1
|
Xiao Y, Lv YW, Wang ZY, Wu C, He ZH, Hu XS. Selfing Shapes Fixation of a Mutant Allele Under Flux Equilibrium. Genome Biol Evol 2024; 16:evae261. [PMID: 39656771 DOI: 10.1093/gbe/evae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Sexual reproduction with alternative generations in a life cycle is an important feature in eukaryotic evolution. Partial selfing can regulate the efficacy of purging deleterious alleles in the gametophyte phase and the masking effect in heterozygotes in the sporophyte phase. Here, we develop a new theory to analyze how selfing shapes fixation of a mutant allele that is expressed in the gametophyte or the sporophyte phase only or in two phases. In an infinitely large population, we analyze a critical selfing rate beyond which the mutant allele tends to be fixed under equilibrium between irreversible mutation and selection effects. The critical selfing rate varies with genes expressed in alternative phases. In a finite population with partial self-fertilization, we apply Wright's method to calculate the fixation probability of the mutant allele under flux equilibrium among irreversible mutation, selection, and drift effects and compare it with the fixation probability derived from diffusion model under equilibrium between selection and drift effects. Selfing facilitates fixation of the deleterious allele expressed in the gametophyte phase only but impedes fixation of the deleterious allele expressed in the sporophyte phase only. Selfing facilitates or impedes fixation of the deleterious allele expressed in two phases, depending upon how phase variation in selection occurs in a life cycle. The overall results help to understand the adaptive strategy that sexual reproductive plant species evolve through the joint effects of partial selfing and alternative generations in a life cycle.
Collapse
Affiliation(s)
- Yu Xiao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Yan-Wen Lv
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Yun Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Chao Wu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Han He
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Sheng Hu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Jay P, Jeffries D, Hartmann FE, Véber A, Giraud T. Why do sex chromosomes progressively lose recombination? Trends Genet 2024; 40:564-579. [PMID: 38677904 DOI: 10.1016/j.tig.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Progressive recombination loss is a common feature of sex chromosomes. Yet, the evolutionary drivers of this phenomenon remain a mystery. For decades, differences in trait optima between sexes (sexual antagonism) have been the favoured hypothesis, but convincing evidence is lacking. Recent years have seen a surge of alternative hypotheses to explain progressive extensions and maintenance of recombination suppression: neutral accumulation of sequence divergence, selection of nonrecombining fragments with fewer deleterious mutations than average, sheltering of recessive deleterious mutations by linkage to heterozygous alleles, early evolution of dosage compensation, and constraints on recombination restoration. Here, we explain these recent hypotheses and dissect their assumptions, mechanisms, and predictions. We also review empirical studies that have brought support to the various hypotheses.
Collapse
Affiliation(s)
- Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark; Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France.
| | - Daniel Jeffries
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Fanny E Hartmann
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| | - Amandine Véber
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Singh S, Davies KM, Chagné D, Bowman JL. The fate of sex chromosomes during the evolution of monoicy from dioicy in liverworts. Curr Biol 2023; 33:3597-3609.e3. [PMID: 37557172 DOI: 10.1016/j.cub.2023.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023]
Abstract
Liverworts comprise one of six primary land plant lineages, with the predicted origin of extant liverwort diversity dating to the Silurian. The ancestral liverwort has been inferred to have been dioicous (unisexual) with chromosomal sex determination in which the U chromosome of females and the V chromosome of males were dimorphic with an extensive non-recombining region. In liverworts, sex is determined by a U chromosomal "feminizer" gene that promotes female development, and in its absence, male development ensues. Monoicy (bisexuality) has independently evolved multiple times within liverworts. Here, we explore the evolution of monoicy, focusing on the monoicous species Ricciocarpos natans, and propose that the evolution of monoicy in R. natans involved the appearance of an aneuploid spore that possessed both U and V chromosomes. Chromosomal rearrangements involving the U chromosome resulted in distribution of essential U chromosome genes, including the feminizer, to several autosomal locations. By contrast, we infer that the ancestral V chromosome was inherited largely intact, probably because it carries numerous dispersed "motility" genes distributed across the chromosome. The genetic networks for sex differentiation in R. natans appear largely unchanged except that the feminizer is developmentally regulated, allowing for temporally separated differentiation of female and male reproductive organs on a single plant. A survey of other monoicous liverworts suggests that similar genomic rearrangements may have occurred repeatedly in lineages transitioning to monoicy from dioicy. These data provide a foundation for understanding how genetic networks controlling sex determination can be subtly rewired to produce profound changes in sexual systems.
Collapse
Affiliation(s)
- Shilpi Singh
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
4
|
Cīrulis A, Hansson B, Abbott JK. Sex-limited chromosomes and non-reproductive traits. BMC Biol 2022; 20:156. [PMID: 35794589 PMCID: PMC9261002 DOI: 10.1186/s12915-022-01357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Sex chromosomes are typically viewed as having originated from a pair of autosomes, and differentiated as the sex-limited chromosome (e.g. Y) has degenerated by losing most genes through cessation of recombination. While often thought that degenerated sex-limited chromosomes primarily affect traits involved in sex determination and sex cell production, accumulating evidence suggests they also influence traits not sex-limited or directly involved in reproduction. Here, we provide an overview of the effects of sex-limited chromosomes on non-reproductive traits in XY, ZW or UV sex determination systems, and discuss evolutionary processes maintaining variation at sex-limited chromosomes and molecular mechanisms affecting non-reproductive traits.
Collapse
Affiliation(s)
- Aivars Cīrulis
- Department of Biology, Lund University, 223 62, Lund, Sweden.
| | - Bengt Hansson
- Department of Biology, Lund University, 223 62, Lund, Sweden
| | | |
Collapse
|
5
|
Gueno J, Borg M, Bourdareau S, Cossard G, Godfroy O, Lipinska A, Tirichine L, Cock J, Coelho S. Chromatin landscape associated with sexual differentiation in a UV sex determination system. Nucleic Acids Res 2022; 50:3307-3322. [PMID: 35253891 PMCID: PMC8989524 DOI: 10.1093/nar/gkac145] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
In many eukaryotes, such as dioicous mosses and many algae, sex is determined by UV sex chromosomes and is expressed during the haploid phase of the life cycle. In these species, the male and female developmental programs are initiated by the presence of the U- or V-specific regions of the sex chromosomes but, as in XY and ZW systems, sexual differentiation is largely driven by autosomal sex-biased gene expression. The mechanisms underlying the regulation of sex-biased expression of genes during sexual differentiation remain elusive. Here, we investigated the extent and nature of epigenomic changes associated with UV sexual differentiation in the brown alga Ectocarpus, a model UV system. Six histone modifications were quantified in near-isogenic lines, leading to the identification of 16 chromatin signatures across the genome. Chromatin signatures correlated with levels of gene expression and histone PTMs changes in males versus females occurred preferentially at genes involved in sex-specific pathways. Despite the absence of chromosome scale dosage compensation and the fact that UV sex chromosomes recombine across most of their length, the chromatin landscape of these chromosomes was remarkably different to that of autosomes. Hotspots of evolutionary young genes in the pseudoautosomal regions appear to drive the exceptional chromatin features of UV sex chromosomes.
