1
|
Coughlin DJ, Dutterer MD. Intermittent swimming and muscle power output in brook trout, Salvelinus fontinalis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:896-902. [PMID: 38934396 DOI: 10.1002/jez.2844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Slow and sustainable intermittent swimming has recently been described in several Centrarchid fishes, such as bluegill and largemouth bass. This swimming behavior involves short periods of body-caudal fin undulation alternating with variable periods of coasting. This aerobic muscle powered swimming appears to reduce energetic costs for slow, sustainable swimming, with fish employing a "fixed-gear" or constant tailbeat frequency and modulating swimming speed by altering the length of the coasting period. We asked if this swimming behavior was found in other fish species by examining volitional swimming by brook trout in a static swimming tank. Further, we employed muscle mechanics experiments to explore how intermittent swimming affects muscle power output in comparison to steady swimming behavior. Brook trout regularly employ an intermittent swimming form when allowed to swim volitionally, and consistently showed a tailbeat frequency of ~2 Hz. Coasting duration had a significant, inverse relationship to swimming speed. Across a range of slow, sustainable swimming speeds, tailbeat frequency increased modestly with speed. The duration of periods of coasting decreased significantly with increasing speed. Workloop experiments suggest that intermittent swimming reduces fatigue, allowing fish to maintain high power output for longer compared to continuous activity. This study expands the list of species that employ intermittent swimming, suggesting this behavior is a general feature of fishes.
Collapse
Affiliation(s)
- David J Coughlin
- Department of Biology, Widener University, Chester, Pennsylvania, USA
| | | |
Collapse
|
2
|
Cooper WJ, Conith MR, Conith AJ. Surfperches versus Damselfishes: Trophic Evolution in Closely Related Pharyngognath Fishes with Highly Divergent Reproductive Strategies. Integr Org Biol 2024; 6:obae018. [PMID: 38939103 PMCID: PMC11210498 DOI: 10.1093/iob/obae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 04/17/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024] Open
Abstract
Surfperches and damselfishes are very closely related ovalentarians with large reproductive differences. Damselfishes are typical of most Ovalentaria in that they lay demersal eggs that hatch into small, free-feeding larvae. Surfperches are unusual among ovalentarians and most acanthomorphs in having prolonged internal development. They are born at an advanced stage, some as adults, and bypass the need to actively feed throughout an extended period of ontogeny. Damselfishes and surfperches possess the same modifications of the fifth branchial arch that allow them to perform advanced food processing within the pharynx. This condition (pharyngognathy) has large effects on the evolution of feeding mechanics and trophic ecology. Although the evolution of pharyngognaths has received considerable attention, the effects of different reproductive strategies on their diversification have not been examined. We compared head shape evolution in surfperches and damselfishes using geometric morphometrics, principal component analyses, and multiple phylogenetic-comparative techniques. We found that they have similar mean head shapes, that their primary axes of shape variation are comparable and distinguish benthic-feeding and pelagic-feeding forms in each case, and that, despite large differences in crown divergence times, their head shape disparities are not significantly different. Several lines of evidence suggest that evolution has been more constrained in damselfishes: Head shape is evolving faster in surfperches, more anatomical traits have undergone correlated evolution in damselfishes, there is significant phylogenetic signal in damselfish evolution (but not surfperches), and damselfishes exhibit significant allometry in head shape that is not present in surfperches.
