1
|
Lackey ACR, Scordato ESC, Keagy J, Tinghitella RM, Heathcote RJP. The role of mate competition in speciation and divergence: a systematic review. J Evol Biol 2024; 37:1225-1243. [PMID: 39276025 DOI: 10.1093/jeb/voae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/18/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
Competition for mates can play a critical role in determining reproductive success, shaping phenotypic variation within populations, and influencing divergence. Yet, studies of the role of sexual selection in divergence and speciation have focused disproportionately on mate choice. Here, we synthesize the literature on how mate competition may contribute to speciation and integrate concepts from work on sexual selection within populations-mating systems, ecology, and mate choice. Using this synthesis, we generate testable predictions for how mate competition may contribute to divergence. Then, we identify the extent of existing support for these predictions in the literature with a systematic review of the consequences of mate competition for population divergence across a range of evolutionary, ecological, and geographic contexts. We broadly evaluate current evidence, identify gaps in available data and hypotheses that need testing, and outline promising directions for future work. A major finding is that mate competition may commonly facilitate further divergence after initial divergence has occurred, e.g., upon secondary contact and between allopatric populations. Importantly, current hypotheses for how mate competition contributes to divergence do not fully explain observed patterns. While results from many studies fit predictions of negative frequency-dependent selection, agonistic character displacement, and ecological selection, results from ~30% of studies did not fit existing conceptual models. This review identifies future research aims for scenarios in which mate competition is likely important but has been understudied, including how ecological context and interactions between mate choice and mate competition can facilitate or hinder divergence and speciation.
Collapse
Affiliation(s)
- Alycia C R Lackey
- Department of Biology, University of Louisville, Louisville, KY, United States
| | | | - Jason Keagy
- Department of Ecosystem Science and Management, Penn State University, University Park, PA, United States
| | - Robin M Tinghitella
- Department of Biological Sciences, University of Denver, Denver, CO, United States
| | - Robert J P Heathcote
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Long KM, Rivera-Colón AG, Bennett KFP, Catchen JM, Braun MJ, Brawn JD. Ongoing introgression of a secondary sexual plumage trait in a stable avian hybrid zone. Evolution 2024; 78:1539-1553. [PMID: 38753474 DOI: 10.1093/evolut/qpae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Hybrid zones are dynamic systems where natural selection, sexual selection, and other evolutionary forces can act on reshuffled combinations of distinct genomes. The movement of hybrid zones, individual traits, or both are of particular interest for understanding the interplay between selective processes. In a hybrid zone involving two lek-breeding birds, secondary sexual plumage traits of Manacus vitellinus, including bright yellow collar and olive belly color, have introgressed ~50 km asymmetrically across the genomic center of the zone into populations more genetically similar to Manacus candei. Males with yellow collars are preferred by females and are more aggressive than parental M. candei, suggesting that sexual selection was responsible for the introgression of male traits. We assessed the spatial and temporal dynamics of this hybrid zone using historical (1989-1994) and contemporary (2017-2020) transect samples to survey both morphological and genetic variation. Genome-wide single nucleotide polymorphism data and several male phenotypic traits show that the genomic center of the zone has remained spatially stable, whereas the olive belly color of male M. vitellinus has continued to introgress over this time period. Our data suggest that sexual selection can continue to shape phenotypes dynamically, independent of a stable genomic transition between species.
