1
|
Andersen MK, Donini A, MacMillan HA. Measuring insect osmoregulation in vitro: A reference guide. Comp Biochem Physiol A Mol Integr Physiol 2024; 299:111751. [PMID: 39341353 DOI: 10.1016/j.cbpa.2024.111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Osmoregulation is influenced by a wide variety of biotic and abiotic variables, and maintenance of systemic osmoregulatory homeostasis is critical to insect fitness. Because insects are so small, accurately quantifying renal organ function is technically challenging, and often requires specialized equipment. On top of this, nearly a century of toiling in the laboratory has led to a wide and still growing variety of methods that can be difficult for novice researchers to disentangle. Here, we provide a reference guide for the most used in vitro approaches in the study of insect osmoregulation, including the Ramsay assay, Ussing chamber, epithelial potential measurement, scanning ion-selective electrode technique, and hindgut assays. Along the way, we highlight the history of each methodological innovation.
Collapse
Affiliation(s)
| | - Andrew Donini
- Department of Biology, York University, Toronto M3J 1P3, Canada
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa K1S 5B6, Canada.
| |
Collapse
|
2
|
Shephard AM, Lagon SR, Jacobsen S, Millar K, Ledón-Rettig CC. Corticosterone Contributes to Diet-Induced Reprogramming of Post-Metamorphic Behavior in Spadefoot Toads. Integr Org Biol 2024; 6:obae012. [PMID: 38707679 PMCID: PMC11067961 DOI: 10.1093/iob/obae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Stressful experiences in early life can have phenotypic effects that persist into, or manifest during, adulthood. In vertebrates, such carryover effects can be driven by stress-induced secretion of glucocorticoid hormones, such as corticosterone, which can lead to developmental reprogramming of hypothalamic-pituitary-adrenal/interrenal axis activity and behavior. Nutritional stress in the form of early life nutrient restriction is well known to modify later life behaviors and stress activity through corticosterone-related mechanisms. However, it is not known whether corticosterone is also mechanistically involved in carryover effects induced by a different form of nutritional variation: the use of alternate or entirely novel types of dietary resources. The plains spadefoot (Spea bombifrons) presents an excellent system for testing this question, since larvae of this species have evolved to use 2 alternate diet types: an ancestral detritus-based diet and a more novel diet of live shrimp. While previous work has shown that feeding on the novel shrimp diet influences juvenile (i.e., post-metamorphic) behavior and corticosterone levels, it is unclear whether these diet-induced carryover effects are mediated by diet-induced corticosterone itself. To test for the mechanistic role of corticosterone in diet-induced carryover effects, we experimentally treated S. bombifrons larvae with exogenous corticosterone and measured subsequent effects on juvenile behavior and corticosterone levels. We found that while shrimp-fed larvae had elevated corticosterone levels, treatment of larvae with corticosterone itself had effects on juvenile behavior that partially resembled those carryover effects induced by the shrimp diet, such as altered food seeking and higher locomotor activity. However, unlike carryover effects caused by the shrimp diet, larval corticosterone exposure did not affect juvenile corticosterone levels. Overall, our study shows that corticosterone-related mechanisms are likely involved in carryover effects induced by a novel diet, yet such diet-induced carryover effects are not driven by corticosterone alone.
Collapse
Affiliation(s)
- A M Shephard
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| | - S R Lagon
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| | - S Jacobsen
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| | - K Millar
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| | - C C Ledón-Rettig
- Department of Biology, Indiana University Bloomington, Myers Hall, 915 East 3rd Street, Bloomington IN 47405, USA
| |
Collapse
|
3
|
Alcalde Anton A, Young FJ, Melo-Flórez L, Couto A, Cross S, McMillan WO, Montgomery SH. Adult neurogenesis does not explain the extensive post-eclosion growth of Heliconius mushroom bodies. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230755. [PMID: 37885989 PMCID: PMC10598442 DOI: 10.1098/rsos.230755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Among butterflies, Heliconius have a unique behavioural profile, being the sole genus to actively feed on pollen. Heliconius learn the location of pollen resources, and have enhanced visual memories and expanded mushroom bodies, an insect learning and memory centre, relative to related genera. These structures also show extensive post-eclosion growth and developmental sensitivity to environmental conditions. However, whether this reflects plasticity in neurite growth, or an extension of neurogenesis into the adult stage, is unknown. Adult neurogenesis has been described in some Lepidoptera, and could provide one route to the increased neuron number observed in Heliconius. Here, we compare volumetric changes in the mushroom bodies of freshly eclosed and aged Heliconius erato and Dryas iulia, and estimate the number of intrinsic mushroom body neurons using a new and validated automated method to count nuclei. Despite extensive volumetric variation associated with age, our data show that neuron number is remarkably constant in both species, suggesting a lack of adult neurogenesis in the mushroom bodies. We support this conclusion with assays of mitotic cells, which reveal very low levels of post-eclosion cell division. Our analyses provide an insight into the evolution of neural plasticity, and can serve as a basis for continued exploration of the potential mechanisms behind brain development and maturation.
