1
|
Imlay TL, Breau C, Dauphin GJR, Chaput G, April J, Douglas S, Hogan JD, McWilliam S, Notte D, Robertson MJ, Taylor A, Underhill K, Weir LK. Body length changes for Atlantic salmon ( Salmo salar) over five decades exhibit weak spatial synchrony over a broad latitudinal gradient. Ecol Evol 2024; 14:e11538. [PMID: 38859887 PMCID: PMC11163019 DOI: 10.1002/ece3.11538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Understanding the factors that drive spatial synchrony among populations or species is important for management and recovery of populations. The range-wide declines in Atlantic salmon (Salmo salar) populations may be the result of broad-scale changes in the marine environment. Salmon undergo rapid growth in the ocean; therefore changing marine conditions may affect body size and fecundity estimates used to evaluate whether stock reference points are met. Using a dataset that spanned five decades, 172,268 individuals, and 19 rivers throughout Eastern Canada, we investigated the occurrence of spatial synchrony in changes in the body size of returning wild adult Atlantic salmon. Body size was then related to conditions in the marine environment (i.e., climate indices, thermal habitat availability, food availability, density-dependence, and fisheries exploitation rates) that may act on all populations during the ocean feeding phase of their life cycle. Body size increased during the 1980s and 1990s for salmon that returned to rivers after one (1SW) or two winters at sea (2SW); however, significant changes were only observed for 1SW and/or 2SW in some mid-latitude and northern rivers (10/13 rivers with 10 of more years of data during these decades) and not in southern rivers (0/2), suggesting weak spatial synchrony across Eastern Canada. For 1SW salmon in nine rivers, body size was longer when fisheries exploitation rates were lower. For 2SW salmon, body size was longer when suitable thermal habitat was more abundant (significant for 3/8 rivers) and the Atlantic Multidecadal Oscillation was higher (i.e., warmer sea surface temperatures; significant for 4/8 rivers). Overall, the weak spatial synchrony and variable effects of covariates on body size across rivers suggest that changes in Atlantic salmon body size may not be solely driven by shared conditions in the marine environment. Regardless, body size changes may have consequences for population management and recovery through the relationship between size and fecundity.
Collapse
Affiliation(s)
- Tara L. Imlay
- Fisheries and Oceans CanadaMonctonNew BrunswickCanada
| | - Cindy Breau
- Fisheries and Oceans CanadaMonctonNew BrunswickCanada
| | | | - Gérald Chaput
- Fisheries and Oceans CanadaMonctonNew BrunswickCanada
| | - Julien April
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des ParcsQuébecQuébecCanada
| | - Scott Douglas
- Fisheries and Oceans CanadaMonctonNew BrunswickCanada
| | - J. Derek Hogan
- Fisheries and Oceans CanadaFrench VillageNew BrunswickCanada
| | | | - Daniela Notte
- Fisheries and Oceans CanadaDartmouthNova ScotiaCanada
| | | | - Andrew Taylor
- Fisheries and Oceans CanadaDartmouthNova ScotiaCanada
| | | | - Laura K. Weir
- Department of BiologySaint Mary's UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
2
|
Walters RJ, Berger D, Blanckenhorn WU, Bussière LF, Rohner PT, Jochmann R, Thüler K, Schäfer MA. Growth rate mediates hidden developmental plasticity of female yellow dung fly reproductive morphology in response to environmental stressors. Evol Dev 2022; 24:3-15. [PMID: 35072984 PMCID: PMC9285807 DOI: 10.1111/ede.12396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/19/2021] [Accepted: 11/24/2021] [Indexed: 01/08/2023]
Abstract
Understanding how environmental variation influences even cryptic traits is important to clarify the roles of selection and developmental constraints in past evolutionary divergence and to predict future adaptation under environmental change. Female yellow dung flies (Scathophaga stercoraria) typically have three sperm storage compartments (3S), but occasionally four (4S). More spermathecae are thought to be a female adaptation facilitating sperm sorting after mating, but the phenotype is very rare in nature. We manipulated the flies' developmental environment by food restriction, pesticides, and hot temperatures to investigate the nature and extent of developmental plasticity of this trait, and whether spermatheca expression correlates with measures of performance and developmental stability, as would be expected if 4S expression is a developmental aberration. The spermathecal polymorphism of yellow dung fly females is heritable, but also highly developmentally plastic, varying strongly with rearing conditions. 4S expression is tightly linked to growth rate, and weakly positively correlated with fluctuating asymmetry of wings and legs, suggesting that the production of a fourth spermatheca could be a nonadaptive developmental aberration. However, spermathecal plasticity is opposite in the closely related and ecologically similar Scathophaga suilla, demonstrating that overexpression of spermathecae under developmental stress is not universal. At the same time, we found overall mortality costs as well as benefits of 4S pheno‐ and genotypes (also affecting male siblings), suggesting that a life history trade‐off may potentially moderate 4S expression. We conclude that the release of cryptic genetic variation in spermatheca number in the face of strong environmental variation may expose hidden traits (here reproductive morphology) to natural selection (here under climate warming or food augmentation). Once exposed, hidden traits can potentially undergo rapid genetic assimilation, even in cases when trait changes are first triggered by random errors that destabilize developmental processes. Female yellow dung flies naturally vary in number of sperm storage compartments (3S or 4S). This spermathecal polymorphism is strongly heritable but also developmentally plastic. 4S expression is linked to growth rate and weakly correlated with fluctuating asymmetry, so potentially a developmental aberration. There are mortality costs as well as benefits for 4S phenotypes, suggesting adaptive life‐history trade‐offs. Spermathecal plasticity differs in the closely related and ecologically similar Scathophaga suilla. Environmental changes can expose hidden traits with initially no function to natural selection.
