1
|
Lin WJ, Chiu CI, Li HF. Divergent effects of climatic factors on termite body size: alate versus worker castes. ENVIRONMENTAL ENTOMOLOGY 2024; 53:1157-1168. [PMID: 39361681 DOI: 10.1093/ee/nvae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Body size is an important functional trait to animals. Caste division of eusocial insects can exert a profound influence on their interactions with environment. We investigate the intra-specific variation of body size between caste within Odontotermes formosanus (Shiraki) (Blattodea: Termitidae), the most common and widely distributed termite species in Taiwan Island. By utilizing specimens from the NCHU Termite Collection and WorldClim data, we describe the body size distribution pattern of O. formosanus on two castes, worker and alate, and relationship with climatic factors is examined. The body size of workers is positively correlated with latitude and elevation. The body size of alates does not correlate with latitude but is positively correlated with elevation. Temperature factors negatively affect the body size of both castes. Precipitation has a positive effect on the body size of alates and no effect on workers. Additionally, humidity and temperature fluctuations over time have divergent effects on the body size of alates and workers. The results provide evidence of trait evolution decoupling at the intraspecific level, which may be shaped by climatic factors.
Collapse
Affiliation(s)
- Wen-Jun Lin
- Department of Entomology, National Chung Hsing University, Taiwan
| | - Chun-I Chiu
- Department of Entomology and Plant Pathology, Chiang Mai University, Thailand
| | - Hou-Feng Li
- Department of Entomology, National Chung Hsing University, Taiwan
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
2
|
Pequeno PACL. Resource adaptation drives the size-complexity rule in termites. Proc Biol Sci 2024; 291:20232363. [PMID: 38196360 PMCID: PMC10777143 DOI: 10.1098/rspb.2023.2363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024] Open
Abstract
The size-complexity rule posits that the evolution of larger cooperative groups should favour more division of labour. Examples include more cell types in larger multicellular organisms, and more polymorphic castes in larger eusocial colonies. However, a correlation between division of labour and group size may reflect a shared response of both traits to resource availability and/or profitability. Here, this possibility was addressed by investigating the evolution of sterile caste number (worker and soldier morphotypes) in termites, a major clade of eusocial insects in which the drivers of caste polymorphism are poorly understood. A novel dataset on 90 termite species was compiled from the published literature. The analysis showed that sterile caste number did increase markedly with colony size. However, after controlling for resource adaptations and phylogeny, there was no evidence for this relationship. Rather, sterile caste number increased with increasing nest-food separation and decreased with soil-feeding, through changes in worker (but not soldier) morphotype number. Further, colony size increased with nest-food separation, thus driving the false correlation between sterile caste number and colony size. These findings support adaptation to higher energy acquisition as key to the rise of complex insect societies, with larger size being a by-product.
Collapse
Affiliation(s)
- Pedro A. C. L. Pequeno
- Natural Resources Program, Federal University of Roraima, Av. Nova Iorque, Aeroporto, Boa Vista – RR, CEP: 69.304-000, Brazil
| |
Collapse
|
3
|
Schön JE, Tiede Y, Becker M, Donoso DA, Homeier J, Limberger O, Bendix J, Farwig N, Brandl R. Effects of leaf traits of tropical trees on the abundance and body mass of herbivorous arthropod communities. PLoS One 2023; 18:e0288276. [PMID: 37934765 PMCID: PMC10629635 DOI: 10.1371/journal.pone.0288276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 06/24/2023] [Indexed: 11/09/2023] Open
Abstract
In tropical forests, herbivorous arthropods remove between 7% up to 48% of leaf area, which has forced plants to evolve defense strategies. These strategies influence the palatability of leaves. Palatability, which reflects a syndrome of leaf traits, in turn influences both the abundance and the mean body mass not only of particular arthropod taxa but also of the total communities. In this study, we tested two hypotheses: (H1) The abundance of two important chewer guilds ('leaf chewers' and 'rostrum chewers'), dominant components of arthropod communities, is positively related to the palatability of host trees. (H2) Lower palatability leads to an increased mean body mass of chewers (Jarman-Bell principle). Arthropods were collected by fogging the canopies of 90 tropical trees representing 31 species in three plots at 1000 m and three at 2000 m a.s.l. Palatability was assessed by measuring several 'leaf traits' of each host tree and by conducting a feeding trial with the generalist herbivore Gryllus assimilis (Orthoptera, Gryllidae). Leaf traits provided partial support for H1, as abundance of leaf chewers but not of rostrum chewers was positively affected by the experimentally estimated palatability. There was no support for H2 as neither leaf traits nor experimentally estimated palatability affected the mean body mass of leaf chewers. The mean body mass of rostrum chewers was positively related to palatability. Thus, leaf traits and experimentally estimated palatability influenced the abundance and mean body mass of chewing arthropods on the community level. However, the data were not consistent with the Jarman-Bell principle. Overall, our results suggest that the palatability of leaves is not among the dominant factors influencing abundance and mean body mass of the community of chewing arthropod herbivores. If other factors, such as the microclimate, predation or further (a-)biotic interactions are more important has to be analyzed in refined studies.
