1
|
Calvert MB, Hoque M, Wood CW. Genotypic variation in resource exchange, use, and production traits in the legume-rhizobia mutualism. Ecol Evol 2024; 14:e70245. [PMID: 39498196 PMCID: PMC11532390 DOI: 10.1002/ece3.70245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 11/07/2024] Open
Abstract
Mutualisms, reciprocally beneficial interactions between two or more species, are ubiquitous in nature. A common feature of mutualisms is extensive context-dependent variation in fitness outcomes. This context-dependency is hypothesized to stem from the environment's mediation of the relative costs and benefits associated with mutualisms. However, traits related to the exchange of goods and services in mutualisms have received little attention in comparison to net fitness outcomes. In this study, we quantified the contribution of host and symbiont genotypes to variation in resource exchange, use, and production traits measured in the host using the model mutualism between legumes and nitrogen-fixing rhizobia. We predicted that plant genotype × rhizobia genotype (G × G) effects would be common to resource exchange traits because resource exchange is hypothesized to be governed by both interacting partners through bargaining. On the other hand, we predicted that plant genotype effects would dominate host resource use and production traits because these traits are only indirectly related to the exchange of resources. Consistent with our prediction for resource exchange traits, but not our prediction for resource use and production traits, we found that rhizobia genotype and G × G effects were the most common sources of variation in the traits that we measured. The results of this study complement the commonly observed phenomenon of G × G effects for fitness by showing that numerous mutualism traits also exhibit G × G variation. Furthermore, our results highlight the possibility that the exchange of resources as well as how partners use and produce traded resources can influence the evolution of mutualistic interactions. Our study lays the groundwork for future work to explore the relationship between resource exchange, use and production traits and fitness (i.e., selection) to test the competing hypotheses proposed to explain the maintenance of fitness variation in mutualisms.
Collapse
Affiliation(s)
- McCall B. Calvert
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Maliha Hoque
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Corlett W. Wood
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Bolnick DI, Arruda S, Polania C, Simonse L, Padhiar A, Rodgers ML, Roth-Monzón AJ. The Dominance of Coinfecting Parasites' Indirect Genetic Effects on Host Traits. Am Nat 2024; 204:482-500. [PMID: 39486034 DOI: 10.1086/732256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractIndirect genetic effects (IGEs) exist when there is heritable variation in one organism's ability to alter a second organism's traits. For example, parasites have antigens that can induce a host immune response, as well as disparate strategies to evade or suppress host immunity; among-parasite genetic variation in these antigens generates among-host variation in immune traits. Here, we experimentally show that the cestode parasite Schistocephalus solidus exerts an IGE on an immune trait (peritoneal fibrosis) in its threespine stickleback host: stickleback developed strong fibrosis after exposure to some parasite genotypes but not others. A complication arises during coinfection, when two or more parasite genotypes may impose conflicting IGEs on the same host trait. What parasite-controlled trait will the host express? Will the host trait reflect the more immune-stimulatory parasite genotype or the more immune-evasive genotype? These alternatives can be quantified by estimating the dominance coefficient, as if a coinfected host were a heterozygote. We experimentally estimated the dominance of S. solidus IGEs by coinjecting antigens from different parasite genotypes. Contrary to our a priori hypotheses, coinjected antigens induced an overdominant effect, stronger than either parasite's antigens alone. We present a mathematical model showing that the value of this IGE dominance is biologically important, affecting the evolutionary dynamics of parasites in a density- and frequency-dependent manner. The model indicates that overdominance would be detrimental to immigrants when resident prevalence is high. This combination of experimental data and modeling provides an example of a parasite IGE on host traits and the evolutionary significance of IGE dominance.
Collapse
|
3
|
Rohner PT, Jones JA, Moczek AP. Plasticity, symbionts and niche construction interact in shaping dung beetle development and evolution. J Exp Biol 2024; 227:jeb245976. [PMID: 38449332 DOI: 10.1242/jeb.245976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Developmental plasticity is an important product of evolutionary processes, allowing organisms to maintain high fitness in the face of environmental perturbations. Once evolved, plasticity also has the potential to influence subsequent evolutionary outcomes, for example, by shaping phenotypic variation visible to selection and facilitating the emergence of novel trait variants. Furthermore, organisms may not just respond to environmental conditions through plasticity but may also actively modify the abiotic and (sym)biotic environments to which they themselves respond, causing plasticity to interact in complex ways with niche construction. Here, we explore developmental mechanisms and evolutionary consequences of plasticity in horned dung beetles. First, we discuss how post-invasion evolution of plasticity in an introduced Onthophagus species facilitated rapid range expansion and concurrent local adaptation of life history and morphology to novel climatic conditions. Second, we discuss how, in addition to plastically responding to variation in nutritional conditions, dung beetles engage in behaviors that modify the environment that they themselves respond to during later development. We document that these environment-modifying behaviors mask heritable variation for life history traits within populations, thereby shielding genetic variants from selection. Such cryptic genetic variation may be released and become selectable when these behaviors are compromised. Together, this work documents the complex interactions between plasticity, symbionts and niche construction, and highlights the usefulness of an integrative Eco-Evo-Devo framework to study the varied mechanisms and consequences of plasticity in development and evolution.