Collapse
Affiliation(s)
- Josselin Gueno
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen72076, Tübingen, Germany
| | - Simon Bourdareau
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Guillaume Cossard
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Olivier Godfroy
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Agnieszka Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen72076, Tübingen, Germany
| | - Leila Tirichine
- Nantes Universite, CNRS, US2B, UMR 6286, F-44000, Nantes, France
| | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen72076, Tübingen, Germany
| |
Collapse
|
6
|
Pettie N, Llopart A, Comeron JM. Meiotic, genomic and evolutionary properties of crossover distribution in Drosophila yakuba. PLoS Genet 2022; 18:e1010087. [PMID: 35320272 PMCID: PMC8979470 DOI: 10.1371/journal.pgen.1010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/04/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
The number and location of crossovers across genomes are highly regulated during meiosis, yet the key components controlling them are fast evolving, hindering our understanding of the mechanistic causes and evolutionary consequences of changes in crossover rates. Drosophila melanogaster has been a model species to study meiosis for more than a century, with an available high-resolution crossover map that is, nonetheless, missing for closely related species, thus preventing evolutionary context. Here, we applied a novel and highly efficient approach to generate whole-genome high-resolution crossover maps in D. yakuba to tackle multiple questions that benefit from being addressed collectively within an appropriate phylogenetic framework, in our case the D. melanogaster species subgroup. The genotyping of more than 1,600 individual meiotic events allowed us to identify several key distinct properties relative to D. melanogaster. We show that D. yakuba, in addition to higher crossover rates than D. melanogaster, has a stronger centromere effect and crossover assurance than any Drosophila species analyzed to date. We also report the presence of an active crossover-associated meiotic drive mechanism for the X chromosome that results in the preferential inclusion in oocytes of chromatids with crossovers. Our evolutionary and genomic analyses suggest that the genome-wide landscape of crossover rates in D. yakuba has been fairly stable and captures a significant signal of the ancestral crossover landscape for the whole D. melanogaster subgroup, even informative for the D. melanogaster lineage. Contemporary crossover rates in D. melanogaster, on the other hand, do not recapitulate ancestral crossovers landscapes. As a result, the temporal stability of crossover landscapes observed in D. yakuba makes this species an ideal system for applying population genetic models of selection and linkage, given that these models assume temporal constancy in linkage effects. Our studies emphasize the importance of generating multiple high-resolution crossover rate maps within a coherent phylogenetic context to broaden our understanding of crossover control during meiosis and to improve studies on the evolutionary consequences of variable crossover rates across genomes and time.
Collapse
Affiliation(s)
- Nikale Pettie
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ana Llopart
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Josep M. Comeron
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
7
|
Carey SB, Jenkins J, Lovell JT, Maumus F, Sreedasyam A, Payton AC, Shu S, Tiley GP, Fernandez-Pozo N, Healey A, Barry K, Chen C, Wang M, Lipzen A, Daum C, Saski CA, McBreen JC, Conrad RE, Kollar LM, Olsson S, Huttunen S, Landis JB, Burleigh JG, Wickett NJ, Johnson MG, Rensing SA, Grimwood J, Schmutz J, McDaniel SF. Gene-rich UV sex chromosomes harbor conserved regulators of sexual development. SCIENCE ADVANCES 2021; 7:7/27/eabh2488. [PMID: 34193417 PMCID: PMC8245031 DOI: 10.1126/sciadv.abh2488] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/14/2021] [Indexed: 05/19/2023]
Abstract
Nonrecombining sex chromosomes, like the mammalian Y, often lose genes and accumulate transposable elements, a process termed degeneration. The correlation between suppressed recombination and degeneration is clear in animal XY systems, but the absence of recombination is confounded with other asymmetries between the X and Y. In contrast, UV sex chromosomes, like those found in bryophytes, experience symmetrical population genetic conditions. Here, we generate nearly gapless female and male chromosome-scale reference genomes of the moss Ceratodon purpureus to test for degeneration in the bryophyte UV sex chromosomes. We show that the moss sex chromosomes evolved over 300 million years ago and expanded via two chromosomal fusions. Although the sex chromosomes exhibit weaker purifying selection than autosomes, we find that suppressed recombination alone is insufficient to drive degeneration. Instead, the U and V sex chromosomes harbor thousands of broadly expressed genes, including numerous key regulators of sexual development across land plants.
Collapse
Affiliation(s)
- Sarah B Carey
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Florian Maumus
- Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Adam C Payton
- Department of Biology, University of Florida, Gainesville, FL, USA
- RAPiD Genomics, Gainesville, FL, USA
| | - Shengqiang Shu
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | - Adam Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cindy Chen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mei Wang
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Jordan C McBreen
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Roth E Conrad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Leslie M Kollar
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Sanna Olsson
- Department of Forest Ecology and Genetics, INIA-CIFOR, Madrid, Spain
| | - Sanna Huttunen
- Department of Biology and Biodiversity Unit, University of Turku, Turku, Finland
| | - Jacob B Landis
- L.H. Bailey Hortorium and Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Norman J Wickett
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, USA
| | - Matthew G Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Stefan A Rensing
- Plant Cell Biology, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg im Breisgau, Germany
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
8
|
Shim E, Zuccarello GC, Kim GH. Sex-Specific Genes and their Expression in the Life History of the Red Alga Bostrychia moritziana (Ceramiales, Rhodomelaceae). JOURNAL OF PHYCOLOGY 2021; 57:528-540. [PMID: 33191515 DOI: 10.1111/jpy.13103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Diverse sex determination mechanisms have been reported in eukaryotes, but little is known about the genetic pathways leading to sex determination in red algae. Sex-specific genes that could be involved in sex determination and sexual differentiation were investigated in the red alga Bostrychia moritziana by analyzing the transcriptomes of various phases including males, females, and tetrasporophytes. Sex dominantly expressed genes which showed >10-fold difference between sexes was isolated using comparative RNA-seq analysis. We found 19 gene homologues, 10 from males, and nine from females, that were found only in one sex in genomic amplification using strains collected from five different localities. Most of the sex-specific genes are involved in important cellular processes including chromosome segregation, nucleo-cytoplasmic protein shuttling, or tRNA modification. Quantitative PCR analysis showed that some sex-specific genes were differently regulated during critical events of sexual reproduction like fertilization and carposporophyte development. We could localize the expression of a male-specific gene in spermatia before and after gamete binding using RNA in situ hybridization. Amino acid sequence identity between male and female homologues of importin alpha gene and PreQ(0) reductase were highly divergent (75% and 74%, respectively), suggesting that these divergent homologues are on non-recombining UV-type chromosomes in their respective sexes. Another set of transcripts were found that were sex dominantly expressed, but not sex-specific. Nineteen out of 39 sex dominantly expressed transcripts were annotated to transposable elements. Our results suggest that sexual differentiation in B. moritziana may be achieved by multi-level regulation of cellular processes, both from genes present only in one sex and differential expression of shared genes.
