrestrial snail family Dyakiidae from Southeast Asia show a distinct geographical distribution pattern and possess different degrees of complexity in their amatorial organ gland. This study is the first molecular phylogeny of ten of the 12 genera in this family, performed to provide insights into the origin of Dyakiidae and the evolution of their shells and amatorial organ gland structure. A new genus and new species, Pseudoquantula lenticularis Jirapatrasilp & Panha gen. & sp. nov., was uncovered based on its distinct morphological characters and molecular divergence. All other genera were retrieved as monophyletic except for Dyakia. Mainland Southeast Asia was inferred to be the ancestral range of the Dyakiidae, and the lineages then dispersed to and diversified in Borneo. Cladistic analysis showed that all 14 morphological characters used in this study were homoplastic. These results disagree with the previous amatorial organ transformation series, in which neither Pseudoplecta nor Quantula was ancestral to the other genera. The enigmatic genus Pseudoplecta, which lacks an amatorial organ gland, exhibited secondary loss.
Collapse
Affiliation(s)
- Parin Jirapatrasilp
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Piyoros Tongkerd
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Ekgachai Jeratthitikul
- Animal Systematics and Molecular Ecology Laboratory, Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thor-Seng Liew
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Arthit Pholyotha
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chirasak Sutcharit
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Somsak Panha
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
4
|
Hoso M, Shimatani IK. Life-History Modeling Reveals the Ecological and Evolutionary Significance of Autotomy. Am Nat 2020; 196:690-703. [PMID: 33211560 DOI: 10.1086/711311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAutotomy, the self-amputation of body parts, serves as an antipredator defense in many taxonomic groups of animals. However, its adaptive value has seldom been quantified. Here, we propose a novel modeling approach for measuring the fitness advantage conferred by the capability for autotomy in the wild. Using a predator-prey system where a land snail autotomizes and regenerates its foot specifically in response to snake bites, we conducted a laboratory behavioral experiment and a 3-year multievent capture-mark-recapture study. Combining these empirical data, we developed a hierarchical model and estimated the basic life-history parameters of the snail. Using samples from the posterior distribution, we constructed the snail's life table as well as that of a snail variant incapable of foot autotomy. As a result of our analyses, we estimated the monthly encounter rate with snake predators at 3.3% (95% credible interval: 1.6%-4.9%), the contribution of snake predation to total mortality until maturity at 43.3% (15.0%-95.3%), and the fitness advantage conferred by foot autotomy at 6.5% (2.7%-11.5%). This study demonstrated the utility of the multimethod hierarchical-modeling approach for the quantitative understanding of the ecological and evolutionary processes of antipredator defenses in the wild.
Collapse
|
5
|
Harl J, Haring E, Páll‐Gergely B. Hybridization and recurrent evolution of left-right reversal in the land snail genus Schileykula (Orculidae, Pulmonata). J ZOOL SYST EVOL RES 2020; 58:633-647. [PMID: 33041524 PMCID: PMC7540069 DOI: 10.1111/jzs.12353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 12/03/2022]
Abstract
The land snail genus Schileykula Gittenberger, 1983 is distributed in arid limestone areas from western Turkey to north-western Iran. It comprises eight species, which display high variation in shell size and morphology. The cylindrical shells are 5-12 mm in height and the last shell whorls bear several inner lamellae and plicae. Two taxa differ in their chirality having sinistral shells, while all the others are dextrals such as the vast majority of orculids. The aim of this study was to establish a molecular genetic phylogeny of Schileykula and to test whether it conforms to the current morphology-based classification. Furthermore, we were interested in the phylogenetic position of the two sinistral forms in order to assess whether one or two reversals happened in the evolution of the genus. Nine out of ten species, including all four subspecies of Schileykula trapezensis and three of six subspecies of Schileykula scyphus, were investigated. A section of the mitochondrial cytochrome c oxidase subunit I gene was analyzed in 54 specimens of Schileykula and from a subsample, partial sequences of the mitochondrial genes for the 12S rRNA and the 16S rRNA, and a section of the nuclear H4/H3 histone gene cluster were obtained. The phylogenetic trees based on the mitochondrial sequences feature high support values for most nodes, and the species appear well differentiated from each other. The two chiral forms evolved independently and are not sister lineages. However, some groupings disagree with the present morphology-based classification and taxonomical conclusions are drawn. Schileykula trapezensis is polyphyletic in the molecular genetic trees; therefore, three of its subspecies are elevated to species level: Schileykula acampsis Hausdorf, 1996 comb. nov., Schileykula neuberti Hausdorf, 1996 comb. nov., and Schileykula contraria Neubert, 1993 comb. nov. Furthermore, Schileykula sigma is grouped within S. scyphus in the mitochondrial and nuclear trees and consequently treated as a subspecies of the latter (Schileykula scyphus sigma Hausdorf, 1996 comb. nov.). Schileykula nordsiecki, whose shell morphology is indistinguishable from that of the neighboring Schileykula scyphus lycaonica, but who differs in its genital anatomy, was confirmed to represent a distinct lineage. The phylogenies produced by the mitochondrial and nuclear data sets are to some extent conflicting. The patterns differ concerning the grouping of some specimens, suggesting at least two independent hybridization events involving S. contraria, S. scyphus and S. trapezensis. The results exemplify the importance of integrating both mitochondrial and nuclear sequence data in order to complement morphology-based taxonomy, and they provide further evidence for hybridization across distantly related lineages in land snails.