Collapse
Affiliation(s)
- Patrick T Rohner
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405, USA
- Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA 92093, USA
| | - Joshua A Jones
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405, USA
| |
Collapse
|
4
|
Matthews DG, Maciejewski MF, Wong GA, Lauder GV, Bolnick DI. Locomotor effects of a fibrosis-based immune response in stickleback fish. J Exp Biol 2023; 226:jeb246684. [PMID: 37947155 DOI: 10.1242/jeb.246684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
The vertebrate immune system provides an impressively effective defense against parasites and pathogens. However, these benefits must be balanced against a range of costly side-effects including energy loss and risks of auto-immunity. These costs might include biomechanical impairment of movement, but little is known about the intersection between immunity and biomechanics. Here, we show that a fibrosis immune response to Schistocephalus solidus infection in freshwater threespine stickleback (Gasterosteus aculeatus) has collateral effects on their locomotion. Although fibrosis is effective at reducing infection, some populations of stickleback actively suppress this immune response, possibly because the costs of fibrosis outweigh the benefits. We quantified the locomotor effects of the fibrosis immune response in the absence of parasites to investigate whether there are incidental costs of fibrosis that could help explain why some fish forego this effective defense. To do this, we induced fibrosis in stickleback and then tested their C-start escape performance. Additionally, we measured the severity of fibrosis, body stiffness and body curvature during the escape response. We were able to estimate performance costs of fibrosis by including these variables as intermediates in a structural equation model. This model revealed that among control fish without fibrosis, there is a performance cost associated with increased body stiffness. However, fish with fibrosis did not experience this cost but rather displayed increased performance with higher fibrosis severity. This result demonstrates that the adaptive landscape of immune responses can be complex with the potential for wide-reaching and unexpected fitness consequences.
Collapse
Affiliation(s)
- David G Matthews
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Meghan F Maciejewski
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Greta A Wong
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - George V Lauder
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
5
|
Weber JN, Kojima W, Boisseau RP, Niimi T, Morita S, Shigenobu S, Gotoh H, Araya K, Lin CP, Thomas-Bulle C, Allen CE, Tong W, Lavine LC, Swanson BO, Emlen DJ. Evolution of horn length and lifting strength in the Japanese rhinoceros beetle Trypoxylus dichotomus. Curr Biol 2023; 33:4285-4297.e5. [PMID: 37734374 DOI: 10.1016/j.cub.2023.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/28/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
What limits the size of nature's most extreme structures? For weapons like beetle horns, one possibility is a tradeoff associated with mechanical levers: as the output arm of the lever system-the beetle horn-gets longer, it also gets weaker. This "paradox of the weakening combatant" could offset reproductive advantages of additional increases in weapon size. However, in contemporary populations of most heavily weaponed species, males with the longest weapons also tend to be the strongest, presumably because selection drove the evolution of compensatory changes to these lever systems that ameliorated the force reductions of increased weapon size. Therefore, we test for biomechanical limits by reconstructing the stages of weapon evolution, exploring whether initial increases in weapon length first led to reductions in weapon force generation that were later ameliorated through the evolution of mechanisms of mechanical compensation. We describe phylogeographic relationships among populations of a rhinoceros beetle and show that the "pitchfork" shaped head horn likely increased in length independently in the northern and southern radiations of beetles. Both increases in horn length were associated with dramatic reductions to horn lifting strength-compelling evidence for the paradox of the weakening combatant-and these initial reductions to horn strength were later ameliorated in some populations through reductions to horn length or through increases in head height (the input arm for the horn lever system). Our results reveal an exciting geographic mosaic of weapon size, weapon force, and mechanical compensation, shedding light on larger questions pertaining to the evolution of extreme structures.