Collapse
Affiliation(s)
- Richard J. Walters
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Centre for Environmental and Climate Research Lund University Lund Sweden
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Evolutionary Biology Centre University of Uppsala Uppsala Sweden
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Luc F. Bussière
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Biological and Environmental Sciences University of Stirling Stirling Scotland UK
- Biology and Environmental Sciences University of Gothenburg Gothenburg Sweden
| | - Patrick T. Rohner
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Department of Biology Indiana University Bloomington Indiana USA
| | - Ralf Jochmann
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Karin Thüler
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Martin A. Schäfer
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| |
Collapse
|
3
|
Ryding S, Klaassen M, Tattersall GJ, Gardner JL, Symonds MRE. Shape-shifting: changing animal morphologies as a response to climatic warming. Trends Ecol Evol 2021; 36:1036-1048. [PMID: 34507845 DOI: 10.1016/j.tree.2021.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Many animal appendages, such as avian beaks and mammalian ears, can be used to dissipate excess body heat. Allen's rule, wherein animals in warmer climates have larger appendages to facilitate more efficient heat exchange, reflects this. We find that there is widespread evidence of 'shape-shifting' (changes in appendage size) in endotherms in response to climate change and its associated climatic warming. We re-examine studies of morphological change over time within a thermoregulatory context, finding evidence that temperature can be a strong predictor of morphological change independently of, or combined with, other environmental changes. Last, we discuss how Allen's rule, the degree of temperature change, and other ecological factors facilitate morphological change and make predictions about what animals will show shape-shifting.
Collapse
Affiliation(s)
- Sara Ryding
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Glenn J Tattersall
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, Saint Catharines, Ontario L2S 3A1, Canada
| | - Janet L Gardner
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Matthew R E Symonds
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
4
|
Blanckenhorn WU, Berger D, Rohner PT, Schäfer MA, Akashi H, Walters RJ. Comprehensive thermal performance curves for yellow dung fly life history traits and the temperature-size-rule. J Therm Biol 2021; 100:103069. [PMID: 34503806 DOI: 10.1016/j.jtherbio.2021.103069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Ambient temperature strongly determines the behaviour, physiology, and life history of all organisms. The technical assessment of organismal thermal niches in form of now so-called thermal performance curves (TPC) thus has a long tradition in biological research. Nevertheless, several traits do not display the idealized, intuitive dome-shaped TPC, and in practice assessments often do not cover the entire realistic or natural temperature range of an organism. We here illustrate this by presenting comprehensive sex-specific TPCs for the major (juvenile) life history traits of yellow dung flies (Scathophaga stercoraria; Diptera: Scathophagidae). This concerns estimation of prominent biogeographic rules, such as the temperature-size-rule (TSR), the common phenomenon in ectothermic organisms that body size decreases as temperature increases. S. stercoraria shows an untypical asymptotic TPC of continuous body size increase with decreasing temperature without a peak (optimum), thus following the TSR throughout their entire thermal range (unlike several other insects presented here). Egg-to-adult mortality (our best fitness estimator) also shows no intermediate maximum. Both may relate to this fly entering pupal winter diapause below 12 °C. While development time presents a negative exponential relationship with temperature, development rate and growth rate typify the classic TPC form for this fly. The hitherto largely unexplored close relative S. suilla with an even more arctic distribution showed very similar responses, demonstrating large overlap among two ecologically similar, coexisting dung fly species, thus implying limited utility of even complete TPCs for predicting species distribution and coexistence.