Collapse
Affiliation(s)
- Eunyoung Shim
- Department of Biological Sciences, Kongju National University, Gongju, 32588, Korea
| | - Giuseppe C Zuccarello
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Gwang Hoon Kim
- Department of Biological Sciences, Kongju National University, Gongju, 32588, Korea
| |
Collapse
|
9
|
Renner SS, Müller NA. Plant sex chromosomes defy evolutionary models of expanding recombination suppression and genetic degeneration. NATURE PLANTS 2021; 7:392-402. [PMID: 33782581 DOI: 10.1038/s41477-021-00884-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/18/2021] [Indexed: 05/17/2023]
Abstract
Hundreds of land plant lineages have independently evolved separate sexes in either gametophytes (dioicy) or sporophytes (dioecy), but 43% of all dioecious angiosperms are found in just 34 entirely dioecious clades, suggesting that their mode of sex determination evolved a long time ago. Here, we review recent insights on the molecular mechanisms that underlie the evolutionary change from individuals that each produce male and female gametes to individuals specializing in the production of just one type of gamete. The canonical model of sex chromosome evolution in plants predicts that two sex-determining genes will become linked in a sex-determining region (SDR), followed by expanding recombination suppression, chromosome differentiation and, ultimately, degeneration. Experimental work, however, is showing that single genes function as master regulators in model systems, such as the liverwort Marchantia and the angiosperms Diospyros and Populus. In Populus, this type of regulatory function has been demonstrated by genome editing. In other systems, including Actinidia, Asparagus and Vitis, two coinherited factors appear to independently regulate female and male function, yet sex chromosome differentiation has remained low. We discuss the best-understood systems and evolutionary pathways to dioecy, and present a meta-analysis of the sizes and ages of SDRs. We propose that limited sexual conflict explains why most SDRs are small and sex chromosomes remain homomorphic. It appears that models of increasing recombination suppression with age do not apply because selection favours mechanisms in which sex determination depends on minimal differences, keeping it surgically precise.
Collapse
Affiliation(s)
- Susanne S Renner
- Systematic Botany and Mycology, University of Munich (LMU), Munich, Germany.
| | - Niels A Müller
- Thünen Institute of Forest Genetics, Grosshansdorf, Germany.
| |
Collapse
|
10
|
Sousa A, Schubert V, Renner SS. Centromere organization and UU/V sex chromosome behavior in a liverwort. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:133-141. [PMID: 33372295 DOI: 10.1111/tpj.15150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
In 1917, sex chromosomes in plants were discovered in a liverwort with hetermorphic U and V chromosomes. Such heteromorphy is unexpected because, unlike the XY chromosomes in diploid-dominant plants, in haploid-dominant plants the female U and the male V chromosomes experience largely symmetrical potential recombination environments. Here we use molecular cytogenetics and super-resolution microscopy to study Frullania dilatata, a liverwort with one male and two female sex chromosomes. We applied a pipeline to Illumina sequences to detect abundant types of repetitive DNA and developed FISH probes to microscopically distinguish the sex chromosomes. We also determined the phenotypic population sex ratio because biased ratios have been reported from other liverworts with heteromorphic sex chromosomes. Populations had male-biased sex ratios. The sex chromosomes are monocentric, and of 14 probes studied (eight satellites, five transposable elements and one plastid region), four resulted in unique signals that differentiated the sex chromosomes from the autosomes and from each other. One FISH probe selectively marked the centromeres of both U chromosomes, so we could prove that during meiosis each U chromosome associates with one of the opposite telomeres of the V chromosome, resulting in a head-to-head trivalent. The similarity of the two U chromosomes to each other in size and in their centromere FISH signal positions points to their origin via a non-disjunction event (aneuploidy), which would fit with the general picture of sex chromosomes rarely crossing-over and being prone to suffer from non-disjunction.
Collapse
Affiliation(s)
- Aretuza Sousa
- Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), Munich, 80638, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, 06466, Germany
| | - Susanne S Renner
- Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), Munich, 80638, Germany
| |
Collapse
|
11
|
Hartmann FE, Duhamel M, Carpentier F, Hood ME, Foulongne‐Oriol M, Silar P, Malagnac F, Grognet P, Giraud T. Recombination suppression and evolutionary strata around mating-type loci in fungi: documenting patterns and understanding evolutionary and mechanistic causes. THE NEW PHYTOLOGIST 2021; 229:2470-2491. [PMID: 33113229 PMCID: PMC7898863 DOI: 10.1111/nph.17039] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/03/2020] [Indexed: 05/08/2023]
Abstract
Genomic regions determining sexual compatibility often display recombination suppression, as occurs in sex chromosomes, plant self-incompatibility loci and fungal mating-type loci. Regions lacking recombination can extend beyond the genes determining sexes or mating types, by several successive steps of recombination suppression. Here we review the evidence for recombination suppression around mating-type loci in fungi, sometimes encompassing vast regions of the mating-type chromosomes. The suppression of recombination at mating-type loci in fungi has long been recognized and maintains the multiallelic combinations required for correct compatibility determination. We review more recent evidence for expansions of recombination suppression beyond mating-type genes in fungi ('evolutionary strata'), which have been little studied and may be more pervasive than commonly thought. We discuss testable hypotheses for the ultimate (evolutionary) and proximate (mechanistic) causes for such expansions of recombination suppression, including (1) antagonistic selection, (2) association of additional functions to mating-type, such as uniparental mitochondria inheritance, (3) accumulation in the margin of nonrecombining regions of various factors, including deleterious mutations or transposable elements resulting from relaxed selection, or neutral rearrangements resulting from genetic drift. The study of recombination suppression in fungi could thus contribute to our understanding of recombination suppression expansion across a broader range of organisms.