Collapse
Affiliation(s)
- Jesse N Weber
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Wataru Kojima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8511, Japan
| | - Romain P Boisseau
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Shinichi Morita
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Shuji Shigenobu
- Trans-Scale Biology Center, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan
| | - Hiroki Gotoh
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Oya, Suruga Ward, Shizuoka, Japan
| | - Kunio Araya
- Faculty of Social and Cultural Studies, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-city Fukuoka 819-0395, Japan
| | - Chung-Ping Lin
- Department of Life Science, National Taiwan Normal University, No.88 Sec. 4, Tingzhou Rd, Taipei 11677, Taiwan
| | - Camille Thomas-Bulle
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA; Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Cerisse E Allen
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Wenfei Tong
- Cornell Laboratory of Ornithology, Ithaca, NY 14850, USA
| | - Laura Corley Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Brook O Swanson
- Department of Biology, Gonzaga University, 502 East Boone Avenue, Spokane, WA 99258-0102, USA
| | - Douglas J Emlen
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
6
|
Matthews DG, Maciejewski MF, Wong GA, Lauder GV, Bolnick DI. Locomotor effects of a fibrosis-based immune response in stickleback fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.24.546342. [PMID: 37425734 PMCID: PMC10326981 DOI: 10.1101/2023.06.24.546342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The vertebrate immune system provides an impressively effective defense against parasites and pathogens. However, these benefits must be balanced against a range of costly side-effects including energy loss and risks of auto-immunity. These costs might include biomechanical impairment of movement, but little is known about the intersection between immunity and biomechanics. Here, we show that a fibrosis immune response in threespine stickleback (Gasterosteus aculeatus) has collateral effects on their locomotion. When freshwater stickleback are infected with the tapeworm parasite Schistocephalus solidus, they face an array of fitness consequences ranging from impaired body condition and fertility to an increased risk of mortality. To fight the infection, some stickleback will initiate a fibrosis immune response in which they produce excess collagenous tissue in their coelom. Although fibrosis is effective at reducing infection, some populations of stickleback actively suppress this immune response, possibly because the costs of fibrosis outweigh the benefits. Here we quantify the locomotor effects of the fibrosis immune response in the absence of parasites to investigate whether there are collateral costs of fibrosis that could help explain why some fish forego this effective defense. To do this, we induce fibrosis in stickleback and then test their C-start escape performance. Additionally, we measure the severity of fibrosis, body stiffness, and body curvature during the escape response. We were able to estimate performance costs of fibrosis by including these variables as intermediates in a structural equation model. This model reveals that among control fish without fibrosis, there is a performance cost associated with increased body stiffness. However, fish with fibrosis did not experience this cost but rather displayed increased performance with higher fibrosis severity. This result demonstrates that the adaptive landscape of immune responses can be complex with the potential for wide reaching and unexpected fitness consequences.
Collapse
Affiliation(s)
- David G. Matthews
- Organismic and Evolutionary Biology, Harvard University, Cambridge, 02138, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, 02138, MA, USA
| | - Meghan F. Maciejewski
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Champaign, 61820, IL, USA
- Department of Ecology Evolutionary Biology, University of Connecticut, Storrs, 06269, CT, USA
| | - Greta A. Wong
- Museum of Comparative Zoology, Harvard University, Cambridge, 02138, MA, USA
| | - George V. Lauder
- Organismic and Evolutionary Biology, Harvard University, Cambridge, 02138, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, 02138, MA, USA
| | - Daniel I. Bolnick
- Department of Ecology Evolutionary Biology, University of Connecticut, Storrs, 06269, CT, USA
| |
Collapse
|
7
|
Forti LR, Szabo JK, Japyassú HF. Host manipulation by parasites through the lens of Niche Construction Theory. Behav Processes 2023:104907. [PMID: 37352944 DOI: 10.1016/j.beproc.2023.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
The effect of parasites on host behaviour is generally considered an example of the extended phenotype, implying that parasite genes alter host behaviour to benefit the parasite. While the extended phenotype is a valid perspective supported by empirical examples, this approach was proposed from an evolutionary perspective and it does not fully explain all processes that occur at ecological time scales. For instance, the roles of the ontogenetic environment, memory and learning in forming the host phenotype are not explicitly mentioned. Furthermore, the cumulative effect of diverse populations or communities of parasites on host phenotype cannot be attributed to a particular genotype, much less to a particular gene. Building on the idea that the behaviour of a host is the result of a complex process, which certainly goes beyond a specific parasite gene, we use Niche Construction Theory to describe certain systems that are not generally the main focus in the extended phenotype (EP) model. We introduce three niche construction models with corresponding empirical examples that capture the diversity and complexity of host-parasite interactions, providing predictions that simpler models cannot generate. We hope that this novel perspective will inspire further research on the topic, given the impact of ecological factors on both short-, and long-term effects of parasitism.