Collapse
Affiliation(s)
- Kira M Long
- Program in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, United States
| | - Angel G Rivera-Colón
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Kevin F P Bennett
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, United States
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Julian M Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Michael J Braun
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, United States
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Jeffrey D Brawn
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
3
|
Yi X, Wang D, Reid K, Feng X, Löytynoja A, Merilä J. Sex chromosome turnover in hybridizing stickleback lineages. Evol Lett 2024; 8:658-668. [PMID: 39328282 PMCID: PMC11424075 DOI: 10.1093/evlett/qrae019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 04/19/2024] [Indexed: 09/28/2024] Open
Abstract
Recent discoveries of sex chromosome diversity across the tree of life have challenged the canonical model of conserved sex chromosome evolution and evoked new theories on labile sex chromosomes that maintain less differentiation and undergo frequent turnover. However, theories of labile sex chromosome evolution lack direct empirical support due to the paucity of case studies demonstrating ongoing sex chromosome turnover in nature. Two divergent lineages (viz. WL & EL) of nine-spined sticklebacks (Pungitius pungitius) with different sex chromosomes (linkage group [LG] 12 in the EL, unknown in the WL) hybridize in a natural secondary contact zone in the Baltic Sea, providing an opportunity to study ongoing turnover between coexisting sex chromosomes. In this study, we first identify an 80 kbp genomic region on LG3 as the sex-determining region (SDR) using whole-genome resequencing data of family crosses of a WL population. We then verify this region as the SDR in most other WL populations and demonstrate a potentially ongoing sex chromosome turnover in admixed marine populations where the evolutionarily younger and homomorphic LG3 sex chromosome replaces the older and heteromorphic LG12 sex chromosome. The results provide a rare glimpse of sex chromosome turnover in the wild and indicate the possible existence of additional yet undiscovered sex chromosome diversity in Pungitius sticklebacks.
Collapse
Affiliation(s)
- Xueling Yi
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Dandan Wang
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Xueyun Feng
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ari Löytynoja
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
de Sá FP, Akopyan M, Santana EM, Haddad CFB, Zamudio KR. Mitonuclear and phenotypic discordance in an Atlantic Forest frog hybrid zone. Ecol Evol 2024; 14:e70262. [PMID: 39279790 PMCID: PMC11393776 DOI: 10.1002/ece3.70262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Discordance between mitochondrial and nuclear DNA is common among animals and can be the result of a number of evolutionary processes, including incomplete lineage sorting and introgression. Particularly relevant in contact zones, mitonuclear discordance is expected because the mitochondrial genome is haploid and primarily uniparentally inherited, whereas nuclear loci are evolving at slower rates. In addition, when closely related taxa come together in hybrid zones, the distribution of diagnostic phenotypic characters and their concordance with the mitochondrial or nuclear lineages can also inform on historical and ongoing dynamics within hybrid zones. Overall, genetic and phenotypic discordances provide evidence for evolutionary divergence and processes that maintain boundaries among sister species or lineages. In this study, we characterized patterns of genetic and phenotypic variation in a contact zone between Cycloramphus dubius and Cycloramphus boraceiensis, two sister species of frogs endemic to the Atlantic Coastal Forest of Brazil. We examined genomic-scale nuclear diversification across 19 populations, encompassing the two parental forms and a contact zone between them. We compared the distribution of genomic DNA variability with that of a mitochondrial locus (16S) and two morphological traits (dorsal tubercles and body size). Our results reveal multiple divergent lineages with ongoing admixture. We detected discordance in patterns of introgression across the three data types. Cycloramphus dubius males are significantly larger than C. boraceiensis males, and we posit that competition among males in the hybrid zone, coupled with mate choice by females, may be one mechanism leading to patterns of introgression observed between the species.
Collapse
Affiliation(s)
- Fábio P de Sá
- Departamento de Biodiversidade and Centro de Aquicultura (CAUNESP) Instituto de Biociências, Universidade Estadual Paulista (UNESP) Rio Claro São Paulo Brazil
| | - Maria Akopyan
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York USA
| | - Erika M Santana
- Departamento de Ecologia Instituto de Biociências, Universidade de São Paulo (USP) São Paulo Brazil
| | - Célio F B Haddad
- Departamento de Biodiversidade and Centro de Aquicultura (CAUNESP) Instituto de Biociências, Universidade Estadual Paulista (UNESP) Rio Claro São Paulo Brazil
| | - Kelly R Zamudio
- Department of Integrative Biology University of Texas at Austin Austin Texas USA
| |
Collapse
|
5
|
Pizarro AK, DeRaad DA, McCormack JE. Temporal stability of the hybrid zone between Calocitta magpie-jays revealed through comparison of museum specimens and iNaturalist photos. Ecol Evol 2023; 13:e9863. [PMID: 36937059 PMCID: PMC10017314 DOI: 10.1002/ece3.9863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
Hybrid zones are natural experiments for the study of avian evolution. Hybrid zones can be dynamic, moving as species adjust to new climates and habitats, with unknown implications for species and speciation. There are relatively few studies that have comparable modern and historic sampling to assess change in hybrid zone location and width over time, and those studies have generally found mixed results, with many hybrid zones showing change over time, but others showing stability. The white-throated magpie-jay (Calocitta formosa) and black-throated magpie-jay (Calocitta colliei) occur along the western coast of Mexico and Central America. The two species differ markedly in throat color and tail length, and prior observation suggests a narrow hybrid zone in southern Jalisco where individuals have mixed throat color. This study aims to assess the existence and temporal stability of this putative hybrid zone by comparing throat color between georeferenced historical museum specimens and modern photos from iNaturalist with precise locality information. Our results confirm the existence of a narrow hybrid zone in Jalisco, with modern throat scores gradually increasing from the parental ends of the cline toward the cline center in a sigmoidal curve characteristic of hybrid zones. Our temporal comparison suggests that the hybrid zone has not shifted its position between historical (pre-1973) and modern (post-2005) time periods-a surprising result given the grand scale of habitat change to the western Mexican lowlands during this time. An anomalous pocket of white-throated individuals in the northern range of the black-throated magpie-jay hints at the possibility of prehistorical long-distance introduction. Future genomic data will help disentangle the evolutionary history of these lineages and better characterize how secondary contact is affecting both the DNA and the phenotype of these species.