Collapse
Affiliation(s)
- Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Evolutionary Biology Centre, University of Uppsala, Norbyvägen 18D, S-752 36, Uppsala, Sweden
| | - Patrick T Rohner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Martin A Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hiroshi Akashi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Biological Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Richard J Walters
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Centre for Environmental and Climate Research, Lund University, Sweden
| |
Collapse
|
5
|
Nengovhela A, Denys C, Taylor PJ. Life history and habitat do not mediate temporal changes in body size due to climate warming in rodents. PeerJ 2020; 8:e9792. [PMID: 33024624 PMCID: PMC7520088 DOI: 10.7717/peerj.9792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 07/31/2020] [Indexed: 11/20/2022] Open
Abstract
Temporal changes in body size have been documented in a number of vertebrate species, with different contested drivers being suggested to explain these changes. Among these are climate warming, resource availability, competition, predation risk, human population density, island effects and others. Both life history traits (intrinsic factors such as lifespan and reproductive rate) and habitat (extrinsic factors such as vegetation type, latitude and elevation) are expected to mediate the existence of a significant temporal response of body size to climate warming but neither have been widely investigated. Using examples of rodents, we predicted that both life history traits and habitat might explain the probability of temporal response using two tests of this hypothesis. Firstly, taking advantage of new data from museum collections spanning the last 106 years, we investigated geographical and temporal variation in cranial size (a proxy for body size) in six African rodent species of two murid subfamilies (Murinae and Gerbillinae) of varying life history, degree of commensality, range size, and habitat. Two species, the commensal Mastomys natalensis, and the non-commensal Otomys unisulcatus showed significant temporal changes in body size, with the former increasing and the latter decreasing, in relation with climate warming. Commensalism could explain the increase in size with time due to steadily increasing food availability through increased agricultural production. Apart from this, we found no general life history or habitat predictors of a temporal response in African rodents. Secondly, in order to further test this hypothesis, we incorporated our data into a meta-analysis based on published literature on temporal responses in rodents, resulting in a combined dataset for 50 species from seven families worldwide; among these, 29 species showed no significant change, eight showed a significant increase in size, and 13 showed a decline in size. Using a binomial logistic regression model for these metadata, we found that none of our chosen life history or habitat predictors could significantly explain the probability of a temporal response to climate warming, reinforcing our conclusion based on the more detailed data from the six African species.
Collapse
Affiliation(s)
- Aluwani Nengovhela
- South African Research Chair in Biodiversity Value and Change and Centre for Invasion Biology, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, Limpopo, South Africa
| | - Christiane Denys
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, CNRS, MNHN, UPMC, EPHE, Sorbonne Universités, Paris, France
| | - Peter J Taylor
- South African Research Chair in Biodiversity Value and Change and Centre for Invasion Biology, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, Limpopo, South Africa.,Zoology and Entomology Department and Afromontane Research Unit, University of the Free State, QwaQwa Campus, Phuthaditjhaba, South Africa
| |
Collapse
|
6
|
Wu CH, Holloway JD, Hill JK, Thomas CD, Chen IC, Ho CK. Reduced body sizes in climate-impacted Borneo moth assemblages are primarily explained by range shifts. Nat Commun 2019; 10:4612. [PMID: 31601806 PMCID: PMC6787050 DOI: 10.1038/s41467-019-12655-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Both community composition changes due to species redistribution and within-species size shifts may alter body-size structures under climate warming. Here we assess the relative contribution of these processes in community-level body-size changes in tropical moth assemblages that moved uphill during a period of warming. Based on resurvey data for seven assemblages of geometrid moths (>8000 individuals) on Mt. Kinabalu, Borneo, in 1965 and 2007, we show significant wing-length reduction (mean shrinkage of 1.3% per species). Range shifts explain most size restructuring, due to uphill shifts of relatively small species, especially at high elevations. Overall, mean forewing length shrank by ca. 5%, much of which is accounted for by species range boundary shifts (3.9%), followed by within-boundary distribution changes (0.5%), and within-species size shrinkage (0.6%). We conclude that the effects of range shifting predominate, but considering species physiological responses is also important for understanding community size reorganization under climate warming. Body size shifts under climate change may arise from species range shifts, intraspecific size shifts, or both. Here the authors show that body size reduction in moth assemblages on Mt. Kinabalu, Borneo, over 42 years are driven more by species range shifts than by within-species shrinkage.