Collapse
Affiliation(s)
- Lucas Rodriguez Forti
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 668 - Campus de Ondina CEP: 40170-115 Salvador - Bahia, Brazil; Departamento de Biociências, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota, 572 - Bairro Costa e Silva, 59625-900, Mossoró - Rio Grande do Norte, Brazil.
| | - Judit K Szabo
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 668 - Campus de Ondina CEP: 40170-115 Salvador - Bahia, Brazil; College of Engineering, IT and Environment, Charles Darwin University, Casuarina, Northern Territory 0909, Australia
| | - Hilton F Japyassú
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 668 - Campus de Ondina CEP: 40170-115 Salvador - Bahia, Brazil; INCT-INTREE: Instituto Nacional de Ciência e Tecnologia para estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução, Universidade Federal da Bahia
| |
Collapse
|
8
|
Bolnick DI, Arruda S, Polania C, Simonse L, Padhiar A, Roth A, Rodgers ML. The dominance of coinfecting parasites' indirect effects on host traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.12.528182. [PMID: 36798170 PMCID: PMC9934634 DOI: 10.1101/2023.02.12.528182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Indirect genetic effects (IGEs) exist when there is heritable variation in one species' ability to alter a second species' traits. For example, parasites can evolve disparate strategies to manipulate host immune response, whether by evading detection or suppressing immunity. A complication arises during coinfection, when two or more parasite genotypes may try to impose distinct IGEs on the same host trait: which parasite's IGE will be dominant? Here, we apply the notion of dominance to IGEs during coinfection. Using a mathematical model we show that the dominance of IGEs can alter the evolutionary dynamics of parasites. We consider a resident parasite population receiving rare immigrants with a different immune manipulation trait. These immigrants' relative fitness depends on resident prevalence (e.g., the probability immigrants are alone in a host, or coinfecting with a native), and the dominance of the immigrant's IGE on host immunity. Next, we show experimentally that the cestode Schistocephalus solidus exerts an IGE on a host immune trait: parasite antigens from different populations produced different intensities of fibrosis. We then evaluated IGE dominance, finding evidence for overdominance (coinjected antigens induced an even stronger host immune response) which would be detrimental to immigrants when resident prevalence is high. This combination of experimental and modeling results shows that parasites do exhibit IGEs on host traits, and that the dominance of these IGEs during coinfection can substantially alter parasite evolution.
Collapse
Affiliation(s)
- Daniel I. Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Sophia Arruda
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Christian Polania
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Lauren Simonse
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Arshad Padhiar
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Andrea Roth
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
| | - Maria L. Rodgers
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs CT 06269, USA
- Present address: Department of Biological Sciences, North Carolina State University, Morehead City NC 28557, USA
| |
Collapse
|
9
|
de Groot C, Wijnhorst RE, Ratz T, Murray M, Araya-Ajoy YG, Wright J, Dingemanse NJ. The importance of distinguishing individual differences in 'social impact' versus 'social responsiveness' when quantifying indirect genetic effects on the evolution of social plasticity. Neurosci Biobehav Rev 2023; 144:104996. [PMID: 36526032 DOI: 10.1016/j.neubiorev.2022.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Social evolution and the dynamics of social interactions have previously been studied under the frameworks of quantitative genetics and behavioural ecology. In quantitative genetics, indirect genetic effects of social partners on the socially plastic phenotypes of focal individuals typically lack crucial detail already included in treatments of social plasticity in behavioural ecology. Specifically, whilst focal individuals (e.g. receivers) may show variation in their 'responsiveness' to the social environment, individual social partners (e.g. signallers) may have a differential 'impact' on focal phenotypes. Here we propose an integrative framework, that highlights the distinction between responsiveness versus impact in indirect genetic effects for a range of behavioural traits. We describe impact and responsiveness using a reaction norm approach and provide statistical models for the assessment of these effects of focal and social partner identity in different types of social interactions. By providing such a framework, we hope to stimulate future quantitative research investigating the causes and consequences of social interactions on phenotypic evolution.
Collapse
Affiliation(s)
- Corné de Groot
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany.
| | - Rori E Wijnhorst
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| | - Tom Ratz
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| | - Myranda Murray
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Yimen G Araya-Ajoy
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Jonathan Wright
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| |
Collapse
|
10
|
Fogarty L, Wade MJ. Niche construction in quantitative traits: heritability and response to selection. Proc Biol Sci 2022; 289:20220401. [PMID: 35642369 PMCID: PMC9156914 DOI: 10.1098/rspb.2022.0401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A central tenet of niche construction (NC) theory is that organisms can alter their environments in heritable and evolutionarily important ways, often altering selection pressures. We suggest that the physical changes niche constructors make to their environments may also alter trait heritability and the response of phenotypes to selection. This effect might change evolution, over and above the effect of NC acting via selection alone. We develop models of trait evolution that allow us to partition the effects of NC on trait heritability from those on selection to better investigate their distinct effects. We show that the response of a phenotype to selection and so the pace of phenotypic change can be considerably altered in the presence of NC and that this effect is compounded when trans-generational interactions are included. We argue that novel mathematical approaches are needed to describe the simultaneous effects of NC on trait evolution via selection and heritability. Just as indirect genetic effects have been shown to significantly increase trait heritability, the effects of NC on heritability in our model suggest a need for further theoretical development of the concept of heritability.
Collapse
Affiliation(s)
- Laurel Fogarty
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | |
Collapse
|