Collapse
Affiliation(s)
- Alana K. Pizarro
- Moore Laboratory of ZoologyOccidental CollegeLos AngelesCaliforniaUSA
| | - Devon A. DeRaad
- Biodiversity Institute and Department of Ecology & Evolutionary BiologyKansas UniversityKansasLawrenceUSA
| | - John E. McCormack
- Moore Laboratory of ZoologyOccidental CollegeLos AngelesCaliforniaUSA
| |
Collapse
|
6
|
Lipshutz SE, Torneo SJ, Rosvall KA. How Female-Female Competition Affects Male-Male Competition: Insights into Postcopulatory Sexual Selection from Socially Polyandrous Species. Am Nat 2023; 201:460-471. [PMID: 36848510 DOI: 10.1086/722799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractSexual selection is a major driver of trait variation, and the intensity of male competition for mating opportunities has been linked with sperm size across diverse taxa. Mating competition among females may also shape the evolution of sperm traits, but the effect of the interplay between female-female competition and male-male competition on sperm morphology is not well understood. We evaluated variation in sperm morphology in two species with socially polyandrous mating systems, in which females compete to mate with multiple males. Northern jacanas (Jacana spinosa) and wattled jacanas (J. jacana) vary in their degree of social polyandry and sexual dimorphism, suggesting species differences in the intensity of sexual selection. We compared mean and variance in sperm head, midpiece, and tail length between species and breeding stages because these measures have been associated with the intensity of sperm competition. We found that the species with greater polyandry, northern jacana, has sperm with longer midpieces and tails as well as marginally lower intraejaculate variation in tail length. Intraejaculate variation was also significantly lower in copulating males than in incubating males, suggesting flexibility in sperm production as males cycle between breeding stages. Our results indicate that stronger female-female competition for mating opportunities may also shape more intense male-male competition by selecting for longer and less variable sperm traits. These findings extend frameworks developed in socially monogamous species to reveal that sperm competition may be an important evolutionary force layered atop female-female competition for mates.
Collapse
|
7
|
Barske J, Fuxjager MJ, Ciofi C, Natali C, Schlinger BA, Billo T, Fusani L. Beyond plumage: acrobatic courtship displays show intermediate patterns in manakin hybrids. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
8
|
McDiarmid CS, Finch F, Peso M, van Rooij E, Hooper DM, Rowe M, Griffith SC. Experimentally testing mate preference in an avian system with unidirectional bill color introgression. Ecol Evol 2023; 13:e9812. [PMID: 36825134 PMCID: PMC9942114 DOI: 10.1002/ece3.9812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 02/23/2023] Open
Abstract
Mating behavior can play a key role in speciation by inhibiting or facilitating gene flow between closely related taxa. Hybrid zones facilitate a direct examination of mating behavior and the traits involved in establishing species barriers. The long-tailed finch (Poephila acuticauda) has two hybridizing subspecies that differ in bill color (red and yellow), and the yellow bill phenotype appears to have introgressed ~350 km eastward following secondary contact. To examine the role of mate choice on bill color introgression, we performed behavioral assays using natural and manipulated bill colors. We found an assortative female mating preference for males of their own subspecies when bill color was not manipulated. However, we did not find this assortative preference in trials based on artificially manipulated bill color. This could suggest that assortative preference is not fixed entirely on bill color and instead may be based on a different trait (e.g., song) or a combination of traits, or alternatively may be due to lower statistical power alongside the bill manipulations being unconvincing to the female choosers. Intriguingly, we find a bias in the inheritance of bill color in captive bred F1 hybrid females. Previous modeling suggests that assortative mate preference and this kind of partial dominance in the underlying genes may together contribute to introgression, making the genetic architecture of bill color in this system a priority for future research.