Collapse
Affiliation(s)
- Jana E. Schön
- Department of Biology, Animal Ecology, Philipps-Universität Marburg, Marburg, Hesse, Germany
| | - Yvonne Tiede
- Department of Biology, Conservation Ecology, Philipps-Universität Marburg, Marburg, Hesse, Germany
| | - Marcel Becker
- Department of Biology, Conservation Ecology, Philipps-Universität Marburg, Marburg, Hesse, Germany
| | - David A. Donoso
- Departamento de Biología, Escuela Politécnica Nacional, Quito, Pichincha, Ecuador
| | - Jürgen Homeier
- Faculty of Resource Management, HAWK University of Applied Sciences and Arts, Göttingen, Lower Saxony, Germany
| | - Oliver Limberger
- Department of Geography, Laboratory for Climatology and Remote Sensing, Philipps-Universität Marburg, Marburg, Hesse, Germany
| | - Jörg Bendix
- Department of Geography, Laboratory for Climatology and Remote Sensing, Philipps-Universität Marburg, Marburg, Hesse, Germany
| | - Nina Farwig
- Department of Biology, Conservation Ecology, Philipps-Universität Marburg, Marburg, Hesse, Germany
| | - Roland Brandl
- Department of Biology, Animal Ecology, Philipps-Universität Marburg, Marburg, Hesse, Germany
| |
Collapse
|
4
|
Hellemans S, Šobotník J, Lepoint G, Mihaljevič M, Roisin Y, Bourguignon T. Termite dispersal is influenced by their diet. Proc Biol Sci 2022; 289:20220246. [PMID: 35611530 PMCID: PMC9132130 DOI: 10.1098/rspb.2022.0246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Termites feed on vegetal matter at various stages of decomposition. Lineages of wood- and soil-feeding termites are distributed across terrestrial ecosystems located between 45°N and 45°S of latitude, a distribution they acquired through many transoceanic dispersal events. While wood-feeding termites often live in the wood on which they feed and are efficient at dispersing across oceans by rafting, soil-feeders are believed to be poor dispersers. Therefore, their distribution across multiple continents requires an explanation. Here, we reconstructed the historical biogeography and the ancestral diet of termites using mitochondrial genomes and δ13C and δ15N stable isotope measurements obtained from 324 termite samples collected in five biogeographic realms. Our biogeographic models showed that wood-feeders are better at dispersing across oceans than soil-feeders, further corroborated by the presence of wood-feeders on remote islands devoid of soil-feeders. However, our ancestral range reconstructions identified 33 dispersal events among biogeographic realms, 18 of which were performed by soil-feeders. Therefore, despite their lower dispersal ability, soil-feeders performed several transoceanic dispersals that shaped the distribution of modern termites.
Collapse
Affiliation(s)
- Simon Hellemans
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Jan Šobotník
- Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague 6 Suchdol, Czech Republic
| | - Gilles Lepoint
- Laboratory of Trophic and Isotopes Ecology (LETIS), UR FOCUS, 13 allee du six aout, University of Liège, 4000 Liege, Belgium
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Yves Roisin
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/12, B-1050 Brussels, Belgium
| | - Thomas Bourguignon
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan,Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague 6 Suchdol, Czech Republic
| |
Collapse
|
5
|
Mizumoto N, Bourguignon T. The evolution of body size in termites. Proc Biol Sci 2021; 288:20211458. [PMID: 34784763 PMCID: PMC8596001 DOI: 10.1098/rspb.2021.1458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Termites are social cockroaches. Because non-termite cockroaches are larger than basal termite lineages, which themselves include large termite species, it has been proposed that termites experienced a unidirectional body size reduction since they evolved eusociality. However, the validity of this hypothesis remains untested in a phylogenetic framework. Here, we reconstructed termite body size evolution using head width measurements of 1638 modern and fossil termite species. We found that the unidirectional body size reduction model was only supported by analyses excluding fossil species. Analyses including fossil species suggested that body size diversified along with speciation events and estimated that the size of the common ancestor of modern termites was comparable to that of modern species. Our analyses further revealed that body size variability among species, but not body size reduction, is associated with features attributed to advanced termite societies. Our results suggest that miniaturization took place at the origin of termites, while subsequent complexification of termite societies did not lead to further body size reduction.
Collapse
Affiliation(s)
- Nobuaki Mizumoto
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Thomas Bourguignon
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|