Collapse
Affiliation(s)
- Fanny E. Hartmann
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Marine Duhamel
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
- Ruhr‐Universität Bochum, Evolution of Plants and Fungi ‐ Gebäude ND 03/174Universitätsstraße150, 44801 BochumGermany
| | - Fantin Carpentier
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Michael E. Hood
- Biology Department, Science CentreAmherst CollegeAmherstMA01002USA
| | | | - Philippe Silar
- Lab Interdisciplinaire Energies DemainUniv Paris DiderotSorbonne Paris CiteParis 13F‐75205France
| | - Fabienne Malagnac
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Pierre Grognet
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Tatiana Giraud
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| |
Collapse
|
12
|
Abstract
Model organisms are extensively used in research as accessible and convenient systems for studying a particular area or question in biology. Traditionally, only a limited number of organisms have been studied in detail, but modern genomic tools are enabling researchers to extend beyond the set of classical model organisms to include novel species from less-studied phylogenetic groups. This review focuses on model species for an important group of multicellular organisms, the brown algae. The development of genetic and genomic tools for the filamentous brown alga Ectocarpus has led to it emerging as a general model system for this group, but additional models, such as Fucus or Dictyota dichotoma, remain of interest for specific biological questions. In addition, Saccharina japonica has emerged as a model system to directly address applied questions related to algal aquaculture. We discuss the past, present, and future of brown algal model organisms in relation to the opportunities and challenges in brown algal research.
Collapse
Affiliation(s)
- Susana M Coelho
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, 29680 Roscoff, France;
- Current affiliation: Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| | - J Mark Cock
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, 29680 Roscoff, France;
| |
Collapse
|
13
|
Carey SB, Jenkins J, Lovell JT, Maumus F, Sreedasyam A, Payton AC, Shu S, Tiley GP, Fernandez-pozo N, Barry K, Chen C, Wang M, Lipzen A, Daum C, Saski CA, Mcbreen JC, Conrad RE, Kollar LM, Olsson S, Huttunen S, Landis JB, Burleigh JG, Wickett NJ, Johnson MG, Rensing SA, Grimwood J, Schmutz J, Mcdaniel SF. The Ceratodon purpureus genome uncovers structurally complex, gene rich sex chromosomes.. [PMID: 0 DOI: 10.1101/2020.07.03.163634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
AbstractNon-recombining sex chromosomes, like the mammalian Y, often lose genes and accumulate transposable elements, a process termed degeneration1,2. The correlation between suppressed recombination and degeneration is clear in animal XY systems1,2, but the absence of recombination is confounded with other asymmetries between the X and Y. In contrast, UV sex chromosomes, like those found in bryophytes, experience symmetrical population genetic conditions3,4. Here we test for degeneration in the bryophyte UV sex chromosome system through genomic comparisons with new female and male chromosome-scale reference genomes of the moss Ceratodon purpureus. We show that the moss sex chromosomes evolved over 300 million years ago and expanded via two chromosomal fusions. Although the sex chromosomes show signs of weaker purifying selection than autosomes, we find suppressed recombination alone is insufficient to drive gene loss on sex-specific chromosomes. Instead, the U and V sex chromosomes harbor thousands of broadly-expressed genes, including numerous key regulators of sexual development across land plants.
Collapse
|
14
|
Sousa A, Bechteler J, Temsch EM, Renner SS. Different from tracheophytes, liverworts commonly have mixed 35S and 5S arrays. ANNALS OF BOTANY 2020; 125:1057-1064. [PMID: 32064492 PMCID: PMC7262461 DOI: 10.1093/aob/mcaa027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Unlike other nuclear genes in eukaryotes, rDNA genes (5S and 35S loci) are present in numerous copies per cell and, when stained, can therefore provide basic information about genome organization. In tracheophytes (vascular plants), they are usually located on separate chromosomes, the so-called S-type organization. An analysis of 1791 species of land plants suggested that S-type arrays might be ancestral in land plants, while linked (L-type) organization may be derived. However, no outgroup and only a handful of ferns and bryophytes were included. METHODS We analysed genome sizes and the distribution of telomere, 5S and 35S rDNA FISH signals in up to 12 monoicous or dioicous species of liverworts from throughout a phylogeny that includes 287 of the 386 currently recognized genera. We also used the phylogeny to plot chromosome numbers and the occurrence of visibly distinct sex chromosomes. KEY RESULTS Chromosome numbers are newly reported for the monoicous Lejeunea cavifolia and for females of the dioicous Scapania aequiloba. We detected sex-related differences in the number of rDNA signals in the dioicous Plagiochila asplenioides and Frullania dilatata. In the latter, the presence of two UU chromosomes in females and additional 5S-35S rDNA loci result in a haploid genome 0.2082 pg larger than the male genome; sex-specific genome differences in the other dioicous species were small. Four species have S-type rDNA, while five species have mixed L-S rDNA organization, and transitions may have occurred multiple times, as suggested by rDNA loci not being conserved among closely related species of Pellia. All species shared an Arabidopsis-like telomere motif, and its detection allowed verification of the chromosome number of Radula complanata and chromosome rearrangements in Aneura pinguis and P. asplenioides, the latter also showing sex-specific interstitial telomere repeats. CONCLUSIONS The S and L rDNA arrangements appear to have evolved repeatedly within liverworts, even in the same species. Evidence for differential accumulation of rDNA between the sexes so far is limited.
Collapse
Affiliation(s)
- Aretuza Sousa
- Department of Biology, University of Munich (LMU), Munich, Germany
| | - Julia Bechteler
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, Germany
| | - Eva M Temsch
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Susanne S Renner
- Department of Biology, University of Munich (LMU), Munich, Germany
| |
Collapse
|
15
|
Abstract
Considering the role of theory in ecology and evolution, we argue that scientific theorizing involves an interplay between narratives and models in which narratives play a key creative and organizing role. Specifically, as scientists, we reason through the use of narratives that explain biological phenomena by envisaging, or mentally simulating, causal paths leading from a plausible initial state to an outcome of interest. Within these narratives, some parts may appear clear, while others may appear puzzling. It is at these tenuous junctions-junctions where reasoning is made challenging by conflicting possible outcomes-that we often build mathematical models to support and extend, or reject and revise, our narratives. Accordingly, models, both analytical and computational, are framed by and interpreted within a narrative. We illustrate these points using case studies from population genetics. This perspective on scientific theorizing helps to clarify the nature of theoretical debates, which often arise from the narratives in which math is embedded, not from the math itself. Finally, this perspective helps place appropriate creative weight on the importance of developing, revising, and challenging narratives in the scientific enterprise.