Collapse
Affiliation(s)
| | - Fletcher J. Young
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Antoine Couto
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Stephen Cross
- Wolfson Bioimaging Centre, University of Bristol, Bristol, UK
| | | | - Stephen H. Montgomery
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| |
Collapse
|
4
|
Couto A, Young FJ, Atzeni D, Marty S, Melo-Flórez L, Hebberecht L, Monllor M, Neal C, Cicconardi F, McMillan WO, Montgomery SH. Rapid expansion and visual specialisation of learning and memory centres in the brains of Heliconiini butterflies. Nat Commun 2023; 14:4024. [PMID: 37419890 PMCID: PMC10328955 DOI: 10.1038/s41467-023-39618-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/15/2023] [Indexed: 07/09/2023] Open
Abstract
Changes in the abundance and diversity of neural cell types, and their connectivity, shape brain composition and provide the substrate for behavioral evolution. Although investment in sensory brain regions is understood to be largely driven by the relative ecological importance of particular sensory modalities, how selective pressures impact the elaboration of integrative brain centers has been more difficult to pinpoint. Here, we provide evidence of extensive, mosaic expansion of an integration brain center among closely related species, which is not explained by changes in sites of primary sensory input. By building new datasets of neural traits among a tribe of diverse Neotropical butterflies, the Heliconiini, we detected several major evolutionary expansions of the mushroom bodies, central brain structures pivotal for insect learning and memory. The genus Heliconius, which exhibits a unique dietary innovation, pollen-feeding, and derived foraging behaviors reliant on spatial memory, shows the most extreme enlargement. This expansion is primarily associated with increased visual processing areas and coincides with increased precision of visual processing, and enhanced long term memory. These results demonstrate that selection for behavioral innovation and enhanced cognitive ability occurred through expansion and localized specialization in integrative brain centers.
Collapse
Affiliation(s)
- Antoine Couto
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Fletcher J Young
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Daniele Atzeni
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Simon Marty
- Department of Zoology, University of Cambridge, Cambridge, UK
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | | | - Laura Hebberecht
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | | | - Chris Neal
- Wolfson Bioimaging Facility, University of Bristol, Bristol, UK
| | | | | | - Stephen H Montgomery
- School of Biological Sciences, University of Bristol, Bristol, UK.
- Smithsonian Tropical Research Institute, Gamboa, Panama.
| |
Collapse
|
5
|
Toh YP, Dion E, Monteiro A. Dissections of Larval, Pupal and Adult Butterfly Brains for Immunostaining and Molecular Analysis. Methods Protoc 2021; 4:53. [PMID: 34449688 PMCID: PMC8395752 DOI: 10.3390/mps4030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 11/21/2022] Open
Abstract
Butterflies possess impressive cognitive abilities, and investigations into the neural mechanisms underlying these abilities are increasingly being conducted. Exploring butterfly neurobiology may require the isolation of larval, pupal, and/or adult brains for further molecular and histological experiments. This procedure has been largely described in the fruit fly, but a detailed description of butterfly brain dissections is still lacking. Here, we provide a detailed written and video protocol for the removal of Bicyclus anynana adult, pupal, and larval brains. This species is gradually becoming a popular model because it uses a large set of sensory modalities, displays plastic and hormonally controlled courtship behaviour, and learns visual mate preference and olfactory preferences that can be passed on to its offspring. The extracted brain can be used for downstream analyses, such as immunostaining, DNA or RNA extraction, and the procedure can be easily adapted to other lepidopteran species and life stages.
Collapse
Affiliation(s)
- Yi Peng Toh
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (Y.P.T.); (A.M.)
| | - Emilie Dion
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (Y.P.T.); (A.M.)
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; (Y.P.T.); (A.M.)
- Yale-NUS College, 10 College Avenue West, Singapore 138609, Singapore
| |
Collapse
|
6
|
Molecular underpinnings of the early brain developmental response to differential feeding in the honey bee Apis mellifera. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194732. [PMID: 34242825 DOI: 10.1016/j.bbagrm.2021.194732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Brain differential morphogenesis in females is one of the major phenotypic manifestations of caste development in honey bees. Brain diphenism appears at the fourth larval phase as a result of the differential feeding regime developing females are submitted during early phases of larval development. Here, we used a forward genetics approach to test the early brain molecular response to differential feeding leading to the brain diphenism observed at later developmental phases. Using RNA sequencing analysis, we identified 53 differentially expressed genes (DEGs) between the brains of queens and workers at the third larval phase. Since miRNAs have been suggested to play a role in caste differentiation after horizontal and vertical transmission, we tested their potential participation in regulating the DEGs. The miRNA-mRNA interaction network, including the DEGs and the royal- and worker-jelly enriched miRNA populations, revealed a subset of miRNAs potentially involved in regulating the expression of DEGs. The interaction of miR-34, miR-210, and miR-317 with Takeout, Neurotrophin-1, Forked, and Masquerade genes was experimentally confirmed using a luciferase reporter system. Taken together, our results reconstruct the regulatory network that governs the development of the early brain diphenism in honey bees.
Collapse
|