Collapse
Affiliation(s)
- Callum S. McDiarmid
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Fiona Finch
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Marianne Peso
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Erica van Rooij
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Daniel M. Hooper
- Department of Biological SciencesColumbia UniversityNew YorkNew YorkUSA
- Institute for Comparative GenomicsAmerican Museum of Natural HistoryNew YorkNew YorkUSA
| | - Melissah Rowe
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Simon C. Griffith
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
9
|
Prates I, Doughty P, Rabosky DL. Subspecies at crossroads: the evolutionary significance of genomic and phenotypic variation in a wide-ranging Australian lizard ( Ctenotus pantherinus). Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Many subspecies were described to capture phenotypic variation in wide-ranging taxa, with some later being found to correspond to divergent genetic lineages. We investigate whether currently recognized subspecies correspond to distinctive and coherent evolutionary lineages in the widespread Australian lizard Ctenotus pantherinus based on morphological, mitochondrial and genome-wide nuclear variation. We find weak and inconsistent correspondence between morphological patterns and the presumed subspecies ranges, with character polymorphism within regions and broad morphological overlap across regions. Phylogenetic analyses suggest paraphyly of populations assignable to each subspecies, mitonuclear discordance and little congruence between subspecies ranges and the distribution of inferred clades. Genotypic clustering supports admixture across regions. These results undermine the presumed phenotypic and genotypic coherence and distinctiveness of C. pantherinus subspecies. Based on our findings, we comment on the operational and conceptual shortcomings of morphologically defined subspecies and discuss practical challenges in applying the general notion of subspecies as incompletely separated population lineages. We conclude by highlighting a historical asymmetry that has implications for ecology, evolution and conservation: subspecies proposed in the past are difficult to falsify even in the face of new data that challenge their coherence and distinctiveness, whereas modern researchers appear hesitant to propose new subspecies.
Collapse
Affiliation(s)
- Ivan Prates
- Department of Ecology and Evolutionary Biology, University of Michigan , Ann Arbor, MI , USA
- Museum of Zoology, University of Michigan , Ann Arbor, MI , USA
| | - Paul Doughty
- Collections & Research, Western Australian Museum , Welshpool , WA 6106 , Australia
| | | |
Collapse
|
10
|
Wolfgramm H, Martens J, Töpfer T, Vamberger M, Pathak A, Stuckas H, Päckert M. Asymmetric allelic introgression across a hybrid zone of the coal tit ( Periparus ater) in the central Himalayas. Ecol Evol 2021; 11:17332-17351. [PMID: 34938512 PMCID: PMC8668783 DOI: 10.1002/ece3.8369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 11/07/2022] Open
Abstract
In the Himalayas, a number of secondary contact zones have been described for vicariant vertebrate taxa. However, analyses of genetic divergence and admixture are missing for most of these examples. In this study, we provide a population genetic analysis for the coal tit (Periparus ater) hybrid zone in Nepal. Intermediate phenotypes between the distinctive western "spot-winged tit" (P. a. melanolophus) and Eastern Himalayan coal tits (P. a. aemodius) occur across a narrow range of <100 km in western Nepal. As a peculiarity, another distinctive cinnamon-bellied form is known from a single population so far. Genetic admixture of western and eastern mitochondrial lineages was restricted to the narrow zone of phenotypically intermediate populations. The cline width was estimated 46 km only with a center close to the population of the cinnamon-bellied phenotype. In contrast, allelic introgression of microsatellite loci was asymmetrical from eastern P. a. aemodius into far western populations of phenotypic P. a. melanolophus but not vice versa. Accordingly, the microsatellite cline was about 3.7 times wider than the mitochondrial one.