Collapse
|
16
|
Hasan AR, Duggal JK, Ness RW. Consequences of recombination for the evolution of the mating type locus in Chlamydomonas reinhardtii. THE NEW PHYTOLOGIST 2019; 224:1339-1348. [PMID: 31222749 DOI: 10.1111/nph.16003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Recombination suppression in sex chromosomes and mating type loci can lead to degeneration as a result of reduced selection efficacy and Muller's ratchet effects. However, genetic exchange in the form of noncrossover gene conversions may still take place within crossover-suppressed regions. Recent work has found evidence that gene conversion may explain the low degrees of allelic differentiation in the dimorphic mating-type locus (MT) of the isogamous alga Chlamydomonas reinhardtii. However, no one has tested whether gene conversion is sufficient to avoid the degeneration of functional sequence within MT. Here, we calculate degree of linkage disequilibrium (LD) across MT as a proxy for recombination rate and investigate its relationship to patterns of population genetic variation and the efficacy of selection in the region. We find that degree of LD predicts selection efficacy across MT, and that purifying selection is stronger in shared genes than in MT-limited genes to the point of being equivalent to that of autosomal genes. We argue that while crossover suppression is needed in the mating-type loci of many isogamous systems, these loci are less likely to experience selection to differentiate further. Thus, recombination can act in these regions and prevent degeneration caused by Hill-Robertson effects.
Collapse
Affiliation(s)
- Ahmed R Hasan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Jaspreet K Duggal
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Rob W Ness
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
17
|
Marks RA, Smith JJ, Cronk Q, Grassa CJ, McLetchie DN. Genome of the tropical plant Marchantia inflexa: implications for sex chromosome evolution and dehydration tolerance. Sci Rep 2019; 9:8722. [PMID: 31217536 PMCID: PMC6584576 DOI: 10.1038/s41598-019-45039-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/29/2019] [Indexed: 01/29/2023] Open
Abstract
We present a draft genome assembly for the tropical liverwort, Marchantia inflexa, which adds to a growing body of genomic resources for bryophytes and provides an important perspective on the evolution and diversification of land plants. We specifically address questions related to sex chromosome evolution, sexual dimorphisms, and the genomic underpinnings of dehydration tolerance. This assembly leveraged the recently published genome of related liverwort, M. polymorpha, to improve scaffolding and annotation, aid in the identification of sex-linked sequences, and quantify patterns of sequence differentiation within Marchantia. We find that genes on sex chromosomes are under greater diversifying selection than autosomal and organellar genes. Interestingly, this is driven primarily by divergence of male-specific genes, while divergence of other sex-linked genes is similar to autosomal genes. Through analysis of sex-specific read coverage, we identify and validate genetic sex markers for M. inflexa, which will enable diagnosis of sex for non-reproductive individuals. To investigate dehydration tolerance, we capitalized on a difference between genetic lines, which allowed us to identify multiple dehydration associated genes two of which were sex-linked, suggesting that dehydration tolerance may be impacted by sex-specific genes.
Collapse
Affiliation(s)
- Rose A Marks
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506, USA.
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506, USA
| | - Quentin Cronk
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Christopher J Grassa
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA, 02138, USA
| | - D Nicholas McLetchie
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506, USA
| |
Collapse
|
18
|
Little Evidence of Antagonistic Selection in the Evolutionary Strata of Fungal Mating-Type Chromosomes ( Microbotryum lychnidis-dioicae). G3-GENES GENOMES GENETICS 2019; 9:1987-1998. [PMID: 31015196 PMCID: PMC6553529 DOI: 10.1534/g3.119.400242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recombination suppression on sex chromosomes often extends in a stepwise manner, generating evolutionary strata of differentiation between sex chromosomes. Sexual antagonism is a widely accepted explanation for evolutionary strata, postulating that sets of genes beneficial in only one sex are successively linked to the sex-determining locus. The anther-smut fungus Microbotryum lychnidis-dioicae has mating-type chromosomes with evolutionary strata, only some of which link mating-type genes. Male and female roles are non-existent in this fungus, but mating-type antagonistic selection can also generate evolutionary strata, although the life cycle of the fungus suggests it should be restricted to few traits. Here, we tested the hypothesis that mating-type antagonism may have triggered recombination suppression beyond mating-type genes in M. lychnidis-dioicae by searching for footprints of antagonistic selection in evolutionary strata not linking mating-type loci. We found that these evolutionary strata (i) were not enriched in genes upregulated in the haploid phase, where cells are of alternative mating types, (ii) carried no gene differentially expressed between mating types, and (iii) carried no genes displaying footprints of specialization in terms of protein sequences (dN/dS) between mating types after recommended filtering. Without filtering, eleven genes showed signs of positive selection in the strata not linking mating-type genes, which constituted an enrichment compared to autosomes, but their functions were not obviously involved in antagonistic selection. Thus, we found no strong evidence that antagonistic selection has contributed to extending recombination suppression beyond mating-type genes. Alternative hypotheses should therefore be explored to improve our understanding of the sex-related chromosome evolution.
Collapse
|
19
|
Coelho SM, Mignerot L, Cock JM. Origin and evolution of sex-determination systems in the brown algae. THE NEW PHYTOLOGIST 2019; 222:1751-1756. [PMID: 30667071 DOI: 10.1111/nph.15694] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Sexual reproduction is a nearly universal feature of eukaryotic organisms. Meiosis appears to have had a single ancient origin, but the mechanisms underlying male or female sex determination are diverse and have emerged repeatedly and independently in the different eukaryotic groups. The brown algae are a group of multicellular photosynthetic eukaryotes that have a distinct evolutionary history compared with animals and plants, as they have been evolving independently for over 1 billion yr. Here, we review recent work using the brown alga Ectocarpus as a model organism to study haploid sex chromosomes, and highlight how the diversity of reproductive and life cycle features of the brown algae offer unique opportunities to characterize the evolutionary forces and the mechanisms underlying the evolution of sex determination.