Collapse
Affiliation(s)
- Chung-Huey Wu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei City, Taiwan
| | - Jeremy D Holloway
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Jane K Hill
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Chris D Thomas
- Department of Biology, University of York, York, YO10 5DD, UK
| | - I-Ching Chen
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan.
| | - Chuan-Kai Ho
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei City, Taiwan. .,Department of Life Science, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
7
|
Loisel A, Isla A, Daufresne M. Variation of thermal plasticity in growth and reproduction patterns: Importance of ancestral and developmental temperatures. J Therm Biol 2019; 84:460-468. [DOI: 10.1016/j.jtherbio.2019.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/09/2019] [Accepted: 07/26/2019] [Indexed: 11/25/2022]
|
8
|
Klockmann M, Fischer K. Strong reduction in diapause survival under warm and humid overwintering conditions in a temperate‐zone butterfly. POPUL ECOL 2019. [DOI: 10.1002/1438-390x.1016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael Klockmann
- Zoological Institute and Museum University of Greifswald Greifswald Germany
| | - Klaus Fischer
- Zoological Institute and Museum University of Greifswald Greifswald Germany
| |
Collapse
|
9
|
Baar Y, Friedman ALL, Meiri S, Scharf I. Little effect of climate change on body size of herbivorous beetles. INSECT SCIENCE 2018; 25:309-316. [PMID: 28028893 DOI: 10.1111/1744-7917.12420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/08/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Ongoing climate change affects various aspects of an animal's life, with important effects on distribution range and phenology. The relationship between global warming and body size changes in mammals and birds has been widely studied, with most findings indicating a decline in body size over time. Nevertheless, little data exist on similar size change patterns of invertebrates in general and insects in particular, and it is unclear whether insects should decrease in size or not with climate warming. We measured over 4000 beetle specimens, belonging to 29 beetle species in 8 families, collected in Israel during the last 100 years. The sampled species are all herbivorous. We examined whether beetle body size had changed over the years, while also investigating the relationships between body size and annual temperature, precipitation, net primary productivity (NPP) at the collection site and collection month. None of the environmental variables, including the collection year, was correlated with the size of most of the studied beetle species, while there were strong interactions of all variables with species. Our results, though mostly negative, suggest that the effect of climate change on insect body size is species-specific and by no means a general macro-ecological rule. They also suggest that the intrapopulation variance in body size of insects collected as adults in the field is large enough to conceal intersite environmental effects on body size, such as the effect of temperature and NPP.
Collapse
Affiliation(s)
- Yuval Baar
- Department of Zoology, Faculty of Life Sciences & Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Leib Leonid Friedman
- Department of Zoology, Faculty of Life Sciences & Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Shai Meiri
- Department of Zoology, Faculty of Life Sciences & Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Inon Scharf
- Department of Zoology, Faculty of Life Sciences & Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Badejo O, Skaldina O, Sorvari J. Spatial and Temporal Variation in Thermal Melanism in the Aposematic Common Wasp (Vespula vulgaris) in Northern Europe. ANN ZOOL FENN 2018. [DOI: 10.5735/086.055.0107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Oluwatobi Badejo
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Oksana Skaldina
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jouni Sorvari
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
11
|
Tseng M, Kaur KM, Soleimani Pari S, Sarai K, Chan D, Yao CH, Porto P, Toor A, Toor HS, Fograscher K. Decreases in beetle body size linked to climate change and warming temperatures. J Anim Ecol 2018; 87:647-659. [DOI: 10.1111/1365-2656.12789] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/12/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Michelle Tseng
- Department of Zoology; University of British Columbia; Vancouver Canada
| | - Katrina M. Kaur
- Department of Zoology; University of British Columbia; Vancouver Canada
| | | | - Karnjit Sarai
- Department of Zoology; University of British Columbia; Vancouver Canada
| | - Denessa Chan
- Department of Zoology; University of British Columbia; Vancouver Canada
| | - Christine H. Yao
- Department of Zoology; University of British Columbia; Vancouver Canada
| | - Paula Porto
- Department of Zoology; University of British Columbia; Vancouver Canada
| | - Anmol Toor
- Department of Zoology; University of British Columbia; Vancouver Canada
| | | | | |
Collapse
|