Collapse
Affiliation(s)
- Hannes Wolfgramm
- Senckenberg Natural History Collections DresdenDresdenGermany
- Present address:
Department of Functional GenomicsInterfaculty Institute of Genetics and Functional GenomicsUniversity Medicine GreifswaldGreifswaldGermany
| | - Jochen Martens
- Institute of Organismic and Molecular Evolution (iomE)Johannes Gutenberg UniversityMainzGermany
| | - Till Töpfer
- Leibniz Institute for the Analysis of Biodiversity ChangeZoological Research Museum Alexander KoenigBonnGermany
| | | | - Abhinaya Pathak
- Department of National Parks and Wildlife ConservationKathmanduNepal
| | - Heiko Stuckas
- Senckenberg Natural History Collections DresdenDresdenGermany
| | - Martin Päckert
- Senckenberg Natural History Collections DresdenDresdenGermany
| |
Collapse
|
11
|
Jofre GI, Rosenthal GG. A narrow window for geographic cline analysis using genomic data: Effects of age, drift, and migration on error rates. Mol Ecol Resour 2021; 21:2278-2287. [PMID: 33979028 DOI: 10.1111/1755-0998.13428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 01/11/2023]
Abstract
The use of genomic and phenotypic data to scan for outliers is a mainstay for studies of hybridization and speciation. Geographic cline analysis of natural hybrid zones is widely used to identify putative signatures of selection by detecting deviations from baseline patterns of introgression. As with other outlier-based approaches, demographic histories can make neutral regions appear to be under selection and vice versa. In this study, we use a forward-time individual-based simulation approach to evaluate the robustness of geographic cline analysis under different evolutionary scenarios. We modelled multiple stepping-stone hybrid zones with distinct age, deme sizes, and migration rates, and evolving under different types of selection. We found that drift distorts cline shapes and increases false positive rates for signatures of selection. This effect increases with hybrid zone age, particularly if migration between demes is low. Drift can also distort the signature of deleterious effects of hybridization, with genetic incompatibilities and particularly underdominance prone to spurious typing as adaptive introgression. Our results suggest that geographic clines are most useful for outlier analysis in young hybrid zones with large populations of hybrid individuals. Current approaches may overestimate adaptive introgression and underestimate selection against maladaptive genotypes.
Collapse
Affiliation(s)
- Gaston I Jofre
- Department of Biology, Texas A&M University, TAMU, College Station, TX, USA.,Centro de Investigaciones Cientıficas de las Huastecas "Aguazarca", Calnali Hidalgo, Mexico.,Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Gil G Rosenthal
- Department of Biology, Texas A&M University, TAMU, College Station, TX, USA.,Centro de Investigaciones Cientıficas de las Huastecas "Aguazarca", Calnali Hidalgo, Mexico
| |
Collapse
|
12
|
Bennett KFP, Lim HC, Braun MJ. Sexual selection and introgression in avian hybrid zones: Spotlight on Manacus. Integr Comp Biol 2021; 61:1291-1309. [PMID: 34128981 DOI: 10.1093/icb/icab135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hybrid zones offer a window into the processes and outcomes of evolution, from species formation or fusion to genomic underpinnings of specific traits and isolating mechanisms. Sexual selection is believed to be an important factor in speciation processes, and hybrid zones present special opportunities to probe its impact. The manakins (Aves, Pipridae) are a promising group in which to study the interplay of sexual selection and natural hybridization: they show substantial variation across the family in the strength of sexual selection they experience, they readily hybridize within and between genera, and they appear to have formed hybrid species, a rare event in birds. A hybrid zone between two manakins in the genus Manacus is unusual in that plumage and behavioral traits of one species have introgressed asymmetrically into populations of the second species through positive sexual selection, then apparently stalled at a river barrier. This is one of a handful of documented examples of asymmetric sexual trait introgression with a known selective mechanism. It offers opportunities to examine reproductive isolation, introgression, plumage color evolution, and natural factors enhancing or constraining the effects of sexual selection in real time. Here, we review previous work in this system, propose new hypotheses for observed patterns, and recommend approaches to test them.