Collapse
Affiliation(s)
- Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90c074, F-29688, Roscoff, France
| | - Laure Mignerot
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90c074, F-29688, Roscoff, France
| | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90c074, F-29688, Roscoff, France
| |
Collapse
|
20
|
Lipinska AP, Serrano-Serrano ML, Cormier A, Peters AF, Kogame K, Cock JM, Coelho SM. Rapid turnover of life-cycle-related genes in the brown algae. Genome Biol 2019; 20:35. [PMID: 30764885 PMCID: PMC6374913 DOI: 10.1186/s13059-019-1630-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 01/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations. RESULTS We show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression. CONCLUSION Our analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity.
Collapse
Affiliation(s)
- Agnieszka P Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | | | - Alexandre Cormier
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | | | - Kazuhiro Kogame
- Department of Biological Sciences, Faculty of Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France.
| |
Collapse
|
21
|
Coelho SM, Gueno J, Lipinska AP, Cock JM, Umen JG. UV Chromosomes and Haploid Sexual Systems. TRENDS IN PLANT SCIENCE 2018; 23:794-807. [PMID: 30007571 PMCID: PMC6128410 DOI: 10.1016/j.tplants.2018.06.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 05/20/2023]
Abstract
The evolution of sex determination continues to pose major questions in biology. Sex-determination mechanisms control reproductive cell differentiation and development of sexual characteristics in all organisms, from algae to animals and plants. While the underlying processes defining sex (meiosis and recombination) are conserved, sex-determination mechanisms are highly labile. In particular, a flow of new discoveries has highlighted several fascinating features of the previously understudied haploid UV sex determination and related mating systems found in diverse photosynthetic taxa including green algae, bryophytes, and brown algae. Analyses integrating information from these systems and contrasting them with classical XY and ZW systems are providing exciting insights into both the universality and the diversity of sex-determining chromosomes across eukaryotes.
Collapse
Affiliation(s)
- Susana Margarida Coelho
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France.
| | - Josselin Gueno
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Agnieszka Paulina Lipinska
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Jeremy Mark Cock
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
22
|
Hamaji T, Kawai-Toyooka H, Uchimura H, Suzuki M, Noguchi H, Minakuchi Y, Toyoda A, Fujiyama A, Miyagishima SY, Umen JG, Nozaki H. Anisogamy evolved with a reduced sex-determining region in volvocine green algae. Commun Biol 2018; 1:17. [PMID: 30271904 PMCID: PMC6123790 DOI: 10.1038/s42003-018-0019-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/08/2018] [Indexed: 11/09/2022] Open
Abstract
Male and female gametes differing in size-anisogamy-emerged independently from isogamous ancestors in various eukaryotic lineages, although genetic bases of this emergence are still unknown. Volvocine green algae are a model lineage for investigating the transition from isogamy to anisogamy. Here we focus on two closely related volvocine genera that bracket this transition-isogamous Yamagishiella and anisogamous Eudorina. We generated de novo nuclear genome assemblies of both sexes of Yamagishiella and Eudorina to identify the dimorphic sex-determining chromosomal region or mating-type locus (MT) from each. In contrast to the large (>1 Mb) and complex MT of oogamous Volvox, Yamagishiella and Eudorina MT are smaller (7-268 kb) and simpler with only two sex-limited genes-the minus/male-limited MID and the plus/female-limited FUS1. No prominently dimorphic gametologs were identified in either species. Thus, the first step to anisogamy in volvocine algae presumably occurred without an increase in MT size and complexity.
Collapse
Affiliation(s)
- Takashi Hamaji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroko Kawai-Toyooka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Haruka Uchimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masahiro Suzuki
- Kobe University Research Center for Inland Seas, Awaji, Hyogo, 656-2401, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Yohei Minakuchi
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Shin-Ya Miyagishima
- Department of Cell Genetics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - James G Umen
- Donald Danforth Plant Science Center, 975 N Warson Rd, St. Louis, MO, 63132, USA
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
23
|
Petersen KB, Burd M. The enigma of sex allocation in Selaginella. ANNALS OF BOTANY 2018; 121:377-383. [PMID: 29300810 PMCID: PMC5808784 DOI: 10.1093/aob/mcx163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND AIMS The division of resource investment between male and female functions is poorly known for land plants other than angiosperms. The ancient lycophyte genus Selaginella is similar in some ways to angiosperms (in heterospory and in having sex allocation occur in the sporophyte generation, for example) but lacks the post-fertilization maternal investments that angiosperms make via fruit and seed tissues. One would therefore expect Selaginella to have sex allocation values less female-biased than in flowering plants and closer to the theoretical prediction of equal investment in male and female functions. Nothing is currently known of sex allocation in the genus, so even the simplest predictions have not been tested. METHODS Volumetric measurements of microsporangial and megasporangial investment were made in 14 species of Selaginella from four continents. In five of these species the length of the main above-ground axis of each plant was measured to determine whether sex allocation is related to plant size. KEY RESULTS Of the 14 species, 13 showed male-biased allocations, often extreme, in population means and among the great majority of individual plants. There was some indication from the five species with axis length measurements that relative male allocation might be related to the release height of spores, but this evidence is preliminary. CONCLUSIONS Sex allocation in Selaginella provides a phylogenetic touchstone showing how the innovations of fruit and seed investment in the angiosperm life cycle lead to typically female-biased allocations in that lineage. Moreover, the male bias we found in Selaginella requires an evolutionary explanation. The bias was often greater than what would occur from the mere absence of seed and fruit investments, and thus poses a challenge to sex allocation theory. It is possible that differences between microspores and megaspores in their dispersal ecology create selective effects that favour male-biased sexual allocation. This hypothesis remains tentative.
Collapse
Affiliation(s)
- Kurt B Petersen
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Martin Burd
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Abbott JK, Nordén AK, Hansson B. Sex chromosome evolution: historical insights and future perspectives. Proc Biol Sci 2018; 284:rspb.2016.2806. [PMID: 28469017 PMCID: PMC5443938 DOI: 10.1098/rspb.2016.2806] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/04/2017] [Indexed: 12/26/2022] Open
Abstract
Many separate-sexed organisms have sex chromosomes controlling sex determination. Sex chromosomes often have reduced recombination, specialized (frequently sex-specific) gene content, dosage compensation and heteromorphic size. Research on sex determination and sex chromosome evolution has increased over the past decade and is today a very active field. However, some areas within the field have not received as much attention as others. We therefore believe that a historic overview of key findings and empirical discoveries will put current thinking into context and help us better understand where to go next. Here, we present a timeline of important conceptual and analytical models, as well as empirical studies that have advanced the field and changed our understanding of the evolution of sex chromosomes. Finally, we highlight gaps in our knowledge so far and propose some specific areas within the field that we recommend a greater focus on in the future, including the role of ecology in sex chromosome evolution and new multilocus models of sex chromosome divergence.