Collapse
Affiliation(s)
- W J Cooper
- Biology Department, College of Science and Engineering, Western Washington University, Bellingham, WA 98225, USA
- Marine and Coastal Science, Western Washington University, Bellingham, WA 98225, USA
| | - M R Conith
- Biology Department, College of Science and Engineering, Western Washington University, Bellingham, WA 98225, USA
| | - A J Conith
- Department of Biology, DePaul University, Chicago, IL 60604, USA
| |
Collapse
|
3
|
Paplauskas S, Morton O, Hunt M, Courage A, Swanney S, Dennis SR, Becker D, Auld SKJR, Beckerman AP. Predator-induced shape plasticity in Daphnia pulex. Ecol Evol 2024; 14:e10913. [PMID: 38322005 PMCID: PMC10844689 DOI: 10.1002/ece3.10913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
All animals and plants respond to changes in the environment during their life cycle. This flexibility is known as phenotypic plasticity and allows organisms to cope with variable environments. A common source of environmental variation is predation risk, which describes the likelihood of being attacked and killed by a predator. Some species can respond to the level of predation risk by producing morphological defences against predation. A classic example is the production of so-called 'neckteeth' in the water flea, Daphnia pulex, which defend against predation from Chaoborus midge larvae. Previous studies of this defence have focussed on changes in pedestal size and the number of spikes along a gradient of predation risk. Although these studies have provided a model for continuous phenotypic plasticity, they do not capture the whole-organism shape response to predation risk. In contrast, studies in fish and amphibians focus on shape as a complex, multi-faceted trait made up of different variables. In this study, we analyse how multiple aspects of shape change in D. pulex along a gradient of predation risk from Chaoborus flavicans. These changes are dominated by the neckteeth defence, but there are also changes in the size and shape of the head and the body. We detected change in specific modules of the body plan and a level of integration among modules. These results are indicative of a complex, multi-faceted response to predation and provide insight into how predation risk drives variation in shape and size at the level of the whole organism.
Collapse
Affiliation(s)
- Sam Paplauskas
- Biological & Environmental SciencesUniversity of StirlingStirlingUK
| | - Oscar Morton
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Mollie Hunt
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | | | - Stuart R. Dennis
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Present address:
EAWAGDübendorfSwitzerland
| | - Dörthe Becker
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | | |
Collapse
|
4
|
Black CR, Armbruster JW. Evolutionary integration and modularity in the diversity of the suckermouth armoured catfishes. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220713. [PMID: 36425524 PMCID: PMC9682303 DOI: 10.1098/rsos.220713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The evolution of morphological diversity has held a long-standing fascination among scientists. In particular, do bodies evolve as single, integrated units or do different body parts evolve semi-independently (modules)? Suckermouth armoured catfishes (Loricariidae) have a morphology that lends nicely to evolutionary modularity and integration studies. In addition to a ventrally facing oral jaw that directly contacts surfaces, the neurocranium and pectoral girdle are fused, which limits movement of the anterior part of the body. Functional constraints suggest it is likely the head and post-cranial body act as separate modules that can evolve independently. If true, one would expect to see a two- or three-module system where the head and post-cranial body are morphologically distinct. To test this hypothesis, we quantified shape using geometric morphometric analysis and assessed the degree of modularity across functionally important regions. We found the armoured catfish body is highly modularized, with varying degrees of integration between each module. Within subfamilies, there are different patterns of evolutionary modularity and integration, suggesting that the various patterns may have driven diversification along a single trajectory in each subfamily. This study suggests the evolution of armoured catfish diversification is complex, with morphological evolution influenced by interactions within and between modules.
Collapse
|
5
|
Zelditch ML, Goswami A. What does modularity mean? Evol Dev 2021; 23:377-403. [PMID: 34464501 DOI: 10.1111/ede.12390] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 06/25/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023]
Abstract
Modularity is now generally recognized as a fundamental feature of organisms, one that may have profound consequences for evolution. Modularity has recently become a major focus of research in organismal biology across multiple disciplines including genetics, developmental biology, functional morphology, population and evolutionary biology. While the wealth of new data, and also new theory, has provided exciting and novel insights, the concept of modularity has become increasingly ambiguous. That ambiguity is underlain by diverse intuitions about what modularity means, and the ambiguity is not merely about the meaning of the word-the metrics of modularity are measuring different properties and the methods for delimiting modules delimit them by different, sometimes conflicting criteria. The many definitions, metrics and methods can lead to substantial confusion not just about what modularity means as a word but also about what it means for evolution. Here we review various concepts, using graphical depictions of modules. We then review some of the metrics and methods for analyzing modularity at different levels. To place these in theoretical context, we briefly review theories about the origins and evolutionary consequences of modularity. Finally, we show how mismatches between concepts, metrics and methods can produce theoretical confusion, and how potentially illogical interpretations can be made sensible by a better match between definitions, metrics, and methods.