Collapse
Affiliation(s)
- Kevin F P Bennett
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Haw Chuan Lim
- Department of Biology, George Mason University, Manassas, VA, USA.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Michael J Braun
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
13
|
Akopyan M, Gompert Z, Klonoski K, Vega A, Kaiser K, Mackelprang R, Rosenblum EB, Robertson JM. Genetic and phenotypic evidence of a contact zone between divergent colour morphs of the iconic red-eyed treefrog. Mol Ecol 2020; 29:4442-4456. [PMID: 32945036 DOI: 10.1111/mec.15639] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/21/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022]
Abstract
Hybrid zones act as natural laboratories where divergent genomes interact, providing powerful systems for examining the evolutionary processes underlying biological diversity. In this study, we characterized patterns of genomic and phenotypic variation resulting from hybridization between divergent intraspecific lineages of the Neotropical red-eyed treefrog (Agalychnis callidryas). We found genetic evidence of a newly discovered contact zone and phenotypic novelty in leg colour-a trait suspected to play a role in mediating assortative mating in this species. Analysis of hybrid ancestry revealed an abundance of later-generation Fn individuals, suggesting persistence of hybrids in the contact zone. Hybrids are predominantly of southern ancestry but are phenotypically more similar to northern populations. Genome-wide association mapping revealed QTL with measurable effects on leg-colour variation, but further work is required to dissect the architecture of this trait and establish causal links. Further, genomic cline analyses indicated substantial variation in patterns of introgression across the genome. Directional introgression of loci associated with different aspects of leg colour are inherited from each parental lineage, creating a distinct hybrid colour pattern. We show that hybridization can generate new phenotypes, revealing the evolutionary processes that potentially underlie patterns of phenotypic diversity in this iconic polytypic frog. Our study is consistent with a role of hybridization and sexual selection in lineage diversification, evolutionary processes that have been implicated in accelerating divergence in the most phenotypically diverse species.
Collapse
Affiliation(s)
- Maria Akopyan
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Biology, California State University, Northridge, CA, USA
| | | | - Karina Klonoski
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | | | - Kristine Kaiser
- Department of Biology, California State University, Northridge, CA, USA
| | | | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | | |
Collapse
|
14
|
Valencia-Montoya WA, Elfekih S, North HL, Meier JI, Warren IA, Tay WT, Gordon KHJ, Specht A, Paula-Moraes SV, Rane R, Walsh TK, Jiggins CD. Adaptive Introgression across Semipermeable Species Boundaries between Local Helicoverpa zea and Invasive Helicoverpa armigera Moths. Mol Biol Evol 2020; 37:2568-2583. [PMID: 32348505 PMCID: PMC7475041 DOI: 10.1093/molbev/msaa108] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hybridization between invasive and native species has raised global concern, given the dramatic increase in species range shifts and pest outbreaks due to anthropogenic dispersal. Nevertheless, secondary contact between sister lineages of local and invasive species provides a natural laboratory to understand the factors that determine introgression and the maintenance or loss of species barriers. Here, we characterize the early evolutionary outcomes following secondary contact between invasive Helicoverpa armigera and native H. zea in Brazil. We carried out whole-genome resequencing of Helicoverpa moths from Brazil in two temporal samples: during the outbreak of H. armigera in 2013 and 2017. There is evidence for a burst of hybridization and widespread introgression from local H. zea into invasive H. armigera coinciding with H. armigera expansion in 2013. However, in H. armigera, the admixture proportion and the length of introgressed blocks were significantly reduced between 2013 and 2017, suggesting selection against admixture. In contrast to the genome-wide pattern, there was striking evidence for adaptive introgression of a single region from the invasive H. armigera into local H. zea, including an insecticide resistance allele that increased in frequency over time. In summary, despite extensive gene flow after secondary contact, the species boundaries are largely maintained except for the single introgressed region containing the insecticide-resistant locus. We document the worst-case scenario for an invasive species, in which there are now two pest species instead of one, and the native species has acquired resistance to pyrethroid insecticides through introgression.