Collapse
Affiliation(s)
- Jessica K Abbott
- Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| | - Anna K Nordén
- Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| | - Bengt Hansson
- Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| |
Collapse
|
25
|
Haploid Selection Favors Suppressed Recombination Between Sex Chromosomes Despite Causing Biased Sex Ratios. Genetics 2017; 207:1631-1649. [PMID: 29051194 DOI: 10.1534/genetics.117.300062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/11/2017] [Indexed: 11/18/2022] Open
Abstract
To date, research on the evolution of sex chromosomes has focused on sexually antagonistic selection among diploids, which has been shown to be a potent driver of the strata and reduced recombination that characterize many sex chromosomes. However, significant selection can also occur on haploid genotypes during less conspicuous life cycle stages, e.g., competition among sperm/pollen or meiotic drive during gamete/spore production. These haploid selective processes are typically sex-specific, e.g., gametic/gametophytic competition typically occurs among sperm/pollen, and meiotic drive typically occurs during either spermatogenesis or oogenesis. We use models to investigate whether sex-specific selection on haploids could drive the evolution of recombination suppression on the sex chromosomes, as has been demonstrated for sex-specific selection among diploids. A potential complication is that zygotic sex-ratios become biased when haploid selected loci become linked to the sex-determining region because the zygotic sex ratio is determined by the relative number and fitness of X- vs. Y-bearing sperm. Despite causing biased zygotic sex-ratios, we find that a period of sex-specific haploid selection generally favors recombination suppression on the sex chromosomes. Suppressed recombination is favored because it allows associations to build up between haploid-beneficial alleles and the sex that experiences haploid selection most often (e.g., pollen beneficial alleles become strongly associated with the male determining region, Y or Z). Haploid selected loci can favor recombination suppression even in the absence of selective differences between male and female diploids. Overall, we expand our view of the sex-specific life cycle stages that can drive sex chromosome evolution to include gametic competition and meiotic drive. Based on our models, sex chromosomes should become enriched for genes that experience haploid selection, as is expected for genes that experience sexually antagonistic selection. Thus, we generate a number of predictions that can be evaluated in emerging sex chromosome systems.
Collapse
|
26
|
Yamazaki T, Ichihara K, Suzuki R, Oshima K, Miyamura S, Kuwano K, Toyoda A, Suzuki Y, Sugano S, Hattori M, Kawano S. Genomic structure and evolution of the mating type locus in the green seaweed Ulva partita. Sci Rep 2017; 7:11679. [PMID: 28916791 PMCID: PMC5601483 DOI: 10.1038/s41598-017-11677-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 08/29/2017] [Indexed: 01/08/2023] Open
Abstract
The evolution of sex chromosomes and mating loci in organisms with UV systems of sex/mating type determination in haploid phases via genes on UV chromosomes is not well understood. We report the structure of the mating type (MT) locus and its evolutionary history in the green seaweed Ulva partita, which is a multicellular organism with an isomorphic haploid-diploid life cycle and mating type determination in the haploid phase. Comprehensive comparison of a total of 12.0 and 16.6 Gb of genomic next-generation sequencing data for mt- and mt+ strains identified highly rearranged MT loci of 1.0 and 1.5 Mb in size and containing 46 and 67 genes, respectively, including 23 gametologs. Molecular evolutionary analyses suggested that the MT loci diverged over a prolonged period in the individual mating types after their establishment in an ancestor. A gene encoding an RWP-RK domain-containing protein was found in the mt- MT locus but was not an ortholog of the chlorophycean mating type determination gene MID. Taken together, our results suggest that the genomic structure and its evolutionary history in the U. partita MT locus are similar to those on other UV chromosomes and that the MT locus genes are quite different from those of Chlorophyceae.
Collapse
Affiliation(s)
- Tomokazu Yamazaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Kensuke Ichihara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Ryogo Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Kenshiro Oshima
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Shinichi Miyamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuyoshi Kuwano
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Masahira Hattori
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
27
|
Lipinska AP, Toda NRT, Heesch S, Peters AF, Cock JM, Coelho SM. Multiple gene movements into and out of haploid sex chromosomes. Genome Biol 2017; 18:104. [PMID: 28595587 PMCID: PMC5463336 DOI: 10.1186/s13059-017-1201-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long-term evolution of sex chromosomes is a dynamic process shaped by gene gain and gene loss. Sex chromosome gene traffic has been studied in XY and ZW systems but no detailed analyses have been carried out for haploid phase UV sex chromosomes. Here, we explore sex-specific sequences of seven brown algal species to understand the dynamics of the sex-determining region (SDR) gene content across 100 million years of evolution. RESULTS A core set of sex-linked genes is conserved across all the species investigated, but we also identify modifications of both the U and the V SDRs that occurred in a lineage-specific fashion. These modifications involve gene loss, gene gain and relocation of genes from the SDR to autosomes. Evolutionary analyses suggest that the SDR genes are evolving rapidly and that this is due to relaxed purifying selection. Expression analysis indicates that genes that were acquired from the autosomes have been retained in the SDR because they confer a sex-specific role in reproduction. By examining retroposed genes in Saccharina japonica, we demonstrate that UV sex chromosomes have generated a disproportionate number of functional orphan retrogenes compared with autosomes. Movement of genes out of the UV sex chromosome could be a means to compensate for gene loss from the non-recombining region, as has been suggested for Y-derived retrogenes in XY sexual systems. CONCLUSION This study provides the first analysis of gene traffic in a haploid UV system and identifies several features of general relevance to the evolution of sex chromosomes.