Collapse
Affiliation(s)
- Miriam L Zelditch
- Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
6
|
Evans KM, Larouche O, Watson SJ, Farina S, Habegger ML, Friedman M. Integration drives rapid phenotypic evolution in flatfishes. Proc Natl Acad Sci U S A 2021; 118:e2101330118. [PMID: 33931506 PMCID: PMC8106320 DOI: 10.1073/pnas.2101330118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Evolutionary innovations are scattered throughout the tree of life, and have allowed the organisms that possess them to occupy novel adaptive zones. While the impacts of these innovations are well documented, much less is known about how these innovations arise in the first place. Patterns of covariation among traits across macroevolutionary time can offer insights into the generation of innovation. However, to date, there is no consensus on the role that trait covariation plays in this process. The evolution of cranial asymmetry in flatfishes (Pleuronectiformes) from within Carangaria was a rapid evolutionary innovation that preceded the colonization of benthic aquatic habitats by this clade, and resulted in one of the most bizarre body plans observed among extant vertebrates. Here, we use three-dimensional geometric morphometrics and a phylogenetic comparative toolkit to reconstruct the evolution of skull shape in carangarians, and quantify patterns of integration and modularity across the skull. We find that the evolution of asymmetry in flatfishes was a rapid process, resulting in the colonization of novel trait space, that was aided by strong integration that coordinated shape changes across the skull. Our findings suggest that integration plays a major role in the evolution of innovation by synchronizing responses to selective pressures across the organism.
Collapse
Affiliation(s)
- Kory M Evans
- Department of Biosciences, Rice University, Houston, TX 77005;
| | | | - Sara-Jane Watson
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801
| | - Stacy Farina
- Department of Biology, Howard University, Washington, DC 20059
| | | | - Matt Friedman
- Department of Paleontology, University of Michigan, Ann Arbor, MI 48109
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
7
|
Adams DC, Collyer ML. Phylogenetic Comparative Methods and the Evolution of Multivariate Phenotypes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024555] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolutionary biology is multivariate, and advances in phylogenetic comparative methods for multivariate phenotypes have surged to accommodate this fact. Evolutionary trends in multivariate phenotypes are derived from distances and directions between species in a multivariate phenotype space. For these patterns to be interpretable, phenotypes should be characterized by traits in commensurate units and scale. Visualizing such trends, as is achieved with phylomorphospaces, should continue to play a prominent role in macroevolutionary analyses. Evaluating phylogenetic generalized least squares (PGLS) models (e.g., phylogenetic analysis of variance and regression) is valuable, but using parametric procedures is limited to only a few phenotypic variables. In contrast, nonparametric, permutation-based PGLS methods provide a flexible alternative and are thus preferred for high-dimensional multivariate phenotypes. Permutation-based methods for evaluating covariation within multivariate phenotypes are also well established and can test evolutionary trends in phenotypic integration. However, comparing evolutionary rates and modes in multivariate phenotypes remains an important area of future development.
Collapse
Affiliation(s)
- Dean C. Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Michael L. Collyer
- Department of Science, Chatham University, Pittsburgh, Pennsylvania 15232, USA
| |
Collapse
|
8
|
Goswami A, Watanabe A, Felice RN, Bardua C, Fabre AC, Polly PD. High-Density Morphometric Analysis of Shape and Integration: The Good, the Bad, and the Not-Really-a-Problem. Integr Comp Biol 2019; 59:669-683. [PMID: 31243431 PMCID: PMC6754122 DOI: 10.1093/icb/icz120] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The field of comparative morphology has entered a new phase with the rapid generation of high-resolution three-dimensional (3D) data. With freely available 3D data of thousands of species, methods for quantifying morphology that harness this rich phenotypic information are quickly emerging. Among these techniques, high-density geometric morphometric approaches provide a powerful and versatile framework to robustly characterize shape and phenotypic integration, the covariances among morphological traits. These methods are particularly useful for analyses of complex structures and across disparate taxa, which may share few landmarks of unambiguous homology. However, high-density geometric morphometrics also brings challenges, for example, with statistical, but not biological, covariances imposed by placement and sliding of semilandmarks and registration methods such as Procrustes superimposition. Here, we present simulations and case studies of high-density datasets for squamates, birds, and caecilians that exemplify the promise and challenges of high-dimensional analyses of phenotypic integration and modularity. We assess: (1) the relative merits of "big" high-density geometric morphometrics data over traditional shape data; (2) the impact of Procrustes superimposition on analyses of integration and modularity; and (3) differences in patterns of integration between analyses using high-density geometric morphometrics and those using discrete landmarks. We demonstrate that for many skull regions, 20-30 landmarks and/or semilandmarks are needed to accurately characterize their shape variation, and landmark-only analyses do a particularly poor job of capturing shape variation in vault and rostrum bones. Procrustes superimposition can mask modularity, especially when landmarks covary in parallel directions, but this effect decreases with more biologically complex covariance patterns. The directional effect of landmark variation on the position of the centroid affects recovery of covariance patterns more than landmark number does. Landmark-only and landmark-plus-sliding-semilandmark analyses of integration are generally congruent in overall pattern of integration, but landmark-only analyses tend to show higher integration between adjacent bones, especially when landmarks placed on the sutures between bones introduces a boundary bias. Allometry may be a stronger influence on patterns of integration in landmark-only analyses, which show stronger integration prior to removal of allometric effects compared to analyses including semilandmarks. High-density geometric morphometrics has its challenges and drawbacks, but our analyses of simulated and empirical datasets demonstrate that these potential issues are unlikely to obscure genuine biological signal. Rather, high-density geometric morphometric data exceed traditional landmark-based methods in characterization of morphology and allow more nuanced comparisons across disparate taxa. Combined with the rapid increases in 3D data availability, high-density morphometric approaches have immense potential to propel a new class of studies of comparative morphology and phenotypic integration.