Collapse
Affiliation(s)
- Wendy A Valencia-Montoya
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Samia Elfekih
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
- Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Henry L North
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Joana I Meier
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Ian A Warren
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Wee Tek Tay
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, ACT, Australia
| | - Karl H J Gordon
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, ACT, Australia
| | | | | | - Rahul Rane
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, VIC, Australia
- Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Tom K Walsh
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, ACT, Australia
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Lipshutz SE, Rosvall KA. Testosterone secretion varies in a sex- and stage-specific manner: Insights on the regulation of competitive traits from a sex-role reversed species. Gen Comp Endocrinol 2020; 292:113444. [PMID: 32092297 DOI: 10.1016/j.ygcen.2020.113444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Testosterone (T) mediates a variety of traits that function in competition for mates, including territorial aggression, ornaments, armaments, and gametogenesis. The link between T and mating competition has been studied mainly in males, but females also face selection pressures to compete for mates. Sex-role reversed species, in which females are the more competitive sex, provide a unique perspective on the role of T in promoting competitive traits. Here, we examine patterns of T secretion in sex-role reversed northern jacanas (Jacana spinosa) during breeding, when females are fertile and males are either seeking copulations or conducting parental care. We measured baseline levels of T in circulation along with a suite of behavioral and morphological traits putatively involved in mating competition. We evaluated hypotheses that levels of T track gonadal sex and parental role, and we begin to investigate whether T and competitive traits co-vary in a sex- and stage- specific manner. Although females had higher expression of competitive traits than males at either breeding stage, we found that females and incubating males had similar levels of T secretion, which were lower than those observed in copulating males. T was correlated with wing spur length in females and testes mass in copulating males, but was otherwise uncorrelated with other competitive traits. These findings suggest that levels of T in circulation alone do not predict variation in competitive traits across levels of analysis, including gonadal sex and parental role. Instead, our findings coupled with prior research indicate that selection for female mating competition and male care may generate different physiological regulation of competitive traits.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
16
|
Slager DL, Epperly KL, Ha RR, Rohwer S, Wood C, Van Hemert C, Klicka J. Cryptic and extensive hybridization between ancient lineages of American crows. Mol Ecol 2020; 29:956-969. [PMID: 32034818 DOI: 10.1111/mec.15377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/30/2019] [Accepted: 02/05/2020] [Indexed: 01/02/2023]
Abstract
Most species and therefore most hybrid zones have historically been defined using phenotypic characters. However, both speciation and hybridization can occur with negligible morphological differentiation. Recently developed genomic tools provide the means to better understand cryptic speciation and hybridization. The Northwestern Crow (Corvus caurinus) and American Crow (Corvus brachyrhynchos) are continuously distributed sister taxa that lack reliable traditional characters for identification. In this first population genomic study of Northwestern and American crows, we use genomic SNPs (nuDNA) and mtDNA to investigate the degree of genetic differentiation between these crows and the extent to which they may hybridize. Our results indicate that American and Northwestern crows have distinct evolutionary histories, supported by two nuDNA ancestry clusters and two 1.1%-divergent mtDNA clades dating to the late Pleistocene, when glacial advances may have isolated crow populations in separate refugia. We document extensive hybridization, with geographic overlap of mtDNA clades and admixture of nuDNA across >900 km of western Washington and western British Columbia. This broad hybrid zone consists of late-generation hybrids and backcrosses, but not recent (e.g., F1) hybrids. Nuclear DNA and mtDNA clines had concordant widths and were both centred in southwestern British Columbia, farther north than previously postulated. Overall, our results suggest a history of reticulate evolution in American and Northwestern crows, perhaps due to recurring neutral expansion(s) from Pleistocene glacial refugia followed by lineage fusion(s). However, we do not rule out a contributing role for more recent potential drivers of hybridization, such as expansion into human-modified habitats.