Collapse
Affiliation(s)
- Agnieszka P Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Nicholas R T Toda
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Svenja Heesch
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | | | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France.
| |
Collapse
|
28
|
Nieuwenhuis BPS, Immler S. The evolution of mating-type switching for reproductive assurance. Bioessays 2016; 38:1141-1149. [DOI: 10.1002/bies.201600139] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Simone Immler
- Department of Evolutionary Biology; Uppsala University; Uppsala Sweden
| |
Collapse
|
29
|
Abstract
Mutation generates a steady supply of genetic variation that, while occasionally useful for adaptation, is more often deleterious for fitness. Recent research has emphasized that the fitness effects of mutations often differ between the sexes, leading to important evolutionary consequences for the maintenance of genetic variation and long-term population viability. Some forms of sex-specific selection-i.e., stronger purifying selection in males than females-can help purge a population's load of female-harming mutations and promote population growth. Other scenarios-e.g., sexually antagonistic selection, in which mutations that harm females are beneficial for males-inflate genetic loads and potentially dampen population viability. Evolutionary processes of sexual antagonism and purifying selection are likely to impact the evolutionary dynamics of different loci within a genome, yet theory has mostly ignored the potential for interactions between such loci to jointly shape the evolutionary genetic basis of female and male fitness variation. Here, we show that sexually antagonistic selection at a locus tends to elevate the frequencies of deleterious alleles at tightly linked loci that evolve under purifying selection. Moreover, haplotypes that segregate for different sexually antagonistic alleles accumulate different types of deleterious mutations. Haplotypes that carry female-benefit sexually antagonistic alleles preferentially accumulate mutations that are primarily male harming, whereas male-benefit haplotypes accumulate mutations that are primarily female harming. The theory predicts that sexually antagonistic selection should shape the genomic organization of genetic variation that differentially impacts female and male fitness, and contribute to sexual dimorphism in the genetic basis of fitness variation.
Collapse
|
30
|
Sequence of the Gonium pectorale Mating Locus Reveals a Complex and Dynamic History of Changes in Volvocine Algal Mating Haplotypes. G3-GENES GENOMES GENETICS 2016; 6:1179-89. [PMID: 26921294 PMCID: PMC4856071 DOI: 10.1534/g3.115.026229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sex-determining regions (SDRs) or mating-type (MT) loci in two sequenced volvocine algal species, Chlamydomonas reinhardtii and Volvox carteri, exhibit major differences in size, structure, gene content, and gametolog differentiation. Understanding the origin of these differences requires investigation of MT loci from related species. Here, we determined the sequences of the minus and plus MT haplotypes of the isogamous 16-celled volvocine alga, Gonium pectorale, which is more closely related to the multicellular V. carteri than to C. reinhardtii. Compared to C. reinhardtii MT, G. pectorale MT is moderately larger in size, and has a less complex structure, with only two major syntenic blocs of collinear gametologs. However, the gametolog content of G. pectorale MT has more overlap with that of V. carteri MT than with C. reinhardtii MT, while the allelic divergence between gametologs in G. pectorale is even lower than that in C. reinhardtii. Three key sex-related genes are conserved in G. pectorale MT: GpMID and GpMTD1 in MT–, and GpFUS1 in MT+. GpFUS1 protein exhibited specific localization at the plus-gametic mating structure, indicating a conserved function in fertilization. Our results suggest that the G. pectorale–V. carteri common ancestral MT experienced at least one major reformation after the split from C. reinhardtii, and that the V. carteri ancestral MT underwent a subsequent expansion and loss of recombination after the divergence from G. pectorale. These data begin to polarize important changes that occurred in volvocine MT loci, and highlight the potential for discontinuous and dynamic evolution in SDRs.
Collapse
|
31
|
Luthringer R, Lipinska AP, Roze D, Cormier A, Macaisne N, Peters AF, Cock JM, Coelho SM. The Pseudoautosomal Regions of the U/V Sex Chromosomes of the Brown Alga Ectocarpus Exhibit Unusual Features. Mol Biol Evol 2015; 32:2973-85. [PMID: 26248564 PMCID: PMC4610043 DOI: 10.1093/molbev/msv173] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The recombining regions of sex chromosomes (pseudoautosomal regions, PARs) are predicted to exhibit unusual features due to their being genetically linked to the nonrecombining, sex-determining region. This phenomenon is expected to occur in both diploid (XY, ZW) and haploid (UV) sexual systems, with slightly different consequences for UV sexual systems because of the absence of masking during the haploid phase (when sex is expressed) and because there is no homozygous sex in these systems. Despite a considerable amount of theoretical work on PAR genetics and evolution, these genomic regions have remained poorly characterized empirically. We show here that although the PARs of the U/V sex chromosomes of the brown alga Ectocarpus recombine at a similar rate to autosomal regions of the genome, they exhibit many genomic features typical of nonrecombining regions. The PARs were enriched in clusters of genes that are preferentially, and often exclusively, expressed during the sporophyte generation of the life cycle, and many of these genes appear to have evolved since the Ectocarpales diverged from other brown algal lineages. A modeling-based approach was used to investigate possible evolutionary mechanisms underlying this enrichment in sporophyte-biased genes. Our results are consistent with the evolution of the PAR in haploid systems being influenced by differential selection pressures in males and females acting on alleles that are advantageous during the sporophyte generation of the life cycle.
Collapse
Affiliation(s)
- Rémy Luthringer
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Agnieszka P Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Denis Roze
- UMI 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, PUCCh, UACH, Station Biologique de Roscoff, Roscoff, France
| | - Alexandre Cormier
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Nicolas Macaisne
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | | | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
32
|
Charlesworth D. Plant contributions to our understanding of sex chromosome evolution. THE NEW PHYTOLOGIST 2015; 208:52-65. [PMID: 26053356 DOI: 10.1111/nph.13497] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/01/2015] [Indexed: 05/06/2023]
Abstract
A minority of angiosperms have male and female flowers separated in distinct individuals (dioecy), and most dioecious plants do not have cytologically different (heteromorphic) sex chromosomes. Plants nevertheless have several advantages for the study of sex chromosome evolution, as genetic sex determination has evolved repeatedly and is often absent in close relatives. I review sex-determining regions in non-model plant species, which may help us to understand when and how (and, potentially, test hypotheses about why) recombination suppression evolves within young sex chromosomes. I emphasize high-throughput sequencing approaches that are increasingly being applied to plants to test for non-recombining regions. These data are particularly illuminating when combined with sequence data that allow phylogenetic analyses, and estimates of when these regions evolved. Together with comparative genetic mapping, this has revealed that sex-determining loci and sex-linked regions evolved independently in many plant lineages, sometimes in closely related dioecious species, and often within the past few million years. In reviewing recent progress, I suggest areas for future work, such as the use of phylogenies to allow the informed choice of outgroup species suitable for inferring the directions of changes, including testing whether Y chromosome-like regions are undergoing genetic degeneration, a predicted consequence of losing recombination.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Lab, King's Buildings, W. Mains Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|