Collapse
Affiliation(s)
- Josef Harl
- Institute of PathologyUniversity of Veterinary MedicineViennaAustria
- Central Research LaboratoriesMuseum of Natural HistoryViennaAustria
| | - Elisabeth Haring
- Central Research LaboratoriesMuseum of Natural HistoryViennaAustria
- Department of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Barna Páll‐Gergely
- Plant Protection InstituteCentre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary
| |
Collapse
|
6
|
Sakamoto T, Innan H. Establishment process of a magic trait allele subject to both divergent selection and assortative mating. Theor Popul Biol 2020; 135:9-18. [PMID: 32735902 DOI: 10.1016/j.tpb.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
Sexual selection and divergent selection are among the major driving forces of reproductive isolation, which could eventually result in speciation. A magic trait is defined such that a single trait is subject to both divergent selection and mate choice through phenotype-based assortative mating. We are here interested in the evolutionary behavior of alleles at a genetic locus responsible for a magic trait in a finite population. We assume that, in a pair of homogeneous subpopulations, a mutant allele arises at the magic trait locus, and theoretically obtain the probability that the new allele establishes in the population, or the establishment probability. We also show an analytical expression for the trajectory of allele frequency along the establishment, from which the time required for the establishment is obtained, or the establishment time. Under this model, divergent selection simply favors the new allele to fix where it is beneficial, whereas assortative mating works against rare alleles. It is theoretically demonstrated that the fate of the new allele is determined by the relative contributions of the two selective forces, divergent selection and assortative mating, when the allele is rare so that the two selective forces counteract. Our theoretical results for the establishment probability and time allow us to understand the relative role of random genetic drift in the establishment process of a magic trait allele in a finite population.
Collapse
Affiliation(s)
- T Sakamoto
- SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| | - H Innan
- SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan.
| |
Collapse
|
7
|
Thibert-Plante X, Præbel K, Østbye K, Kahilainen KK, Amundsen PA, Gavrilets S. Using mathematical modelling to investigate the adaptive divergence of whitefish in Fennoscandia. Sci Rep 2020; 10:7394. [PMID: 32355195 PMCID: PMC7193591 DOI: 10.1038/s41598-020-63684-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 03/25/2020] [Indexed: 02/08/2023] Open
Abstract
Modern speciation theory has greatly benefited from a variety of simple mathematical models focusing on the conditions and patterns of speciation and diversification in the presence of gene flow. Unfortunately the application of general theoretical concepts and tools to specific ecological systems remains a challenge. Here we apply modeling tools to better understand adaptive divergence of whitefish during the postglacial period in lakes of northern Fennoscandia. These lakes harbor up to three different morphs associated with the three major lake habitats: littoral, pelagic, and profundal. Using large-scale individual-based simulations, we aim to identify factors required for in situ emergence of the pelagic and profundal morphs in lakes initially colonized by the littoral morph. The importance of some of the factors we identify and study - sufficiently large levels of initial genetic variation, size- and habitat-specific mating, sufficiently large carrying capacity of the new niche - is already well recognized. In addition, our model also points to two other factors that have been largely disregarded in theoretical studies: fitness-dependent dispersal and strong predation in the ancestral niche coupled with the lack of it in the new niche(s). We use our theoretical results to speculate about the process of diversification of whitefish in Fennoscandia and to identify potentially profitable directions for future empirical research.
Collapse
Affiliation(s)
| | - Kim Præbel
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Kjartan Østbye
- Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad, Anne Evenstadsvei 80, NO-2480, Koppang, Norway.,Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, FI-16900, Lammi, Finland
| | - Per-Arne Amundsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Sergey Gavrilets
- Department of Ecology and Evolutionary Biology, Department of Mathematics, National Institute for Mathematical and Biological Synthesis (NIMBioS), Center for the Dynamics of Social Complexity (DySoC), University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
8
|
Davison A. Flipping Shells! Unwinding LR Asymmetry in Mirror-Image Molluscs. Trends Genet 2020; 36:189-202. [PMID: 31952839 DOI: 10.1016/j.tig.2019.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
In seeking to understand the establishment of left-right (LR) asymmetry, a limiting factor is that most animals are ordinarily invariant in their asymmetry, except when manipulated or mutated. It is therefore surprising that the wider scientific field does not appear to fully appreciate the remarkable fact that normal development in molluscs, especially snails, can flip between two chiral types without pathology. Here, I describe recent progress in understanding the evolution, development, and genetics of chiral variation in snails, and place it in context with other animals. I argue that the natural variation of snails is a crucial resource towards understanding the invariance in other animal groups and, ultimately, will be key in revealing the common factors that define cellular and organismal LR asymmetry.