Collapse
Affiliation(s)
- David L Slager
- Department of Biology, University of Washington, Seattle, WA, USA.,Burke Museum of Natural History and Culture, Seattle, WA, USA
| | - Kevin L Epperly
- Department of Biology, University of Washington, Seattle, WA, USA.,Burke Museum of Natural History and Culture, Seattle, WA, USA
| | - Renee R Ha
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Sievert Rohwer
- Department of Biology, University of Washington, Seattle, WA, USA.,Burke Museum of Natural History and Culture, Seattle, WA, USA
| | - Chris Wood
- Burke Museum of Natural History and Culture, Seattle, WA, USA
| | | | - John Klicka
- Department of Biology, University of Washington, Seattle, WA, USA.,Burke Museum of Natural History and Culture, Seattle, WA, USA
| |
Collapse
|
17
|
Thavornkanlapachai R, Mills HR, Ottewell K, Dunlop J, Sims C, Morris K, Donaldson F, Kennington WJ. Mixing Genetically and Morphologically Distinct Populations in Translocations: Asymmetrical Introgression in A Newly Established Population of the Boodie ( Bettongia lesueur). Genes (Basel) 2019; 10:E729. [PMID: 31546973 PMCID: PMC6770996 DOI: 10.3390/genes10090729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 11/22/2022] Open
Abstract
The use of multiple source populations provides a way to maximise genetic variation and reduce the impacts of inbreeding depression in newly established translocated populations. However, there is a risk that individuals from different source populations will not interbreed, leading to population structure and smaller effective population sizes than expected. Here, we investigate the genetic consequences of mixing two isolated, morphologically distinct island populations of boodies (Bettongia lesueur) in a translocation to mainland Australia over three generations. Using 18 microsatellite loci and the mitochondrial D-loop region, we monitored the released animals and their offspring between 2010 and 2013. Despite high levels of divergence between the two source populations (FST = 0.42 and ϕST = 0.72), there was clear evidence of interbreeding between animals from different populations. However, interbreeding was non-random, with a significant bias towards crosses between the genetically smaller-sized Barrow Island males and the larger-sized Dorre Island females. This pattern of introgression was opposite to the expectation that male-male competition or female mate choice would favour larger males. This study shows how mixing diverged populations can bolster genetic variation in newly established mammal populations, but the ultimate outcome can be difficult to predict, highlighting the need for continued genetic monitoring to assess the long-term impacts of admixture.
Collapse
Affiliation(s)
- Rujiporn Thavornkanlapachai
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | - Harriet R Mills
- Centre for Ecosystem Management, School of Science, Edith Cowan University, Joondalup, Western Australia 6027, Australia.
| | - Kym Ottewell
- Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Western Australia 6152, Australia.
| | - Judy Dunlop
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.
- Department of Biodiversity, Conservation and Attractions, PO Box 51, Wanneroo, Western Australia 6946, Australia.
| | - Colleen Sims
- Department of Biodiversity, Conservation and Attractions, PO Box 51, Wanneroo, Western Australia 6946, Australia.
| | - Keith Morris
- Department of Biodiversity, Conservation and Attractions, PO Box 51, Wanneroo, Western Australia 6946, Australia.
| | - Felicity Donaldson
- 360 Environmental, 10 Bermondsey Street, West Leederville, Western Australia 6007, Australia.
| | - W Jason Kennington
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
18
|
Genomic and phenotypic consequences of two independent secondary contact zones between allopatric lineages of the anadromous ice goby Leucopsarion petersii. Heredity (Edinb) 2019; 124:223-235. [PMID: 31186532 DOI: 10.1038/s41437-019-0239-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 11/08/2022] Open
Abstract
Genetic and phenotypic analyses of independent secondary contact zones between certain pairs of divergent populations offer powerful opportunities to assess whether the consequences vary with different environmental backgrounds. Populations of the ice goby Leucopsarion petersii are distributed throughout the Japanese archipelago and comprise genetically and phenotypically divergent groups in the Japan Sea and the Pacific Ocean. In particular, populations in the Japan Sea have a larger body size and numbers of vertebrae than those in the Pacific Ocean. Herein, we performed integrated analyses of genotypes and phenotypes of two independent secondary contact zones and investigated their consequences. Population genetic analyses revealed asymmetric introgression of the mitochondrial genome of either lineage relative to little admixture of nuclear genomes in both secondary contact zones. On phenotype analyses, vertebral numbers were clearly explained by nuclear genomic ancestry in both secondary contact zones, whereas body size was not, suggesting that a little introgression of nuclear genes regulates body size. Actually, we observed biased introgression of a candidate gene, neuropeptide Y (NPY), which potentially controls body size in the ice goby. Moreover, the body size changes in the introgressed populations possibly affect the introgression patterns of mitochondrial genomes across these zones. Collectively, our results demonstrated that genomic and phenotypic consequences of secondary contact varied in marine variable environments.
Collapse
|