Collapse
Affiliation(s)
- Anjali Goswami
- Life Sciences Department, Vertebrates Division, Natural History Museum, London, SW7 5BD, UK
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Akinobu Watanabe
- Life Sciences Department, Vertebrates Division, Natural History Museum, London, SW7 5BD, UK
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Ryan N Felice
- Life Sciences Department, Vertebrates Division, Natural History Museum, London, SW7 5BD, UK
- Department of Cell and Developmental Biology, Centre for Integrative Anatomy, University College London, London, WC1E 6BT, UK
| | - Carla Bardua
- Life Sciences Department, Vertebrates Division, Natural History Museum, London, SW7 5BD, UK
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Anne-Claire Fabre
- Life Sciences Department, Vertebrates Division, Natural History Museum, London, SW7 5BD, UK
| | - P David Polly
- Departments of Earth and Atmospheric Sciences, Biology, and Anthropology, Indiana University, 1001 E. 10 Street, Bloomington, IN 47405, USA
| |
Collapse
|
9
|
Evans KM, Vidal-García M, Tagliacollo VA, Taylor SJ, Fenolio DB. Bony Patchwork: Mosaic Patterns of Evolution in the Skull of Electric Fishes (Apteronotidae: Gymnotiformes). Integr Comp Biol 2019; 59:420-431. [DOI: 10.1093/icb/icz026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Mosaic evolution refers to the pattern whereby different organismal traits exhibit differential rates of evolution typically due to reduced levels of trait covariation through deep time (i.e., modularity). These differences in rates can be attributed to variation in responses to selective pressures between individual traits. Differential responses to selective pressures also have the potential to facilitate functional specialization, allowing certain traits to track environmental stimuli more closely than others. The teleost skull is a multifunctional structure comprising a complex network of bones and thus an excellent system for which to study mosaic evolution. Here we construct an ultrametric phylogeny for a clade of Neotropical electric fishes (Apteronotidae: Gymnotiformes) and use three-dimensional geometric morphometrics to investigate patterns of mosaic evolution in the skull and jaws. We find strong support for a developmental, three-module hypothesis that consists of the face, braincase, and mandible, and we find that the mandible has evolved four times faster than its neighboring modules. We hypothesize that the functional specialization of the mandible in this group of fishes has allowed it to outpace the face and braincase and evolve in a more decoupled manner. We also hypothesize that this pattern of mosaicism may be widespread across other clades of teleost fishes.
Collapse
Affiliation(s)
- Kory M Evans
- College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Marta Vidal-García
- Research School of Biology, Department of Ecology and Evolution, The Australian National University, Canberra, ACT 0200, Australia
| | - Victor A Tagliacollo
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré, 481, Ipiranga, 04263-000 São Paulo, Brazil
| | - Samuel J Taylor
- Center for Conservation and Research, 3903 N. St Mary’s Street, San Antonio, TX 78212, USA
| | - Dante B Fenolio
- Center for Conservation and Research, 3903 N. St Mary’s Street, San Antonio, TX 78212, USA
| |
Collapse
|