Collapse
Affiliation(s)
- Angus Davison
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
9
|
Richards PM, Morii Y, Kimura K, Hirano T, Chiba S, Davison A. Single-gene speciation: Mating and gene flow between mirror-image snails. Evol Lett 2017; 1:282-291. [PMID: 30283656 PMCID: PMC6121799 DOI: 10.1002/evl3.31] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/18/2017] [Indexed: 01/21/2023] Open
Abstract
Variation in the shell coiling, or chirality, of land snails provides an opportunity to investigate the potential for "single-gene" speciation, because mating between individuals of opposite chirality is believed not possible if the snails mate in a face-to-face position. However, the evidence in support of single-gene speciation is sparse, mostly based upon single-gene mitochondrial studies and patterns of chiral variation between species. Previously, we used a theoretical model to show that as the chiral phenotype of offspring is determined by the maternal genotype, occasional chiral reversals may take place and enable gene flow between mirror image morphs, preventing speciation. Here, we show empirically that there is recent or ongoing gene flow between the different chiral types of Japanese Euhadra species. We also report evidence of mating between mirror-image morphs, directly showing the potential for gene flow. Thus, theoretical models are suggestive of gene flow between oppositely coiled snails, and our empirical study shows that they can mate and that there is gene flow in Euhadra. More than a single gene is required before chiral variation in shell coiling can be considered to have created a new species.
Collapse
Affiliation(s)
- Paul M. Richards
- School of Life SciencesUniversity of NottinghamNottinghamNG7 2RDUnited Kingdom
| | - Yuta Morii
- Division of Ecology and Evolutionary Biology, Graduate School of Life SciencesTohoku UniversityAobayamaSendai980–8578Japan
| | - Kazuki Kimura
- Division of Ecology and Evolutionary Biology, Graduate School of Life SciencesTohoku UniversityAobayamaSendai980–8578Japan
| | - Takahiro Hirano
- Division of Ecology and Evolutionary Biology, Graduate School of Life SciencesTohoku UniversityAobayamaSendai980–8578Japan
| | - Satoshi Chiba
- Division of Ecology and Evolutionary Biology, Graduate School of Life SciencesTohoku UniversityAobayamaSendai980–8578Japan
| | - Angus Davison
- School of Life SciencesUniversity of NottinghamNottinghamNG7 2RDUnited Kingdom
| |
Collapse
|
10
|
Yamamichi M, Ellner SP. Antagonistic coevolution between quantitative and Mendelian traits. Proc Biol Sci 2016; 283:20152926. [PMID: 27009218 DOI: 10.1098/rspb.2015.2926] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/24/2016] [Indexed: 11/12/2022] Open
Abstract
Coevolution is relentlessly creating and maintaining biodiversity and therefore has been a central topic in evolutionary biology. Previous theoretical studies have mostly considered coevolution between genetically symmetric traits (i.e. coevolution between two continuous quantitative traits or two discrete Mendelian traits). However, recent empirical evidence indicates that coevolution can occur between genetically asymmetric traits (e.g. between quantitative and Mendelian traits). We examine consequences of antagonistic coevolution mediated by a quantitative predator trait and a Mendelian prey trait, such that predation is more intense with decreased phenotypic distance between their traits (phenotype matching). This antagonistic coevolution produces a complex pattern of bifurcations with bistability (initial state dependence) in a two-dimensional model for trait coevolution. Furthermore, with eco-evolutionary dynamics (so that the trait evolution affects predator-prey population dynamics), we find that coevolution can cause rich dynamics including anti-phase cycles, in-phase cycles, chaotic dynamics and deterministic predator extinction. Predator extinction is more likely to occur when the prey trait exhibits complete dominance rather than semidominance and when the predator trait evolves very rapidly. Our study illustrates how recognizing the genetic architectures of interacting ecological traits can be essential for understanding the population and evolutionary dynamics of coevolving species.
Collapse
Affiliation(s)
- Masato Yamamichi
- Hakubi Center for Advanced Research, Kyoto University, Sakyo, Kyoto 606-8501, Japan Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Stephen P Ellner
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Yamamichi M, Hoso M. Roles of maternal effects in maintaining genetic variation: Maternal storage effect. Evolution 2016; 71:449-457. [DOI: 10.1111/evo.13118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Masato Yamamichi
- Hakubi Center for Advanced Research; Kyoto University; Sakyo Kyoto 606-8501 Japan
- Center for Ecological Research; Kyoto University; Otsu Shiga 520-2113 Japan
| | - Masaki Hoso
- Hakubi Center for Advanced Research; Kyoto University; Sakyo Kyoto 606-8501 Japan
- Graduate School of Science; Kyoto University; Sakyo Kyoto 606-8502 Japan
| |
Collapse
|
12
|
|